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Abstract 

Background Predicting radiographic progression in axial spondyloarthritis (axSpA) remains limited because of the 
complex interaction between multiple associated factors and individual variability in real‑world settings. Hence, we 
tested the feasibility of artificial neural network (ANN) models to predict radiographic progression in axSpA.

Methods In total, 555 patients with axSpA were split into training and testing datasets at a 3:1 ratio. A generalized 
linear model (GLM) and ANN models were fitted based on the baseline clinical characteristics and treatment‑depend‑
ent variables for the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) of the radiographs at follow‑up 
time points. The mSASSS prediction was evaluated, and explainable machine learning methods were used to provide 
insights into the model outcome or prediction.

Results The R2 values of the fitted models were in the range of 0.90–0.95 and ANN with an input of mSASSS as the 
number of each score performed better (root mean squared error (RMSE) = 2.83) than GLM or input of mSASSS as 
a total score (RMSE = 2.99–3.57). The ANN also effectively captured complex interactions among variables and their 
contributions to the transition of mSASSS over time in the fitted models. Structural changes constituting the mSASSS 
scoring systems were the most important contributing factors, and no detectable structural abnormalities at baseline 
were the most significant factors suppressing mSASSS change.

Conclusions Clinical and radiographic data‑driven ANN allows precise mSASSS prediction in real‑world settings. 
Correct evaluation and prediction of spinal structural changes could be beneficial for monitoring patients with axSpA 
and developing a treatment plan.

Keywords Axial spondyloarthritis, Radiographic progression, Artificial neural network, Quantitative prediction, Real‑
world setting

Introduction
Axial spondyloarthritis (axSpA), including ankylosing 
spondylitis (AS), is a chronic progressive disease char-
acterized by inflammation of the entheses, leading to 
new bone formation and ankylosis of joints, primarily 
in the axial skeleton [1, 2]. Radiographic progression 
of the spine has been reported to occur in approxi-
mately 20–50% of patients with AS after 2 years [3–5]. 
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Progressive structural deformity of the spine and anky-
losis of the sacroiliac joints lead to functional impair-
ments, resulting in decreased physical activity and 
worsened quality of life.

Current treatment strategies have been validated to 
control the symptoms and disease activity of axSpA 
[6–8]. However, it remains inconclusive whether any 
currently available medications for axSpA have a sig-
nificant effect on spinal radiographic progression [7]. 
Several factors predicting spinal radiographic progres-
sion have been identified, including male sex, smoking, 
presence of syndesmophytes at baseline, high degree of 
sacroiliitis on magnetic resonance imaging (MRI), and 
positivity for HLA-B27 [1, 3–5, 9–12]. Long-term use 
of tumor necrosis factor (TNF) inhibitors and effective 
suppression of inflammation also contribute suppress-
ing the spinal radiographic progression in patients with 
AS [8, 11, 13, 14]. The modified Stoke Ankylosing Spon-
dylitis Spinal Score (mSASSS) is a validated outcome 
measure for evaluating the effect of treatment on spi-
nal radiographic progression in AS, and radiographs at 
2-year intervals are usually required to ensure sufficient 
sensitivity to change [15]. These results were obtained 
from well-designed controlled trials and cohort stud-
ies. However, they had limitations in their application 
to individual patients in a real-world setting because 
the number of risk or protective factors differed across 
the patients, and their weights and interactions among 
them are complex and cannot be quantitatively meas-
ured in a formulated metric. Moreover, each patient’s 
visit schedule to the hospital varies according to life-
style, work environment, and disease status. The time 
intervals of follow-up radiographs are also variable and 
not controlled for 2 years.

In previous studies, a novel subgroup of axSpA with a 
high risk for spinal radiographic progression was iden-
tified using machine learning (ML) algorithms and the 
ensemble method, and radiographic progression was 
predicted by a combination of clinical and radiographic 
variables [12, 16]. However, radiographic progression 
was defined as dichotomous discrimination [a change 
of ≥ 2 mSASSS units in 2  years (yes/no) or at least one 
new syndesmophyte formation in 2  years (yes/no)] that 
is qualitatively determined [12]. If radiographic progres-
sion could be precisely and quantitatively predicted, it 
would be more useful to monitor the disease course of 
patients and assess the treatment response. In this study, 
using a longitudinal observational cohort of patients with 
axSpA and linear regression and deep neural network 
models, we aimed to develop a fitted model to quanti-
tatively predict the mSASSS at a specific follow-up time 
point with baseline clinical characteristics, radiographic 
damage indices, time-adjusted inflammatory burden, and 

exposure to treatment [non-steroidal anti-inflammatory 
drugs (NSAIDs) and TNF inhibitors].

Methods
Patients
A total of 682 patients with axSpA who fulfilled the 
Assessment of Spondyloarthritis International Society 
(ASAS) classification criteria for axSpA [17] and had 
received care at St. Vincent’s Hospital, Catholic Uni-
versity of Korea (Suwon, Republic of Korea), between 
2005 and 2021 were identified. Clinical, laboratory data, 
and radiographic images were retrieved from medical 
records. At baseline, sex, age at diagnosis, time since diag-
nosis, HLA–B27 status, smoking status, and history of 
extra-articular manifestations (uveitis, psoriasis, inflam-
matory bowel disease, peripheral arthritis, and enthesitis) 
were recorded. Disease activity was assessed accord-
ing to the ankylosing spondylitis disease activity score 
(ASDAS) using the C-reactive protein (CRP) level [18]. 
Dose and duration of NSAID intake, TNF inhibitor use, 
and treatment duration were determined. Records about 
the use of interleukin (IL)-17 inhibitor were excluded 
from this analysis because the number of patients treated 
with IL-17 inhibitors was too small to train the models. 
Of these, 555 patients underwent radiographic evalu-
ation at more than two time points. Using the age- and 
sex-matched approach, the dataset was divided into 
training and testing datasets at a 3:1 ratio, and the train-
ing and testing datasets with the highest similarity in 
the follow-up time points and radiographic progression 
were selected from 1000 simulations. An ML model was 
learned on training data and validated on testing data. In 
total, 2034 follow-up radiographic time points were iden-
tified in 555 patients with axSpA. We filtered the follow-
up radiographic time points over 12  months, and 1297 
and 420 follow-up radiographic time point were identi-
fied in the training and testing datasets, respectively. 
The study was conducted in accordance with the Hel-
sinki Declaration and was approved by the Institutional 
Review Board of St. Vincent’s Hospital, The Catholic Uni-
versity of Korea (No. VC22RISI0237).

Radiographs and scoring
Radiographs of the sacroiliac joints and the cervical 
and lumbar spine were obtained at baseline and after 
follow-up. All available radiographs per patient were 
independently scored simultaneously according to the 
mSASSS [19] by two experienced readers, blinded to all 
other data except radiograph chronology. The interob-
server reliability was assessed by calculating the inter-
class correlation coefficient, which was 0.946 (95% 
confidence interval [CI] 0.940–0.952). If the difference 
between the scores measured by the two readers was > 5 
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units (defined as major disagreement), the same asses-
sors rescored these radiographs. In case of persistent 
major disagreement after rescoring, an independent 
adjudicator assigned a final score. Radiographic sacro-
iliitis (SI) was scored according to the modified New 
York criteria [20], and radiological hip involvement was 
graded based on the Bath Ankylosing Spondylitis Radi-
ology Index (BASRI)-hip scoring system [21].

Calculation of NSAIDs intake and exposure to TNF 
inhibitors
Data on NSAID intake (dose and frequency) were 
retrieved from medical records. An index of NSAID 
intake, as recommended by Assessment of Spondy-
loArthritis International Society (ASAS), accounting 
for both dose and duration/regimen of drug intake (0: 
no NSAIDs intake at all; 100: daily NSAIDs intake at 
a dose equivalent to diclofenac 150 mg over the whole 
period of interest) was calculated [22]. Exposure to 
TNF inhibitors was indicated as 0 if the patient did not 
receive anti-TNF therapy and as duration (months) if 
the patient was treated with TNF inhibitors.

Calculation of time‑integrated CRP levels
The inflammatory burden over the disease course was 
estimated using time-integrated CRP, calculated by the 
area under the curve method [23].

Supervised ML algorithms for regression
The scheme of the supervised ML is illustrated in Fig. 1. 
Two ML models were applied to predict the mSASSS at a 
specific follow-up time point: a generalized linear model 
(GLM) [24] and artificial neural network (ANN) model 
[25, 26]. GLM is the simplest ML algorithm for specify-
ing the relationship between a weighted sum of the fea-
ture inputs and a single numeric target. An ANN consists 
of units arranged in layers to convert an input vector into 
an output. The layers between the input and output lay-
ers are often hidden. Each unit receives an input, applies 
a function, and passes it to the next layer. Weights were 
applied to the signals passing from one unit to another, 
which were modified during the training phase. Back-
propagation allows the model to self-learn [26]. A multi-
layered ANN with a backpropagation algorithm was 
trained, a total of 1000 iterations of the ANN with three, 
five, seven, or nine hidden layers were simulated, and the 
best model with the highest performance was selected. 

Fig. 1 Overview of the development of the mSASSS prediction model. The known and potential factors affecting the radiographic progression 
were included in the formulation of the GLM or ANN model (blue box). Treatment‑dependent variables include the elapsed time after baseline 
evaluation, time‑integrated CRP levels, and exposure to TNF inhibitors. Baseline mSASSS was modified into two formats and assigned to the models 
(red and yellow box): (1) C‑spine and L‑spine mSASSS and (2) number of each score of mSASSS (0, 1, 2, and 3). Target outcome was the mSASSS at 
follow‑up. Finally, two models were built by the formats of mSASSS and separately evaluated. ANN, artificial neural network; ASDAS, Ankylosing 
Spondylitis Disease Activity Score; CRP, c‑reactive protein; C‑spine, cervical spine; GLM, generalized linear model; L‑spine, lumbar spine; mSASSS, 
modified Stoke Ankylosing Spondylitis Spinal Score; NSAID, non‑steroidal anti‑inflammatory drug; TNF, tumor necrosis factor
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We used the neuralnet function installed in the R pack-
age neuralnet as the default settings [27, 28]. Neuralnet 
function uses a globally convergent algorithm (grprop) 
based on resilient backpropagation without weight back-
tracking and additionally modifies one learning rate. The 
logistic function (f(u) = 1/(1 + e−u)), a bounded nonde-
creasing nonlinear and differentiable function, was used 
as an activation function, and the learning rates in the 
grprop algorithm are limited to the boundaries from the 
lower 0.5 to the upper 1.2 [29].

Explainable ML model interpretation
Two methods were used to interpret the model: (1) varia-
ble importance measured by the model-agnostic method 
[30] and (2) Shapley additive explanations (SHAP). In the 
model-agnostic method, if a variable is important, then 
we expect that the model’s performance will worsen after 
permuting the variable’s values. The significance of the 
variable increases with the extent of the performance 
variation. SHAP explains any model’s prediction by com-
puting each feature’s contribution to the prediction [31, 
32]. This method is based on Shapley values from coali-
tional game theory, which is the average marginal con-
tribution across all possible coalitions [33]. The SHAP 
value of a clinical variable V (e.g., NSAIDs intake index) 
is computed as the average of this variable’s contribu-
tions across all possible combinations of clinical vari-
ables, including V. The SHAP value of a clinical variable 
can be positive or negative, suggesting an increased or 
decreased likelihood of developing a particular outcome 
[32]. Our study investigated the impact and interaction 
among clinical variables by visualizing SHAP values in 
global (cohort level) forms.

Evaluation of predictive performance for the regression 
model
Three error metrics were used to evaluate the perfor-
mance of the regression model: (1) mean squared error 
(MSE), (2) root mean squared error (RMSE), (3) mean 
absolute error (MAE), and the coefficient of determina-
tion (R2) [34]. The MSE of an estimator measures the 
average squared difference between estimated and true 
values. The RMSE is a rooted, monotonic transformation 
of the MSE. The MAE measures the average of the sum 
of the absolute differences between the observed and 
predicted values. The coefficient of determination is the 
proportion of variation in the dependent variable that is 
predictable from independent variables.

Statistical analyses
For continuously distributed data, the results are shown 
as means with standard deviation; between-group com-
parisons were performed using Student’s t-test or analysis 

of variance (ANOVA). Categorical or dichotomous vari-
ables were presented as frequencies and percentages and 
were compared using the chi-squared test or Fisher’s 
exact test. Correlation analysis between two continuous 
variables was performed using Pearson’s method. A two-
sided P-value less than 0.05 was considered statistically 
significant. All statistical analyses were performed using 
R (version 4.2.0, R Project for Statistical Computing, 
www.r- proje ct. org).

Results
Baseline characteristics of the study population
In total, 555 patients with axSpA were enrolled and split 
into training (n = 416, 75%) and testing (n = 139, 25%) 
groups in an age- and sex-matched stratified manner. 
The baseline characteristics of the study participants 
(n = 555) are presented in Table 1. All baseline character-
istics, except for a history of enthesitis were comparable 
between the groups. In total, 310 patients with axSpA 
(55.8%) received TNF inhibitors. The number of follow-
up time points in the training and testing datasets was 
1297 and 420, respectively (Fig. 2).

Linear regression models for mSASSS prediction
Known and potential factors affecting radiographic pro-
gression were included while the formulation of the linear 
regression model: sex, age at diagnosis, disease duration, 
body mass index (BMI), HLA-B27, peripheral involve-
ment, uveitis, enthesitis, inflammatory bowel disease, 
psoriasis, smoking, baseline CRP level, baseline ASDAS-
CRP, grade of sacroiliitis, grade of hip joint involvement, 
and baseline mSASSS. Treatment-dependent variables 
included time after baseline evaluation, time-integrated 
CRP level, and exposure to TNF inhibitors. If the patient 
did not receive a TNF inhibitor, exposure to the TNF 
inhibitor was assigned to zero. Baseline mSASSS was 
modified into two formats and assigned to the models: 
(1) C-spine and L-spine mSASSS and (2) the number of 
each score of mSASSS scores (0, 1, 2, and 3). Finally, two 
GLM models (designated as GLM-1 and GLM-2) were 
built using the formats of mSASSS and separately evalu-
ated (Fig. 1).

The prediction results of mSASSS in the testing data-
set are shown in Fig. 3. For GLM-1, R2 and RMSE values 
were 0.9093 and 3.5796, respectively. The most impor-
tant variables for prediction were baseline mSASSS of 
the L-spine and C-spine, followed by the time after the 
initial evaluation. For GLM-2, R2 and RMSE values were 
0.9356 and 3.1409, respectively. The number of mSASSS 
segment scores 0, 1, and 2 were counted as important 
variables, but the number of mSASSS segment scores 3 
was not. The time after the initial evaluation was also an 
important variable.

http://www.r-project.org
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ANN models for mSASSS prediction
Same as that in the GLM, the baseline mSASSS was mod-
ified into two formats, and two ANN models (designated 
as ANN-1 and ANN-2, respectively) were built using 
mSASSS format. A multi-layered ANN with a backprop-
agation algorithm and three, five, seven, or nine hidden 
layers was fitted, and the best model with the highest 
performance was selected. In both ANN-1 and ANN-
2, models of five hidden layers showed the best perfor-
mance compared to models of three, seven, or nine layers 
by MSE (Fig. 4A).

For ANN-1 with five hidden layers, the R2 and RMSE 
values were 0.9468 and 2.9943, respectively (Fig. 4B). The 
most important two variables for prediction were the 
same for GLM-1 (baseline mSASSS of the L-spine and 
C-spine), but ANN-1 showed better performance than 
GLM-1. The third most important variable was the time 
after the initial evaluation in GLM-1, while positive his-
tory of uveitis in ANN-1.

For ANN-2, with five hidden layers, the R2 and RMSE 
values were 0.9537 and 2.8358, respectively (Fig.  4C). 
This model showed the best performance. The number 
of mSASSS segment scores of 3 and 2 were considered 
the most important variables, followed by the number 

of mSASSS segment scores of 0 and 1. Time after the 
initial evaluation, history of uveitis, and smoking status 
were also important variables. Exposure time to TNF 
inhibitors was identified as having some contribution 
to ANN-2.

Figure  5 shows the SHAP summary plot for the top 
10 features contributing to the ANN-2 model’s predic-
tion of follow-up mSASSS in patients with axSpA. No 3 
and 2 scores in the mSASSS segments (i.e., no bridged 
syndesmophytes) and zero scores for all 24 segments in 
the mSASSS (i.e., total mSASSS = 0) at baseline evalu-
ation exercised strong leverage on mSASSS change in 
a negative way. Short-term follow-up (indicated as 
13  months after the initial evaluation in this analysis) 
also had a negative effect on increase in mSASSS pre-
diction. Smoking and being overweight (indicated as 
BMI = 30.6 kg/m2) contributed to increase in mSASSS 
prediction at follow-up. Overall, contribution of minor 
factors was distinctly sensed in the ANN compared to 
the GLM.

When subdivided into three subgroups by follow-
up time points (less than 2  years, 2–4  years, and over 
4 years), the RMSE tended to decrease as the follow-up 
time increased (Table  2). The RMSE was much smaller 

Table 1 Baseline characteristics: training versus testing groups

Abbreviations: ASDAS Ankylosing Spondylitis Disease Activity Score, BMI Body mass index, CRP c-reactive protein, ESR Erythrocyte sedimentation rate, mSASSS 
modified Stoke Ankylosing Spondylitis Spine Score, TNF Tumor necrosis factor
a TNF inhibitors include etanercept, adalimumab, infliximab, and golimumab
b Intergroup comparisons were performed using the Student’s t-test for continuously distributed data and the chi-squared test for categorical variables

Variable Training (n = 416) Testing (n = 139) P  valueb

Male, n (%) 310 (74.5) 107 (77.0) 0.640

Age, years 43.7 ± 13.0 43.3 ± 13.2 0.721

BMI, kg/m2 24.1 ± 4.0 24.0 ± 3.8 0.875

HLA‑B27, n (%) 336 (80.8%) 109 (78.4) 0.833

Smoking 0.640

 Never, n (%) 231 (55.5) 73 (52.5)

 Ex‑smoker, n (%) 49 (11.8) 13 (9.4)

 Current smoker, n (%) 136 (32.7) 53 (38.1)

Peripheral arthritis, n (%) 120 (28.8) 40 (28.8) 0.223

Enthesitis, n (%) 35 (8.4) 21 (15.1) 0.035

Uveitis, n (%) 109 (26.2) 29 (20.9) 0.251

Psoriasis, n (%) 20 (4.8) 9 (6.5) 0.586

Inflammatory bowel disease, n (%) 13 (3.1) 3 (2.2) 0.766

ESR, mm/h 38.2 ± 29.4 36.1 ± 28.3 0.462

CRP, mg/dL 2.0 ± 3.3 1.7 ± 2.7 0.223

ASDAS‑CRP 3.4 ± 0.9 3.3 ± 0.9 0.836

Use of TNF inhibitor, n (%) a 233 (56.0) 77 (55.4) 0.978

Presence of syndesmophyte(s), n (%) 161 (38.7) 100 (38.9) 1.000

mSASSS, units 8.5 ± 14.5 6.6 ± 12.6 0.187

 Cervical spine 3.3 ± 6.9 2.5 ± 6.1 0.269

 Lumbar spine 5.2 ± 9.1 4.1 ± 7.6 0.166
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in patients without syndesmophytes at baseline than in 
those with syndesmophytes at baseline (Table 2).

Discussion
In this study, we demonstrated the feasibility of ML mod-
els in predicting mSASSS using baseline clinical charac-
teristics and treatment-dependent variables, which were 
obtained in clinical practice but were quite diverse. The 
mSASSS was predictable beyond the limit of the sim-
plified binary definition of radiographic progression in 
2 years. The performance was excellent in that the R2 val-
ues of the fitted models were in the range of 0.93–0.96. In 

particular, ANN performed better than GLM and effec-
tively captured the complex interactions among variables 
and their contributions to the transition of mSASSS over 
time in the fitted models.

In our analysis, the input of mSASSS as a format of 
the number of each score had a better predictive power 
compared to the input of mSASSS as a format of the total 
score, indicating that fractionized scoring data is more 
suitable for building the mSASSS prediction model than 
the summed-up single value. Radiographic damage in the 
axSpA linearly progresses at a variable rate and is scored 
in the range of 0–72 by mSASSS. Each score (0, 1, 2, and 

Fig. 2 A Follow‑up time points in the training and testing datasets. B Sequential change in mSASSS of the individual patients by follow‑up time 
points in the training and testing datasets
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3) represents its own structural abnormalities and a dis-
tinct pathophysiological background. Even the same total 
score could indicate different structural damages. Each 
lesion could also respond differently to treatment accord-
ing to the adjacent internal tissue status, such as fat depo-
sition or metaplasia on MRI [35, 36]. The total score of 
the mSASSS and dichotomous definition of radiographic 
progression is useful for easy recognition and prompt 
assessment of spinal structural damage in clinical prac-
tice. However, it might be too simplified to present the 
substantive condition. Categorizing continuous variables 
by an arbitrary cutoff point can lead to the loss of impor-
tant information or overestimation or underestimation 
[37]. The presence of syndesmophyte(s) at baseline was 
a powerful established predictor for radiographic pro-
gression within 2  years [1, 38]. However, total mSASSS 
was a more important feature for predicting radiographic 
progression than the presence of syndesmophyte(s) in 
most ML algorithms [12], which effectively deal with 
high-dimensional complex data, including multiple 

heterogeneous factors contributing to the disease [39, 
40]. More detailed and fragmented data could be more 
informative for making a predictive model with better 
performance in ML processing.

In ANN, models with five hidden layers showed the 
best performance compared to models of three, seven, 
or nine layers. This indicates that deeper ANN did not 
necessarily demonstrate better performance. Simple 
algorithms can perform just as well as or even better 
than more complex ones in some circumstances: when 
the underlying relationship between features and output 
is simple and additive or when the number of training 
examples is relatively low. Thus, more complex models 
are likely to overfit and generalize poorly [41]. Clinical 
data are not as highly complex as radiographic images, 
magnetic resonance images, or multi-omics data and 
might not fit the deeper or sophisticated ANN [39, 40]. In 
the subgroup analysis, the mSASSS prediction was more 
accurate with a longer follow-up period or in the absence 
of syndesmophytes at baseline. The short-term follow-up 

Fig. 3 Linear regression models for mSASSS prediction. A GLM‑1 with baseline mSASSS as a total score. B GLM‑2 with baseline mSASSS as the 
number of each score. Scatterplots of actual versus predicted mSASSS (left panel) and bar plot of feature importance (right panel). GLM, generalized 
linear model; MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error
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data may not have been sufficiently learned because there 
were relatively few data points (Fig.  2A); moreover, the 
complexity of the interaction between variables could 
be lower in the long-term stable stage. Syndesmophytes 
result from new bone formation that develops after ini-
tiating an inflammatory event [42, 43]. The presence 
of syndesmophyte(s) indicates that the bone-forming 
potential might exceed the control threshold of inflam-
mation. In our analysis, laboratory data and treatment 

strategies largely depended on the inflammatory process 
(e.g., NSAID intake index, exposure to TNF inhibitor, 
and time-integrated CRP levels) and did not include any 
specific information regarding bone formation such as 
bone formation biomarkers and sequential MRI findings. 
Thus, the decreased accuracy of mSASSS prediction in 
the presence of syndesmophyte(s) might be attributable 
to insufficient information.

Fig. 4 Artificial neural network model for mSASSS prediction. A MSE by the number of hidden layers. B ANN‑1 with baseline mSASSS as a total 
score. C ANN‑2 with baseline mSASSS as the number of each score. Scatterplots of actual versus predicted mSASSS (left panel) and bar plot of 
feature importance (right panel). ANN, artificial neural network; MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error



Page 9 of 11Baek et al. Arthritis Research & Therapy           (2023) 25:65  

ANN showed better performance and better dis-
cerned the complex interaction among variables and 
their contribution to the outcome compared to GLM. 
Radiographic progression is structural damage as an 
aggregated result of interactions between clinical, 
molecular, and environmental factors and cannot be 
fully explained by simple and additive models. ANN 
traditionally had a concern, so-called black-box prob-
lem. The problem-solving process in artificial intelli-
gence is opaque and not interpretable to humans in a 
straightforward manner. Feature importance and SHAP 
analyses are solutions in the field of explainable ML 
and are used to gain insight into model performance 
and the contribution of various risk factors. Structural 
changes constituting the mSASSS scoring systems were 

the most important contributing factors, and no detect-
able structural abnormalities at baseline were the most 
significant factors suppressing the mSASSS change. 
This finding corroborates the importance of early diag-
nosis and initiation of effective treatment before spinal 
structural changes begin.

This study had some limitations. First, the data were 
retrospectively collected. Retrospective data collec-
tion is susceptible to misclassification and information 
bias. Second, this study lacked bone formation markers 
or MRI findings, which could be informative for new 
bone formation in axSpA. Third, mSASSS has inherent 
limitations: the inability to assess involvement of the 
thoracic spine and facet joints, which are the most fre-
quently affected sites of axSpA [15].

Conclusions
In conclusion, interventions that slow or halt the pro-
gression of irreversible structural damage in axSpA are 
expected to confer clinical benefits in terms of delaying 
loss of function and improving the quality of life. Cor-
rect estimation of the disease and prediction of treat-
ment response should be beneficial for evaluating the 
treatment response and making a future plan. Our study 
showed that the constructing predictive models for radi-
ographic progression were feasible in a real-world set-
ting and that the models displayed good performance. 
Prospective studies examining the use of ML in mSASSS 

Fig. 5 A bar plot of the average Shapley additive explanation (SHAP) value for each predictor

Table 2 Subgroup analysis of performance in mSASSS 
prediction

MSE Mean squared error, RMSE Root mean squared error, MAE Mean absolute 
error, mSASSS Modified Stoke Ankylosing Spondylitis Spine Score

Category Subgroup n MSE RMSE MAE

Elapsed time  < 2 years 81 9.47 3.08 1.68

2–4 years 125 8.15 2.85 1.78

 > 4 years 214 7.44 2.73 1.81

Syndesmophyte(s) Absence 280 2.35 1.53 0.976

Presence 140 19.40 4.41 3.38
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prediction in a multicenter cohort with a larger size are 
needed to validate the use of such models. The discovery 
of clinically active biomarker(s) in terms of new bone for-
mation and the development of exact assessment tools 
could also boost the development of a better predictive 
model for radiographic progression in axSpA.
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