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Abstract 

Background We sought to discover serum biomarkers of ankylosing spondylitis (AS) for diagnosis and monitoring 
disease activity.

Methods We studied biologic-treatment-naïve AS and healthy control (HC) patients’ sera. Eighty samples matched 
by age, gender, and race (1:1:1 ratio) for AS patients with active disease, inactive disease, and HC were analyzed with 
SOMAscan™, an aptamer-based discovery platform. T-tests tests were performed for high/low-disease activity AS 
patients versus HCs (diagnosis) and high versus low disease activity (Monitoring) in a 2:1 and 1:1 ratio, respectively, to 
identify differentially expressed proteins (DEPs).

We used the Cytoscape Molecular Complex Detection (MCODE) plugin to find clusters in protein–protein interaction 
networks and Ingenuity Pathway Analysis (IPA) for upstream regulators. Lasso regression analysis was performed for 
diagnosis.

Results Of the 1317 proteins detected in our diagnosis and monitoring analyses, 367 and 167 (317 and 59, FDR-cor-
rected q < .05) DEPs, respectively, were detected. MCODE identified complement, IL-10 signaling, and immune/inter-
leukin signaling as the top 3 diagnosis PPI clusters. Complement, extracellular matrix organization/proteoglycans, and 
MAPK/RAS signaling were the top 3 monitoring PPI clusters. IPA showed interleukin 23/17 (interleukin 22, interleukin 
23A), TNF (TNF receptor-associated factor 3), cGAS-STING (cyclic GMP-AMP synthase, Stimulator of Interferon Gene 
1), and Jak/Stat (Signal transducer and activator of transcription 1), signaling in predicted upstream regulators. Lasso 
regression identified a Diagnostic 13-protein model predictive of AS. This model had a sensitivity of 0.75, specificity 
of 0.90, a kappa of 0.59, and overall accuracy of 0.80 (95% CI: 0.61–0.92). The AS vs HC ROC curve was 0.79 (95% CI: 
0.61–0.96).

Conclusion We identified multiple candidate AS diagnostic and disease activity monitoring serum biomarkers using 
a comprehensive proteomic screen. Enrichment analysis identified key pathways in AS diagnosis and monitoring. 
Lasso regression identified a multi-protein panel with modest predictive ability.
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Introduction
Ankylosing spondylitis (AS) is a chronic, systemic 
inflammatory disease with cardinal features of inflamma-
tory back pain, sacroiliitis, and spinal fusion that lead to 
significant functional impairment [1]. AS is also associ-
ated with extra-articular features such as uveitis, psoria-
sis, and inflammatory bowel disease, which can precede 
or follow characteristic spinal involvement [2]. AS is a 
subset of axial spondyloarthritis (AxSpA), estimated to 
affect up to 2–3 million people in the USA [3]. Genetic 
studies in AS have identified over 113 susceptibility loci 
that have suggested pathologic mechanisms for this com-
plex disease [4–6]. Gene expression studies of peripheral 
blood at both the bulk and single-cell level have recently 
provided insight into disease pathogenesis [7–9].

Large-scale examination of proteins, unlike DNA and 
RNA, remains scarce and limited in AS. Recent mass spec-
trometry-based studies of AS patients compared to healthy 
controls have revealed dysregulation of serum proteins—
including complement, metalloproteinases, and serum 
amyloid A1 (SAA1) [10–12]. Dynamic range limitations of 
this lab technique however limit proteome coverage, which 
may restrict molecular characterization of AS [13].

Biomarkers have been defined as “a characteristic that is 
objectively measured and evaluated as an indicator of nor-
mal biological processes, pathogenic processes, or phar-
macologic responses to a therapeutic intervention” [14]. 
Many rheumatic diseases now have incorporated sero-
logic and proteomic markers into their classification crite-
ria and disease activity measures. Biomarkers that can aid 
in the diagnosis and monitoring of disease activity of AS 
could improve clinical care and advance our pathophysi-
ology understanding. The two most utilized in AS clinical 
practice and trials include C-reactive protein (CRP) and 
erythrocyte sedimentation rate (ESR). These lack sensitiv-
ity with two thirds of those with established AS and clini-
cally active disease having within normal levels [15]. To 
this end, a great need remains for the identification of bet-
ter diagnostic and monitoring AS biomarkers.

In this study, we investigated an extended aptamer-
based panel of over 1300 proteins in biologic pharmaco-
therapy naïve AS patients to (1) discriminate AS patients 
versus healthy controls (HC) and (2) compare AS patients 
with active versus inactive disease.

Methods and datasets
Patient and specimens
Serum samples from the Prospective Study of Outcome 
in Ankylosing Spondylitis (PSOAS) cohort UTHealth 
biorepository were examined [16]. This multicenter 
cohort was initiated in 2003 and includes patients 
from UTHealth Houston, University of California 
San Francisco, the NIH Clinical Center, Cedars-Sinai 

Medical Center, and the Queensland University of Tech-
nology (Australia). The research carried out followed 
the Helsinki Declaration, each institution had the study 
approved by their respective institutional review boards 
(IRB), and each participating patient reviewed and signed 
an informed consent form. We studied age-, gender-, and 
race-matched patient and control sera in a 1:1:1 ratio for 
active, inactive, and healthy controls. All AS patients met 
modified New York classification criteria. Active disease 
was defined by an Ankylosing Spondylitis Disease Activ-
ity Score C-reactive Protein (ASDAS-CRP) of ≥ 2.1 and 
inactive disease as ASDAS-CRP of < 1.3 [17]. All patients 
were biologic and synthetic disease-modifying-anti-
rheumatic drug (DMARD) naïve at the time of sera draw. 
Serum samples were immediately stored at a temperature 
lower than − 70 °C and had not been previously thawed.

Serum protein determination
Serum samples were analyzed using the SOMAscan™ 
assay (SomaLogic; Boulder, CO), which is a sensitive 
and quantitative protein biomarker discovery platform. 
SOMAmers (Slow Off-rate Modified Aptamers), single-
stranded DNA aptamers with modified nucleotides, bind 
to specific proteins in the serum that are then quantified 
as DNA [18, 19]. The SOMAscan assay quantified a total 
of 1320 proteins in each patient sample. Sample data was 
first normalized to remove hybridization variation within 
a run followed by median normalization across all sam-
ples to remove plate effects between runs. All plates were 
matched between active disease, inactive disease, and 
healthy controls in a 1:1:1 ratio, respectively. The median 
lower limit of quantitation for all measured proteins was 
0.3 picomolar (pM), with a dynamic range of > 5 logs, and 
a median coefficient of variation (%CV) of 5%.

Statistical analysis
T-tests and Mann–Whitney U tests were performed for 
active and inactive AS patients compared to healthy con-
trols (diagnosis analysis) and active compared to inactive 
disease activity (Monitoring Analysis) in a 2:1 and 1:1 ratio, 
respectively. In our analyses, p-values and q-values (false 
discovery rate [FDR] corrected p-value) were calculated 
for all proteins using the Benjamini and Hochberg method 
in the R environment for statistical computing (http:// 
www.r- proje ct. org/). All analyzed proteins with a p < 0.05 
were considered differentially expressed proteins (DEPs).

We used the Search Tool for the Retrieval of Inter-
acting Gene/Proteins (STRING, https:// string- db. org) 
database to analyze DEPs in our diagnosis and monitor-
ing analyses for protein–protein interactions (PPI) with 
Cytoscape software. The Cytoscape Molecular Complex 
Detection (MCODE) plugin was used to find clusters in 
PPI networks, confidence cutoff of 0.4.

http://www.r-project.org/
http://www.r-project.org/
https://string-db.org
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DEPs were also analyzed using Ingenuity Pathway 
Analysis (IPA) software (Qiagen https:// digit alins ights. 
qiagen. com/ produ cts- overv iew/ disov ery- insig hts- portf 
olio/ analy sis- and- visua lizat ion/ qiagen- ipa/) to identify 
active molecular targets. The goal of Upstream Regula-
tor Analysis is to identify upstream molecular regula-
tors and to predict whether they are active or inhibited. 
This analysis is based on expected causal effects between 
upstream molecular targets. A Z-score algorithm is used 
to make predictions with Z-scores > 2 and <  − 2 consid-
ered significant.

A multi-biomarker panel among our DEPs for diagno-
sis were selected using a L1-penalized logistic regression 
using the least absolute shrinkage and selection operator 
(lasso) classifier, over a range of lambda, a tuning param-
eter that determines how many biomarkers are selected. 
Lasso regression analysis was performed of our diagno-
sis DEPs to determine optimal protein combination in a 
2:1 training/test split. The models were evaluated using 
cross-validation and inspecting plots receiver operat-
ing characteristic (ROC) curves. R packages, glmnet and 
caret, were used for these statistical analyses.

Table 1 Demographic and clinical characteristics of the PSOAS participants and control subjects

a Ankylosing Spondylitis Disease Activity Score C-reactive Protein

Characteristic High AS disease activity (N = 26) Low AS disease activity (N = 26) Healthy 
controls 
(N = 28)

Age (mean, standard deviation (SD); years) 46.08 ± 13.58 45.48 ± 12.73 44.44 ± 15.85

Male gender (n, %) 16 (61%) 16 (61%) 17 (61%)

AS symptom duration (mean SD; years) 25.47 ± 13.32 25.16 ± 12.82 –-

ASDAS-CRPa (mean SD) 3.68 ± 0.67 0.40 ± 0.37 –-

HLA-B27 positivity (n, %) 19 (73%) 24 (92%) –-

Met Modified New York Criteria 26 (100%) 26 (100%) –-

Fig. 1 Volcano plot of all serum proteins for A diagnosis (AS patients vs. healthy controls) and B monitoring (AS high vs. low disease activity 
patients). Fold change (FC) of AS patients compared to controls < 0.5, 0.5–2.0, and > 2 is presented in yellow, black, and red, respectively. 367 and 
157 proteins were differentially expressed for diagnosis and monitoring, respectively

https://digitalinsights.qiagen.com/products-overview/disovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/disovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/disovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
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Results
Demographic and clinical characteristics
We studied 80 study patients’ sera, n = 26:26:28 for 
active, inactive, and HC, respectively. Study patients’ 
sex, age, and other important clinical characteristics are 
summarized in Table  1. Our AS patients were a mean 
46 ± 14 years of age with a symptom duration of average 
of 25 ± 13 years. All patients and controls were White.

Serum protein levels
Of the 1317 proteins detected in our diagnosis and moni-
toring analyses, 367 and 167 DEPs were detected, respec-
tively (p < 0.05) (Fig.  1). When corrected for multiple 
comparison (FDR-corrected q < 0.05), 247 and 27 DEPs 
remained for diagnosis and monitoring, respectively. 
Thirteen DEPs overlapped between our diagnosis and 
monitoring analyses (Table 2). Eleven of the 13 overlap-
ping DEPs had associations in concordant direction for 
diagnosis and monitoring. The top 10 upregulated and 
downregulated DEPs based on fold change for diagnostic 
and monitoring biomarkers are presented in Table 3. The 
complete list of differentially expressed proteins is avail-
able in Supplementary Table 1.

Pathway analyses
MCODE analyses identified complement regulation/sig-
nal transduction, interleukin (IL)-10 signaling/immune 
system, and immune system/interleukin signaling as the 
top 3 overrepresented pathways. Complement, extra-
cellular matrix organization/proteoglycans, and mito-
gen-activated protein kinase(MAPK)/rat sarcoma virus 
protein (RAS) signaling were the top 3 overrepresented 
pathways among the monitoring biomarkers (Fig. 2).

The IPA upstream analysis predicted, activated 
upstream regulators included IL 23/17 (IL-22, IL-23A), 
tumor necrosis factor (TNF receptor-associated factor 
3), cGAS-STING (cyclic GMP-AMP synthase, Stimulator 
of Interferon Gene 1), and Jak/Stat (Janus Kinase/Signal 
transducer and activator of transcription 1), signaling in 
AS. Predicted inhibited upstream regulators included 
those involved in lipid metabolism (Nuclear Receptor 
Subfamily 5 Group A Member 2, Peroxisome prolifera-
tor-activated receptor alpha) and protein folding (Clus-
terin, Presenilin-2) (Fig. 3.)

Lasso regression
All samples were randomly assigned in a 2:1 ratio 
between discovery (N = 54) and validation sets (N = 26). 
Lasso regression identified a Diagnostic 13-DEP model 
predictive of AS: Immunoglobulin A (IgA), Comple-
ment component 5a (C5a), Secreted frizzled-related pro-
tein 1 (SARP-2), Secretory leukocyte peptidase inhibitor 
(SLPI), Cathepsin A (CTSA), Neurexophilin 1 (NXPH1), 
C-X-C motif chemokine ligand 16 (CXCL16), Interleu-
kin 6 signal transducer (gp130), complement component 
4b (C4b), Cofilin-1 (CFL1), Cell adhesion molecule L1 
like (CHL1), Signaling lymphocytic activation molecule 
family member 6 (SLAF6), and Macrophage mannose 
receptor (MRC1). This model had a sensitivity of 0.75, 
specificity of 0.90, kappa of 0.59, and an overall accuracy 
of 0.80 (95% CI: 0.61–0.92). The predictive probability of 
our model to discriminate AS patients vs controls based 
on ROC curve (95% CI) was 0.79 (0.61–0.96) (Fig.  4). 
The McNemar’s test of our model was non-significant 
(p > 0.05), suggesting a similar proportion of misclas-
sification for diagnosis (e.g., false negatives and false 
positives). We did not perform Lasso regression for mon-
itoring as this would have not been meaningful due to the 
modest sample size.

Discussion
The goal of this study was to identify candidate bio-
markers for AS diagnosis and monitoring disease activ-
ity. Our proteomic screen of ankylosing spondylitis 
identified 317 and 59, FDR-corrected, DEPs for diagnos-
ing and monitoring, respectively. Further bioinformat-
ics tools highlighted signaling pathways and potential 

Table 2 Shared AS diagnostic and monitoring serum proteins

Abbreviations: Factor I Complement Factor I, FCN1 Ficolin-1, C6 Complement 
Component 6, C5b 6 Complex, Complement Component 5b, 6 Complex c, 
Factor B Complement Factor B, LBP lipopolysaccharide binding protein, C9 
Complement Component 9, FUT5 Fucosyltransferase 5, C5a Complement 
Component C5a, CRP C-reactive protein, SAA serum amyloid A
a Values of > 1 refer to upregulated expression of proteins and values of < 1 refer 
to downregulated expression of proteins in ankylosing spondylitis
b False discovery rate-corrected p-value for multiple testing
c Concordant fold change for diagnosis and monitoring

Protein name Fold 
change
(active vs 
inactive)a

q-valueb Fold 
change (AS 
vs HC)a

q-valueb

Testican-2 0.81 0.02 1.23  < 0.01

Factor  Ic 1.22  < 0.01 1.13  < 0.01

FCN1 1.24  < 0.01 0.91  < 0.04

C6c 1.26 0.02 1.20  < 0.01

C5b, 6  Complexc 1.26 0.01 1.15 0.02

Factor  Bc 1.33  < 0.01 1.24  < 0.01

LBPc 1.48  < 0.01 1.23  < 0.02

C9c 1.53  < 0.01 1.33  < 0.01

Haptoglobin, Mixed 
 Typec

1.56 0.04 1.51  < 0.01

FUT5c 1.65 0.04 1.73  < 0.01

C5ac 1.92  < 0.01 1.87  < 0.01

CRPc 3.33  < 0.01 2.20  < 0.01

SAAc 10.65  < 0.01 5.60  < 0.01
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in silica upstream regulators. In our PPI analyses, we 
elucidated complement and immune signaling impor-
tance in diagnosis and MAPK/RAS for monitoring dis-
ease activity. IPA upstream analysis predicted activated 
TNF, IL-23/17, and cGAS-STING signaling pathway 
targets as well as inhibited lipid metabolism and protein 
folding targets. Finally, our machine-learning model 
showed that a 13-DEP model had ability to discriminate 
AS patients from controls with modest discrimination, 
AUC 0.79.

These results add to our knowledge of ankylosing spon-
dylitis, showing that serum proteins can molecularly dis-
tinguish AS from healthy controls. We also elucidated 
additional proteins that differentiate between disease 
activity states that may be useful in monitoring disease in 
clinic. Bioinformatics tools highlighted important inflam-
matory and immunologic pathways important for AS 
pathogenesis. This including well-known AS association 
of TNF, IL 23/17, and JAK/Stat signaling that contrasted 

with cGAS-STING, MAPK/RAS signaling that were 
identified as well.

Previous biomarker studies in AS have largely focused 
on individual proteins based on a priori knowledge of 
biomarkers in associated conditions [20]. Comprehen-
sive discovery studies of AS biomarker susceptibility 
have only used mass spectrometry to date. In contrast, 
our study was based on broad screens of aptamer-based 
libraries of > 1300 proteins in an unbiased fashion. Our 
study is the first to use aptamer-based high-throughput 
technology to capture low-abundance serum proteins in 
AS patients and controls, identifying DEP new potential 
biomarkers for diagnosis and disease activity in addition 
to confirming previous findings. For example, among our 
top diagnosis DEPs, SAA1 has now been shown in mul-
tiple studies to be elevated in AS while Trefoil Factor 
(TFF)1 has not been reported in AS/AxSpA [10–12].

While the pathophysiologic function of TFF1 is unknown, 
TFF peptides modulate cell junctional complexes thus 

Table 3 Top upregulated and downregulated serum proteins detected by a 1320-plex proteomic screen

Abbreviations: C4b Complement Component 4b, 17-beta-HSD 1 17β-Hydroxysteroid dehydrogenase 1, TF Tissue Factor, PTP-1C Tyrosine-protein phosphatase 
non-receptor type 6, H2B2E Histone H2B type 2-E, PRKACA  cAMP-dependent protein kinase catalytic subunit alpha, CAPG Macrophage-capping protein, FUT5 
Fucosyltransferase 5, PAPPA Pappalysin-1, SARP-2 Secreted frizzled-related protein 1, MMP-12 Macrophage metalloelastase, C5a Complement Component 5a, TFF1 
Trefoil factor 1, CRP C-reactive protein, SAA serum amyloid A, CKMB Creatinine Kinase M-type, CNDP1 Beta-Ala-His dipeptidase, NCAM-120 neural cell adhesion 
molecule 1, HGF hepatocyte growth factor, NPS-PLA2 Phospholipase A2, membrane associated
a Values of > 1 refer to upregulated expression of proteins and values of < 1 refer to downregulated expression of proteins in ankylosing spondylitis
b False discovery rate-corrected p-value for multiple testing

Diagnostic biomarkers (AS vs. healthy control) Monitoring biomarkers (high vs. low disease activity)

Protein name UniProt ID Fold changea q-valueb Protein name UniProt ID Fold changea q-valueb

C4b P0C0L4 P0C0L5 0.31  < 0.01 Hemoglobin P69905, P68871 0.14  < 0.01

17-beta-HSD 1 P14061 0.35 0.01 CK-MB P12277 P06732 0.34 0.01

Phosphoglycerate mutase 
1

P18669 0.40  < 0.01 Cathepsin V O60911 0.59  < 0.01

TF P13726 0.44  < 0.01 Kallistatin P29622 0.70  < 0.01

PTP-1C P29350 0.57  < 0.01 CD36 ANTIGEN P16671 0.70  < 0.01

H2B2E Q16778 0.57  < 0.01 CNDP1 Q96KN2 0.72 0.02

PRKACA P17612 0.60  < 0.01 aldolase A P04075 0.74 0.01

Lactoferrin P02788 0.60 0.01 NCAM-120 P13591 0.77 0.04

CAPG P40121 0.61 0.02 Catalase P04040 0.77 0.04

Azurocidin P20160 0.62 0.03 Glypican 3 P51654 0.77 0.03

FUT5 Q11128 1.73  < 0.01 FUT5 Q11128 1.65 0.01

PAPPA Q13219 1.78  < 0.01 Fibrinogen P02671 P02675 P02679 1.90 0.01

SARP-2 Q8N474 1.80  < 0.01 C5a P01031 1.92  < 0.01

MMP-12 P39900 1.82 0.01 HGF P14210 1.99 0.02

Glucagon P01275 1.82  < 0.01 C3b P01024 2.26  < 0.01

C5a P01031 1.87  < 0.01 NPS-PLA2 P14555 2.39 0.02

TFF1 P04155 2.19  < 0.01 CRP P02741 3.33  < 0.01

CRP P02741 2.20  < 0.01 Fibrinogen g-chain dimer P02679 4.32  < 0.01

6-Phosphogluconate 
dehydrogenase

P52209 2.27  < 0.01 D-dimer P02671 P02675 P02679 8.38  < 0.01

SAA P0DJI8 5.60 0.04 SAA P0DJI8 10.65  < 0.01
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contributing to the gastrointestinal epithelial barrier func-
tion [21]. Impairment of the mucosal epithelial barrier is 
a hallmark of inflammatory bowel disease (IBD) [22]. TFF 
levels increase upon epithelial injury, presumably to prevent 
further damage and disease progression in IBD [23–25]. 
Beyond IBD, TFF1 is also upregulated in the intestine in 
response to injury [26, 27]. Given TFF1 long known associa-
tion with inflammatory bowel disease, a condition seen in 
overlap with AS, and the large prevalence of colitis in AS, our 
newly identified DEPs may be useful AS biomarkers [24].

Among our 11 concordant biomarkers for diagno-
sis and monitoring, they can be grouped into three cat-
egories: acute phase reactants (e.g., SAA1, Haptoglobin, 
CRP), complement (e.g., C5a, C5b-C6 complex, C6, C9, 

Factor B, Factor I), and lipopolysaccharide-related pro-
teins (LPS) (e.g., FUT5, LBP). SAA1 had greater fold 
difference than CRP, suggesting it may be a more use-
ful biomarker than CRP for diagnosis and disease activ-
ity. Complement system proteins, most notably C4, have 
been reported to be upregulated in ankylosing spondyli-
tis [28, 29]. It has been suggested that complement acti-
vation may be a key pathway involved in AS pathogenesis 
through murine studies [30]. We identified additional 
complement proteins in our study that may elucidate 
complement involvement in AS. Gram-negative bacte-
ria are long thought to be an environmental trigger for 
ankylosing spondylitis, which relates to our LPS protein 
findings [31]. Furthermore, prior peripheral blood gene 

Fig. 2 Protein–protein interaction networks. A Top 367 diagnosis DEPs and B top 157 monitoring DEPs (T-test p < 0.05) through the 
CytoscapeSTRING App with a confidence cutoff of 0.4. Molecular Complex Detection (MCODE) clustering was performed and displayed are the top 
three clusters. The color of each MCODE node corresponds to the fold change. Nodes with a fold change less than one range in color from blue to 
purple while those with a fold change greater than one range from pink to red. The confidence score of each interaction is displayed as the edge 
thickness and opacity. The top two reactome pathways associated with each cluster are displayed below each cluster
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expression studies in AS have identified an upregulation 
of Toll-like receptor 4 (TLR4) AS which is the ligand of 
LBP and LPS [7, 32]. Our results support the involvement 
of LPS-LBP/TLR4 axis AS pathogenesis and disease 
activity.

We also piloted lasso regression, a machine-learning 
technique, to find a protein panel that can best iden-
tify AS patients. This led to a 13-protein panel with an 
overall AUC superior to that of C-reactive protein, the 
commonly used AS serum biomarker [33]. Our pro-
tein panel performance was comparable to previous 
reports of advanced imaging including MRI and low-
dose CT [34]. These proteins included complement and 
interleukin-6 signaling proteins, already highlighted 

as important pathways as well as other inflammation-
associated proteins. For example, SLAF6, also known 
as SLAMF6, has been shown to lead to increased 
IL-17 production in autoimmune conditions [35–43]. 
These candidate proteins require further investiga-
tion to determine their clinical utility singularly and in 
combination.

This project had limitations. While all patients stud-
ied were not exposed to biologic or synthetic DMARDs, 
non-steroidal anti-inflammatory drugs (NSAIDs) were 
not accounted for in our analyses. This treatment modal-
ity might have some impact on the serum protein profile; 
however, we expect that NSAIDs would lead to a decrease 
in the serum inflammatory markers. We instead observed 

Fig. 3 Top predicted upstream molecular regulators based on the Ingenuity Knowledge Base. X-axis shows the activation Z score calculated 
based on the Ingenuity Pathway Analysis for identifying upstream regulators. Proteins that were differentially expressed with ankylosing spondylitis 
compared to healthy control subjects used were input into Ingenuity
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an increase in the inflammatory serum proteins in the AS 
versus control comparison, suggesting that the observed 
molecular profile is disease-related rather than secondary 
to NSAID treatment. Most of our AS patients had long-
standing disease; serum biomarkers may differ between 
early and established AS. The large number of potential 
biomarkers and modest sample size of patients may make 
our findings susceptible for overfitting. We chose Lasso 
modeling over other machine-learning techniques due 
to the penalization limiting this potential error. We also 
chose to study ankylosing spondylitis patients compared 
to healthy controls, two distinct conditions. Biomarkers 
that could distinguish non-radiographic axial spondy-
loarthritis compared to non-specific chronic lower back 
pain would have greater clinical utility. Our results thus 
can only be taken in an indirect context for the afore-
mentioned clinical scenario. Biomarkers identified thus in 
our study require further testing in patients with the full 
AxSpA spectrum compared to various chronic lower back 
pain conditions that mirror clinical symptoms of AxSpA.

The clinical utility of our identified biomarkers requires 
replication. Our findings indicate that the required sam-
ple size will differ for each DEP. For example, serum amy-
loid A requires only 35 patients per group (diagnosis) 
while Complement Factor I would require 116 patient 
samples (diagnosis) for replication as diagnostic bio-
marker based on their delta/standard deviation from our 
proteomic screen at a power of 80% and significance of 
5%. Our study however adds to the literature of potential 
candidate biomarkers that can aid in AS diagnosis and 
monitoring of disease activity.

Conclusions
In summary, the current methods for the diagnosis of 
AS patients have relied on a combination of patient-
reported symptoms, imaging, and non-specific acute 
phase reactants [17]. These have been useful for the 
classification to study disease; however, among the 
nearly 20% of the US population with chronic back 
pain, there remains a large portion of potentially undi-
agnosed AxSpA. Better biomarkers would address a 
significant unmet need both in clinic, where earlier 
diagnosis and referral might be improved, as well as 
in bettering our understanding of disease mechanisms 
[44]. Our study adds to the current literature by high-
lighting inflammatory pathways involved in AS diag-
nosis and disease activity as well as using machine 
learning to identify potential diagnostic and monitor-
ing biomarkers in AS. This project may serve as a use-
ful adjunct to earlier diagnosis, more accurate disease 
activity monitoring, and development of a predictive 
prognosis model that can ultimately lead to earlier AS 
diagnosis and treatment.

Abbreviations
AS            Ankylosing spondylitis
AxSpA            Axial spondyloarthritis
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