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Abstract 

Rheumatoid arthritis is an autoimmune condition that predominantly affects the synovial joints, causing joint destruc‑
tion, pain, and disability. Historically, the standard for measuring the long‑term efficacy of disease‑modifying antirheu‑
matic drugs has been the assessment of plain radiographs with scoring techniques that quantify joint damage. How‑
ever, with significant improvements in therapy, current radiographic scoring systems may no longer be fit for purpose 
for the milder spectrum of disease seen today. We argue that artificial intelligence is an apt solution to further improve 
upon radiographic scoring, as it can readily learn to recognize subtle patterns in imaging data to not only improve 
efficiency, but can also increase the sensitivity to variation in mild disease. Current work in the area demonstrates the 
feasibility of automating scoring but is yet to take full advantage of the strengths of artificial intelligence. By fully lever‑
aging the power of artificial intelligence, faster and more sensitive scoring could enable the ongoing development of 
effective treatments for patients with rheumatoid arthritis.
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Introduction
Rheumatoid arthritis (RA) is a common polyarthritis 
that causes inflammation and destruction of synovial 
joints [1]. RA affects 0.5–1% of the global population and 
is associated with disability, work loss, and premature 
death [2]. In the USA, this equates to a cost of $19.3 bil-
lion annually in both healthcare and indirect expenses 
[3]. With advances in the use of disease-modifying anti-
rheumatic drugs (DMARDs) and the advent of new bio-
logic DMARDs (bDMARDs), the ability to suppress joint 
inflammation has improved considerably [4]. Clinical 
remission and the prevention of joint damage are now 
achievable for many patients [5]. Progress in developing 

new pharmacotherapies for RA has been enhanced by 
radiographic scoring systems that carefully quantify the 
severity and rate of progression of joint damage in clini-
cal trials [6]. However, it has become increasingly difficult 
to verify the superiority or inferiority of new therapies 
with established radiographic scoring systems given their 
low sensitivity to the less severe joint damage which has 
become the clinical norm [7]. Furthermore, while desir-
able for use in routine clinical practice, current radio-
graphic scoring systems are too time-intensive to be used 
in this context [8].

Deep learning is a type of artificial intelligence (AI) 
that offers a potential solution to the constraints of radi-
ographic scoring, as it can efficiently and consistently 
identify patterns in imaging data. This article reviews the 
use of radiographic scoring in RA and explores the prop-
osition that deep learning offers new opportunities to 
improve upon past scoring systems. We first discuss the 
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history of radiographic scoring in RA and assess the cur-
rent state-of-the-art in the application of deep learning to 
this task through a scoping review of the literature. We 
then look toward the future of deep learning in rheuma-
tology and discuss how it may accelerate the search for 
new therapies and allow for the routine use of complex 
radiographic scoring in the clinical setting for the first 
time.

Background
Radiographic scoring
Plain radiography has been the standard imaging modal-
ity for the diagnosis and monitoring of joint damage in 
RA due to its ability to detect erosions (the pathological 
hallmark of the disease) and joint space narrowing [9], 
which are considered to be the most reliable features in 
determining progression of joint damage. In clinical tri-
als, the reliability of a radiographic scoring system as 
a surrogate outcome is conditional on its ability to pre-
dict disability associated with RA. Scoring methods have 
been shown to correlate with the Health Assessment 
Questionnaire, a self-reported measure commonly used 
in RA to assess functional status and disability [10]. Con-
sequently, the key assumption that underpins many RA 
drug trials is that prevention of joint destruction will 
improve functional outcomes.

Radiographic scoring has been evolving since its con-
ception in the 1940s, to achieve a balance between sensi-
tivity to change, interobserver agreement, and time taken 
for evaluation. The initial approach—the Steinbrocker 
method—assigned a single global score for the entire 
hand [11], but was inadequate for many trials as there 
was often extensive disease progression before the overall 
score increased [12]. Sharp et al. proposed a more com-
plex method in 1971 that assessed individual joints for 
erosions and JSN, and included joints based on the repro-
ducibility of their assessment, and on ensuring enough 
joints were included to be representative of disease [13]. 
The Larsen score, developed in 1977, included additional 
radiographic findings of soft tissue swelling and periar-
ticular osteoporosis [14]. While these tend to occur ear-
lier in disease and therefore may be more sensitive [14], 
these features are considered less reliable as they are 
dependent on radiographic technique and are subject to 
higher interobserver variability [9].

Today, the van der Heijde modification of the Sharp 
score (SvdH) is most commonly used in clinical tri-
als. SvdH scoring was used in 73% of trials conducted 
between 1994 and 2020 [7]. The SvdH score was devel-
oped in 1989 and improves upon the original Sharp 
score by including the metatarsophalangeal joints and 
first interphalangeal joint of the feet and eliminat-
ing some joints of the wrist [15]. These modifications 

served to improve the sensitivity to change and inter-
observer agreement, as joints in the feet (especially the 
first metatarsophalangeal joint) are often affected early in 
RA, and a number of the joints in the wrists (such as the 
lunotriquetral joint and first interphalangeal joint) can 
be difficult to reliably assess as they can be obscured by 
overlapping surrounding structures.

Despite the extensive effort to improve upon the sen-
sitivity, speed, and interobserver agreement of radio-
graphic scoring, scoring systems in current use remain 
constrained by poor reproducibility and low sensitivity 
to change and by the prohibitive length of time taken for 
expert evaluation [16]. These constraints of manual scor-
ing highlight the potential role of deep learning given that 
a trade-off in these qualities is inevitable when depend-
ing on human scorers. Deep learning is well positioned 
to further improve upon scoring, particularly by improv-
ing sensitivity to change while simultaneously increas-
ing reproducibility and dramatically reducing the time 
required to score a radiograph.

Deep learning
Deep learning is a type of AI that is currently the most 
powerful method in many applications, particularly 
for problems using image data. Deep learning mod-
els are able to train from a wide variety of input data, 
such as medical imaging or text from electronic health 
records (EHR). When dealing with imaging data, a com-
mon approach is to build these models using convolu-
tional neural networks (CNNs), where inputs are passed 
through many layers that can identify increasingly 
abstract image features. Earlier layers may identify simple 
features such as edges and textures while later layers can 
identify more abstract concepts such as the presence or 
severity of a disease. The algorithm is updated with each 
example it processes to gradually become more accurate 
and can reach human-level performance across a vari-
ety of tasks [17]. Figure 1 shows an example of a model 
trained to identify the joints of a hand in a patient with 
RA.

In rheumatology more broadly, deep learning-based 
models are being developed to tackle a wide range of 
tasks such as automating testing for antinuclear anti-
bodies [18], interpretation of synovial ultrasounds [19], 
and predicting diagnoses from an EHR [20]. Despite 
the promise of these techniques, many models have 
often failed to be implemented clinically, a phenomenon 
termed the “implementation gap” [21], which highlights 
the true complexity of applying such technologies in 
the clinical context. With many emerging applications, 
there is an increasing need for expert clinical guidance to 
develop algorithms that can better leverage the strengths 
of deep learning [22].
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Scoping review
In the past 4 years, deep learning has sparked a resur-
gence of research interest in automating measure-
ment of articular changes, as it offers the prospect of 
a robust and fully automated approach. We conducted 
a scoping review of the literature to examine the pro-
gress in automating radiographic scoring, and the les-
sons to consider moving forward. The literature review 
was conducted according to the PRISMA guidelines for 
scoping reviews [23].

Eligibility criteria
Publications were eligible if the study applied machine 
learning to the automation of radiographic scoring in 
RA. They were included if they met the following cri-
teria: (1) models were applied to radiographic scoring 
of RA (any scoring system was accepted) and (2) the 
study used deep learning or machine learning-based 
algorithms. Studies were excluded if (1) they were using 
imaging modalities other than plain radiography, (2) 
they used non-AI methods, or (3) the study lacked suf-
ficient information for analysis.

Search strategies
Searches were conducted in four online databases—
Embase, PubMed, Web of Science, and Scopus from 
inception to 24 January 2022.

Keywords were selected to search various databases 
based on consultations with an academic librarian. 
These included (1) “rheumatoid arthritis,” “inflamma-
tory arthritis,” “rheumatism,” “arthritis,” “polyarthritis,” 
“rheumatic,” (2) “machine learning,” “deep learning,” 
“artificial intelligence,” “computer aided diagnosis,” 
“neural network,” “convolutional,” “decision tree,” “ran-
dom forest,” “precision medicine,” and (3) “radiodiagno-
sis,” “radiograph,” “x ray,” and “imaging.” These searches 
were limited to studies published in English.

Selection process
Study selection was conducted independently by two 
reviewers. Records were first independently screened 
by AB and LAS based on titles and abstracts. Records 
that initially met eligibility criteria were assessed using 
the full text. Discrepancies between the reviewers were 
resolved by consultation with a third reviewer (LOR).

Data collection
As detailed in Table 1, data from the eight eligible stud-
ies from seven different authors were compiled. The 
data extracted included (1) specifics of the task at hand 
(what scoring method was used and which joints were 
assessed), (2) the size of the training data set, (3) the 
machine learning method employed, (4) the test dataset 
size, and (5) the performance reported. The reviewers 
recorded the sensitivity and specificity of each model if 
these could be derived from metrics reported.

Selection of studies
After duplicates were removed, 811 titles and abstracts 
were reviewed independently by two reviewers. Of 
these, 766 were excluded and the remaining 36 records 
were assessed using the full text of the publication. 
Following this, 5 studies and 3 abstracts were found 
to meet the criteria and were included in the scoping 
review. See the flow diagram in Fig. 2.

Characteristics of included studies
All studies included (n=8) were published between 
2017 and 2020. Five studies used data from Japan, one 
used data from Austria, one from Taiwan, and one from 
Switzerland. Sample sizes ranged from 45 to 5191 radi-
ographs. All studies used trained experts for the base-
line scores, usually radiologists or rheumatologists. The 
majority (6 out of 8) of studies used the SvdH score, 
reporting erosions, JSN, or both. One paper investi-
gated the presence or absence of erosions while another 
used the Ratingen scoring method to assess the extent 
of erosive disease. There were a range of approaches 
used for joint detection such as histogram of gradients 

Fig. 1 Output of neural network trained to detect joints in the hands
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(HOG) [33], multiscale gradient vector flow (MSGVF) 
[34], and cascade classifiers using Haar-like features 
[35]. These are all hard-coded methods used to detect 
or track edges in order to identify structures. Alternate 
methods used were manual identification of joints or 
using CNNs. All papers used CNNs in evaluating ero-
sion and narrowing scores. Figure 3 demonstrates this 
approach of first identifying the relevant joints and 
then assigning each joint a score.

Results of individual studies
The first attempt to automate the SvdH score was in 2017 
by Morita et al., trained using the hand radiographs of 45 
patients with mild to severe RA [24]. Testing was done 

using leave-one-out cross-validation, with an accuracy of 
50.9% and an absolute error of 0.59 for erosions and an 
accuracy of 64.3% and an absolute error of 0.43 for JSN. 
They built on this work in 2018 showing modest per-
formance improvements with more data and a different 
regression technique [25].

In 2018, Murakami et al. used the “Multi Scale Gradi-
ent Vector Flow Snakes” method to segment the pha-
langes of 129 hand radiographs before training with a 
convolutional neural network to identify the presence or 
absence of erosions. They achieved a sensitivity of 0.805 
and a specificity of 0.99 in a test set of 31 radiographs 
[26]. A subsequent paper in 2019 built on this work to 
grade erosions into 6 classes using the Ratingen scoring 

Fig. 2 Flow diagram regarding study identification and selection [32]. *Reason 1: not investigating radiographic scoring; reason 2: not using 
machine learning; reason 3: using a different imaging modality; reason 4: lacked sufficient information for analysis
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system [27]. They trained a VGG16 model (a commonly 
used CNN architecture at the time) using 277 radio-
graphs. In a test cohort of 30 radiographs, they report a 
sensitivity of 0.924 and a specificity of 0.758. In the same 
year, Hirano et  al. trained on 186 hand radiographs to 
score the extent of erosions and JSN according to the 
SvdH scoring system. Joints were first manually clipped 
and then consensus scored by two rheumatologists. In a 
test set of 30 radiographs, the JSN sensitivity was 0.880 
and specificity 0.748, while for erosion sensitivity was 
0.424 and specificity 0.894 [28]. An abstract by Izumi 
et  al. scored erosions based on the difference between 
two time points using a CNN [31]. With 5-fold cross-val-
idation on a set of 104 radiographs, they reported a mean 
error of 0.412 SvdH points per joint.

Two abstracts were published in 2020 that used more 
sizable training sets to score JSN. Deimel et  al. used a 
training set of 3357 radiographs and a test dataset con-
sisting of 1834 radiographs. In the MCPs, their scoring 
model achieved a sensitivity of 0.844 and a specificity of 
0.909, while for PIPs, a sensitivity of 0.863 and a speci-
ficity of 0.870 were achieved [29]. In the second abstract, 
Huang et al. used a dataset of 1397 radiographs, split 70% 
in training and 30% in testing [30]. While all other stud-
ies had focused on only metacarpophalangeal (MCP) and 
proximal interphalangeal (PIP) joints, they also graded 
carpometacarpal joints (CMC) and the intercarpal joints 
in their model, although this was associated with a drop 
in performance. They had highly reliable baseline scores 
as they used the consensus of three rheumatologists. Using 
the cutoff of a score greater than or equal to 2, they found 
an overall sensitivity of 0.808 and a specificity of 0.919.

Synthesis of evidence
Preliminary steps have been made in the automation of 
radiographic scoring, demonstrating the feasibility of this 
approach. This is largely proof-of-concept work as the 
majority of papers use datasets that are too small to reach 
adequate performance. The models have all been tested 
in data from the same patient cohort and would likely see 
a drop in performance when used in other contexts. All 
work thus far has not yet included all joints required in 
the SvdH score. Despite the recent nature of these studies, 
many used out-of-date (i.e., non-neural) approaches to joint 
detection. Neural networks have been shown to consistently 
outperform such non-neural approaches [36].

Outcome reporting among studies was heterogeneous, 
making quantitative summary and comparison infeasible. 
While most studies reported sensitivity and specificity, 
none reported the area under the receiver operating curve 
(AUROC)—a key performance metric for diagnostic or 
prognostic studies [37]. AI-specific guidelines are cur-
rently being produced regarding standardized reporting 

in diagnostic or prognostic studies [38, 39]. Adhering to 
such guidelines will hopefully foster transparent and con-
sistent reporting of performance metrics and hence allow 
meta-analyses among studies to be conducted.

Currently, while deep learning has potential in RA, it 
remains divorced from clinical application. As will be dis-
cussed in detail below, larger datasets, the use of newer and 
more powerful algorithmic techniques, careful evaluation, 
and standardized reporting of results would all improve 
the potential for AI systems in radiographic scoring.

The future of radiographic scoring
Algorithmic scoring shows promise to advance the state 
of radiographic evaluation by being faster and more sen-
sitive to subtle disease and in mitigating the challenges of 
low interobserver agreement between scorers. Although 
the research does not yet adequately test performance to 
be able to be used in practice, with carefully constructed 
large datasets and thorough external validation, these 
advantages could ultimately improve the efficacy and 
timeliness of pharmaceutical research.

Efficiency
The most obvious benefit of automated scoring is effi-
ciency. Manual scoring is laborious and requires trained 
practitioners, taking on average 25 min for a set of seven 
radiographs from one patient [40]. Instead, an AI sys-
tem—once trained—would likely take a trivial amount of 
time to set up, and subsequently would be able to process 
numerous radiographs per hour [7]. This feature could 
allow radiographic scoring to be used in the clinic to aid 
in clinical decision-making (discussed below).

Improving sensitivity
Effective treatment has resulted in increasingly subtle radi-
ographic findings [41], making the SvdH score less suitable 
for the spectrum of disease that is seen in current clini-
cal practice. While radiographs are not the most sensitive 
imaging modality, the score is less sensitive still and can 
often miss features of joint destruction in order to allow for 
a reliable and consistent approach [42]. For example, only 
posteroanterior films are assessed, many of the intercar-
pal joints are excluded, and other radiographic findings of 
disease such as soft tissue swelling or juxta-articular osteo-
porosis are ignored, findings which are known to often pre-
date overt joint destruction in the disease process [15].

A key insight here is that the current approach of pre-
dicting human-derived scores may be an unnecessary 
intermediate step. Deep learning on radiographs can 
be directly trained to predict relevant outcomes such as 
functional scores and pain scores, bypassing a human-
derived radiographic score completely. By doing so, deep 
learning methods can learn to detect imaging features 
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that are most predictive of outcomes and make use of 
other radiographic views, additional joints, and previously 
excluded imaging findings. Of course, it is possible that a 
model could learn to identify features related to function 
that are not caused by RA, most problematically osteoar-
thritis. Conversely, comorbid fibromyalgia, which is com-
mon in long-standing RA, could result in increased pain 
and decreased function without any anatomical correlates 
on plain radiography. Carefully designed algorithms will 
need to account for these confounding factors.

While it is likely that MRI and ultrasound will be 
increasingly used in pharmaceutical trials given their 
sensitivity in early disease, the same limitations exist for 
these imaging modalities regarding manual scores as are 
apparent for radiographs [43]. Although we discuss radi-
ographs as the current standard outcome measure in this 
article, similar ideas of improving scoring sensitivity and 
efficiency can be readily applied to other imaging modali-
ties. Deep learning models could learn to recognize the 
subtle, early changes of disease detected by any imaging 
modalities and, in doing so, increase the sensitivity of scor-
ing in RA, whether using radiographs, ultrasound, or MRI.

Interobserver agreement
The predominant method of assessing the reliability of a 
scoring system is a measure of interobserver agreement. 
Even when a system is clearly defined, there is a degree 
of measurement error [44]. Not only does interpretation 
differ between people, but an individual’s application 
of the score can change over time as well. A systematic 
review of radiographic scoring found that the SvdH score 
has an intra-rater intraclass correlation coefficient (ICC) 
of 0.96–0.99 and an inter-rater ICC of 0.90 [42]. Con-
versely, a deep learning-based system could produce con-
sistent interpretations of similar images, if trained on a 
sufficiently large and diverse dataset.

Drug development
The ongoing development of effective treatments in 
RA is currently restricted by the cost of drug trials [41] 

and a significant reduction in the extent of joint dam-
age seen on radiographs in the last decade or so [45]. 
As Landewe et  al. highlight, the “signal of progression 
in the control arm of the trial becomes too low in rela-
tion to the unchanged level of noise” and “the beneficial 
effect of the new therapy can no longer be statistically 
supported” [41].

A 2020 review [7] showed that in the 15 industry-
sponsored drug trials published since 2010, the average 
baseline SvdH scores ranged from 5.2 to 68.3. Many trials 
also selected patients who had failed methotrexate treat-
ment and/or had a longer disease duration. While this is 
an acceptable approach to improve the power of a trial, 
continuing to recruit patients with severe, treatment-
resistant, and long-standing disease limits the external 
validity of such research to the broader group of patients 
diagnosed with RA. In particular, these trial results carry 
little weight in early RA where the so-called window of 
opportunity invites the study of drugs to prevent radio-
graphic progression from the very earliest stages of dis-
ease [46, 47]. The average changes in SvdH score after 1 
year ranged from 0.1 to 2.2 in control groups, and the few 
trials that did report the smallest detectable difference 
found that it was greater than the average change noted 
[7]. This makes it difficult to discern whether a score 
change is due to disease progression or measurement 
error and thus more challenging to conduct adequately 
powered clinical trials in RA using current scoring 
methods.

While it has been argued that subtle differences are 
not clinically relevant [48], it remains plausible that some 
patterns of subtle disease are associated with disease 
progression, and identifying these patients to provide 
early therapy could prevent the development of clinically 
significant disease. Furthermore, a major limitation of 
manual grading is the difficulty in comparing the results 
of independent trials [49]. An automated system would 
allow meta-analyses to be conducted more easily in order 
to provide stronger evidence for the superiority or inferi-
ority of drugs or drug combinations.

Fig. 3 Using a convolutional neural network (CNN), joints are identified from the input radiograph and the score for each joint is assigned
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Clinical decision‑making
Attempts thus far to bring scoring into the clinical 
domain have been thwarted by the labor-intensive nature 
of scoring. The additional information provided by scores 
could be invaluable to the treating rheumatologist. Auto-
mated scoring in the clinical setting could confirm to a 
reluctant patient that there is evidence of progression 
that would support a decision to escalate treatment. 
Conversely, the availability of automated scores could 
reassure the rheumatologist and patient that the disease 
is well-controlled and other factors contributing to the 
patient’s symptoms or experience may need addressing.

Given the heterogeneous nature of RA, being able to 
more precisely characterize a patient’s disease is particu-
larly useful. We are currently stuck with a trial-and-error 
approach to management due to the scarcity of validated 
biomarkers [50]. In addition to any future molecular and 
genetic biomarkers, imaging biomarkers may also pro-
vide information to enable a personalized approach to 
treatment. Deep learning-based scoring and its ability to 
detect novel imaging biomarkers in an agnostic, hypothe-
sis-free framework [51] have the potential to advance the 
role of precision medicine in the management of RA.

Barriers to automated scoring
Despite the promise of AI, there remain barriers to the 
development of automated radiographic scoring. The 
limited availability of large volumes of high-quality train-
ing data has hampered the development of AI-based 
automation. The labeling of training data required is a 
substantial undertaking given the volume of data and the 
multiple expert clinical scorers required.

To develop a high-performing scoring model, large 
volumes of data are required (likely in the realm of thou-
sands of radiographs), drawn from a diverse enough 
sampling frame that the model can learn the different 
appearances of joint destruction as imaged with dif-
ferent machines, among differing demographics. Ulti-
mately, for this to be achieved, it is likely that data will 
need to be pooled across many studies and institutions. 
The National Consortium of Intelligent Medical Imaging 
(NCIMI) is an example of efforts to advance AI research 
in the UK by providing large-scale, de-identified imaging 
data from multiple sites [52]. Such initiatives are integral 
to accessing sufficient volumes and variation of training 
data to develop robust and accurate models.

The evaluation of AI models to score RA radiographs 
has been limited due to a lack of external validation, 
with test datasets being from single hospitals or clinics. 
External validation is crucial in order to be confident that 
models will function as expected in data from different 
hospitals/health systems, among different patient demo-
graphics, and across varying degrees of disease severity 

[53]. Models can suffer from poor performance in sub-
sets of a population, and mistakes in certain subsets can 
have differing clinical significance [54]. For example, 
underperforming at identifying erosions could be prob-
lematic as this is a more overt sign of disease progression 
and often necessitates treatment escalation. Underper-
forming in certain minority groups, which is regrettably 
common given biased training datasets [55], could cause 
greater healthcare disparities in already disadvantaged 
groups. Ultimately, as with all clinical tools, the safety 
of implementation is contingent on testing performance 
when integrated into the clinical pathway to be confi-
dent regarding how the intervention will affect patient 
outcomes.

These factors have seen many medical AI models fail 
to reach clinical implementation. Where we have insuf-
ficient volume and quality of data, and superficial model 
evaluation, it is unsurprising when a model fails to per-
form in practice. A key hurdle though for many medical 
AI solutions is identifying a clinical use case or solving a 
particular clinical problem [21]. A deep understanding of 
the relevant clinical domain is vital when providing such 
solutions to ensure clinical relevance. Fortunately, radio-
graphic scoring in RA is likely uniquely positioned in this 
respect. The use case and specific task are already narrow 
and well defined. Scoring also faces particular constraints 
for which AI is an apt solution—inadequate sensitivity 
to subtle disease and poor interobserver agreement. By 
training models to predict functional sores, AI is not sim-
ply replacing an existing system but significantly improv-
ing upon what exists in ways that are vital for the ongoing 
development of new RA treatments. The issue of data 
volume, quality, and rigorous evaluation, while undenia-
bly onerous, is an issue of resources rather than requiring 
novel or technical solutions.

Conclusions
In order to continue developing more effective treat-
ments for RA, we may need new approaches to radio-
graphic scoring that can better detect the subtle disease 
that is more often seen today. Recent advances sug-
gest that deep learning could be a key tool to tackle the 
issues faced by manual scoring. A more sensitive and 
reliable system could increase the statistical power of 
drug trials so that new therapies or drug combinations 
can be investigated. Current approaches have auto-
mated radiographic scores but fail to take advantage of 
the main benefits of AI-based models. There remains a 
mismatch between the strengths of AI and the way it is 
being used to automate tasks in rheumatology. AI is in 
a strong position to aid in the continual development of 
highly effective treatments to improve the quality of life 
of those living with RA.
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