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Abstract 

Background  Dermatomyositis (DM) is an acquired autoimmune disease that can cause damage to various 
organs, including the heart muscle. However, the mechanisms underlying myocardial injury in DM are not yet fully 
understood.

Methods  In this study, we utilized publicly available datasets from the Gene Expression Omnibus (GEO) database 
to identify hub-genes that are enriched in the immune system process in DM and myocarditis. Weighted gene co-
expression network analysis (WGCNA), differentially expressed genes (DEGs) analysis, protein–protein interaction (PPI), 
and gene ontology (GO) analysis were employed to identify these hub-genes. We then used the CIBERSORT method 
to analyze immune cell infiltration in skeletal muscle specimens of DM and myocardium specimens of myocarditis 
respectively. Correlation analysis was performed to investigate the relationship between key genes and infiltrating 
immune cells. Finally, we predicted regulatory miRNAs of hub-genes through miRNet and validated their expression 
in online datasets and clinical samples.

Results  Using integrated bioinformatics analysis, we identified 10 and 5 hub-genes that were enriched in the 
immune system process in the database of DM and myocarditis respectively. The subsequent intersections between 
hub-genes were IFIT3, OAS3, ISG15, and RSAD2. We found M2 macrophages increased in DM and myocarditis com-
pared to the healthy control, associating with the expression of IFIT3, OAS3, ISG15, and RSAD2 in DM and myocar-
ditis positively. Gene function enrichment analysis (GSEA) showed that IFIT3, OAS3, ISG15, and RSAD2 were mainly 
enriched in type I interferon (IFN) signaling pathway, cellular response to type I interferon, and response to type I 
interferon. Finally, we verified that the expression of miR-146a-5p was significantly higher in the DM with myocardial 
injury than those without myocardial injury (p = 0.0009).
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Conclusion  Our findings suggest that IFIT3, OAS3, ISG15, and RSAD2 may play crucial roles in the underlying mecha-
nism of myocardial injury in DM. Serum miR-146a-5p could be a potential biomarker for myocardial injury in DM.

Keywords  Dermatomyositis, Myocardial injury, Bioinformatic, Immune cells infiltration, Biomarker

Background
Dermatomyositis (DM) is an acquired autoimmune dis-
ease in which skeletal muscle is targeted by the immune 
system, which is a subset of idiopathic inflammatory 
myopathy (IIM) [1]. DM is characterized primarily by 
muscle inflammation, proximal muscle weakness, and 
cutaneous involvement. Additionally, the disease may 
present with extra-muscular symptoms affecting vari-
ous organs including the heart, joints, lungs, and gas-
trointestinal tract [2].

Several studies have identified cardiovascular 
involvement in DM is a feared threat to prognosis and a 
frequent cause of death in several studies [3–5]. Due to 
the structural and functional similarities between skel-
etal and cardiac muscle, it is supposed that what affects 
skeletal muscle may be related to damage to cardiac 
muscle. In autopsy studies, myocarditis was the most 
common pathologic features [6, 7], and previous imag-
ing studies also indicate inflammation as an underlying 
pathology [8]. In different animal models of IIM, the 
myocardium shows an inflammation similar to that of 
skeletal muscle morphologically [9].

Despite the accumulating evidence linking DM and 
cardiovascular involvement, the extent of this link and 
the underlying mechanisms are not yet fully under-
stood. Moreover, specific recommendations for the 
treatment of patients with DM and cardiovascular 
involvement are lacking. Thus, it is essential to explore 
the molecular characteristics and mechanisms of myo-
cardial injury in DM before developing screening rec-
ommendations and treatment strategies for patients 
with DM and myocardial injury. Over the past decades, 
gene microarray technology together with integrated 
bioinformatic analyses has been performed to provide 
tremendous assistance in identifying novel key genes 
related to various diseases. In this study, we identified 
the co-expression genes related to the immune sys-
tem process between DM and myocarditis, explored 
the association between these genes and immune cells 
infiltrating skeletal muscle or myocardium, and pre-
dicted regulatory miRNAs of the hub-genes. Finally, we 
verified our results through online datasets and clinical 
samples. With the above approaches, it is hoped that 
our results may provide a preliminary insight into the 
mechanism of myocardial injury in DM and a search 
for possible biomarkers.

Methods
Data sources
Series matrix files and platform information of GSE1551, 
GSE48280, GSE5370, GSE128470, GSE1145, GSE35182, 
and GSE147517 were obtained from the National 
Center Biotechnology Information Gene Expression 
Omnibus (NCBI-GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​
geo). We selected 13 DM patients and 10 normal indi-
viduals, 5 DM patients, and 5 normal individuals, and 5 
DM patients and 4 normal individuals from GSE1551, 
GSE48280, and GSE5370, respectively, and the samples 
were all skeletal muscle biopsy specimens. We merged 
the GSE1551, GSE48280, and GSE5370 and used the 
SVA software package to correct the bath. Then, we used 
principal component analysis (PCA) [10] to evaluate the 
results of the correction. Finally, we obtained a normal-
ized gene expression matrix file containing 42 samples 
(23 DM patients, and 19 normal individuals). We chose 
samples of myocardium obtained from 11 normal indi-
viduals and 7 inflammatory cardiomyopathy patients due 
to viral myocarditis in GSE1145. In the section of valida-
tion, we chose GSE128470 which includes 12 samples of 
muscle obtained from normal individuals and 12 samples 
from DM patients. Furthermore, we used GSE35182 to 
validate the expression of genes between chronic myocar-
ditis and normal mice; there are 6 mice per group. Finally, 
we validated the predicted target miRNAs expression in 
GSE147517 comprising 5 myocarditis and 5 normal indi-
viduals serum specimens.

Construction of weighted gene co‑expression network 
analysis
The WGCNA package in R was utilized to build a co-
expression network targeting the top 5000 genes with 
median absolute deviation [11, 12]. The R function pick-
SoftThreshold was used to calculate the soft threshold-
ing power β, to which co-expression similarity is raised 
to calculate adjacency. Then, we converted the adjacency 
into a topological overlap matrix (TOM) to measure the 
network connectivity of genes. Genes with similar pat-
terns were clustered into the same modules (minimum 
size = 30) using average linkage hierarchical cluster-
ing, which were represented by branches and different 
colors of the cluster tree, constructed module relation-
ships, calculation of the correlation between gene mod-
ules and phenotypes, and the modules related to clinical 
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traits were identified. Gene significance (GS) and module 
membership (MM) were calculated to relate modules to 
clinical traits. Finally, the highly correlated module was 
analyzed to explore its core genes and potential roles.

Identification of differentially expressed genes
The limma package in R (Version 4.0.3) software was 
utilized to screen DEGs between inflammatory car-
diomyopathy patients and normal controls [13, 14]. The 
differentially expressed genes were screened under the 
condition of |log FC|> 1 and adjusted P value < 0.05.

Evaluation of immune cell infiltration
CIBERSORT [15] is a deconvolution algorithm for ana-
lyzing gene expression data and uses a gene expres-
sion signature for characterizing the proportion of each 
immune cell type. We performed immune infiltration 
by using the CIBERSORT.R script downloaded from 
the CIBERSORT website (https://​ciber​sortx.​stanf​ord.​
edu/). We used the original CIBERSORT gene signature 
file LM22, which defines 22 immune cell subtypes, to 
calculate the proportion of 22 immune cells in DM and 
inflammatory cardiomyopathy patients. Then, we used 
the “ggplot2” package [16] to draw violin diagrams to 
visualize the differences compared to normal controls in 
immune cell infiltration. We also calculated the Spear-
man correlation coefficient between identified hub-genes 
with infiltrating macrophages M2.

Functional annotation
Metascape (http://​Metas​cape.​org/​gp/​index.​html) is a free 
web-based analytics tool for comprehensive gene annota-
tion and analysis resources, combining a GO and KEGG 
pathway enrichment analysis search to leverage over 40 
independent knowledge bases [17–19]. To understand 
the function of these core genes and DEGs, we used 
metascape to perform GO and KEGG pathway enrich-
ment analyses.

Protein–protein interaction network analysis
Search Tool for the Retrieval of Interacting Genes 
(STRING) (Version 11.3, https://​cn.​string-​db.​org/) is a 
useful online tool dedicated to analyzing the functional 
protein association networks [20–22]. The core genes 
and DEGs were mapped to the STRING database, and 
only the experimentally validated interactions with a 
combined score > 0.4 were selected as significant. Sub-
sequently, the PPI network was visualized by Cytoscape 
software (version 3.5.1) (www.​cytos​cape.​org/) [23]. The 
plug-in cytoHubba in Cytoscape was used to screen the 
hub-genes from the PPI network, and in our study, the 
top ten genes were identified as hub-genes [24].

Prediction of potential hub‑gene related target miRNAs
We used miRNet (www.​mirnet.​ca/) [25], a tool that inte-
grates data from 11 different miRNA databases, to pre-
dict regulatory miRNAs of the common hub-genes.

Subjects
A total of 10 DM patients were enrolled from the First 
Affiliated Hospital of Nanjing Medical University 
between January 2020 and January 2021. We divided 
these patients into two groups: DM with myocardial 
injury (n = 5) and DM without myocardial injury (n = 5) 
based on the results of the cardiac magnetic resonance 
examination. The inclusion criteria were as follows: (1) 
age > 18  years old, (2) all the patients fulfilled the 1975 
Bohan and Peter criteria for dermatomyositis [26], and 
(3) patients who underwent cardiac magnetic reso-
nance examination during hospitalization. The exclu-
sion criteria were as follows: (1) interstitial lung disease, 
(2) previous history of cardiac disease, (3) tumor, (4) 
renal insufficiency, and (5) surgery within the six previ-
ous months. Ethical approval was obtained for our sin-
gle-center cross-sectional study, and the need to obtain 
informed consent was waived (2020-SR-228).

Sample collection and RNA isolation
Venous blood samples were collected into EDTA tubes 
from DM patients within 24 h before and after the car-
diac magnetic resonance examination. Serum was 
obtained at room temperature of 3000 rpm for 5 min and 
frozen at – 80 °C for further use. Isolation of total RNA 
including miRNA was performed from serum using the 
miRNeasy Serum/Plasma Advanced Kit (Qiagen, Ger-
mantown, MD, USA) according to the manufacturer’s 
protocol. During the extraction, 3.5 μL of miRNeasy 
Serum/Plasma Spike-In Control (1.6 × 108 copies/μL of 
the C. elegans miR-39 miRNA mimic) was added to each 
sample as an internal control. RNA quantity and quality 
were evaluated using the Nanodrop ND-2000 spectro-
photometer (Nanodrop Technologies, Wilmington, DE). 
Directly after isolation, RNA was subjected to the reverse 
transcription process.

Reverse transcription reaction and real‑time quantitative 
PCR (RT‑qPCR)
The expression levels of miR-27b-3p, miR-130a-3p, miR-
1-3p, miR-133a-3p, miR-16-5p, and miR-146a-5p were 
measured using the Bulge-Loop™ miRNA qRT-PCR 
Starter Kit (one RT primer and a pair of qPCR primers 
for each set) designed specifically by RiboBio (Guang-
zhou, China) in accordance with the manufacturer’s 
instructions. The average expression levels of serum 
miRNAs were normalized against cel-miR-39 (Qiagen, 

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
http://Metascape.org/gp/index.html
https://cn.string-db.org/
http://www.cytoscape.org/
http://www.mirnet.ca/
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Germantown, MD, USA). The fold-change (FC) for each 
miRNA relative to the control was calculated using the 
2−ΔΔCT method [27]. The efficiency was tested before 
using the 2−ΔΔCT method, and the results were collected 
from the same experiment in three replicates.

CMR
All participants underwent CMR imaging on a 3.0  T 
whole-body scanner (MAGNETOM Skyra, Siemens 
Healthcare, Erlangen, Germany) with an 18-chan-
nel phase-array coil using ECG gating. Late gadolinium 
enhancement (LGE) images were acquired 8–15  min 
after intravenous administration of gadolinium-DTPA 
(Magnevist, Bayer, Berlin, Germany) at a dose of 
0.2  mmol/kg in short-axis stack using a phase-sensitive 
inversion-recovery (PSIR) gradient echo sequence. Typi-
cal parameters of motion-corrected basal, mid, and apical 
level of LV short-axis Modified Look-Locker inversion-
recovery (MOLLI) T1 mapping sequence with a 5(3)3 
scheme before and 15–20 min after intravenous contrast 
agent injection.

The native and post-contrast T1 values of the myocar-
dium were measured on a region of interest at the myo-
cardial septum of mid-ventricular short-axis slice by two 
experienced blinded investigators in consensus with 
CMR using commercial software (CVI42, Circle 

Cardiovascular Imaging, Calgary, Canada). The presence 
of LGE was defined with a signal intensity level increase 
of more than five S.D. of remote myocardium on the all 
short-axis contrast images from base to apex [28]. ECV 
was calculated by the following equation: ECV = (1—
HCT) 

1
post contrast T1 myo−

1
native T1 myo

1
post contrast T1 blood

−

1
blood T1 myo

.

Determination of hematocrit (HCT) and calculation 
of ECV were completed within 24  h after CMR scan-
ning. ECV is a marker of myocardial tissue remodeling 
and provides a physiologically intuitive unit of measure-
ment. Normal ECV values of 24% ± 3 (3.0 T) have been 
reported in healthy individuals [29]. In our study, we 
divide patients with LGE positive and ECV > 25% into 
DM with myocardial injury group [30].

Statistical analysis
All statistical analyses were performed in the R language 
(Version 4.0.3). All statistical tests were bilateral, and 
adjusted P value < 0.05 was statistically significant.

Results
Bioinformatic analysis workflow
Our workflows are shown in Fig.  1. First, we found key 
modules related to DM using WGCNA and discovered 
hub-genes associated with the immune system process 

Fig. 1  Flowchart of this study
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through PPI and GO/KEGG enrichment analysis of 
core genes in key modules. Second, we searched DEGs 
between myocarditis and normal myocardium, and the 
same PPI and GO/KEGG enrichment analysis was used 
to screen for hub-genes associated with the immune 
system process in myocarditis. The common hub-genes 
related to immune processes in both DM and myocar-
ditis were obtained by intersecting the above two sets 
of hub-genes. The function of these common hub-genes 
and their relationship with immune infiltrating cells were 
then investigated. Finally, we used miRNet to predict reg-
ulatory miRNAs of the common hub-genes and validated 
their expression in online datasets and clinical samples.

Identification and analysis of key module of DM by WGCNA
To construct a gene co-expression network, the data 
of three series matrix files were downloaded from the 
GEO database. A principal component analysis was 
performed to visualize the grouping of read counts 
and identify batch effects. Then, we merged these three 
datasets into one dataset and corrected the batch using 
the SVA software package. Figure  2b shows that the 
inter-batch variations are effectively removed after data 
normalization. Finally, a normalized gene expression 
matrix file containing 42 samples (23 DM, 19 healthy 

people) was obtained. We calculated the median abso-
lute deviation for each gene, sorted the values from 
large to small, and then selected the top 5000 genes 
for WGCNA. The expression data map of these 5000 
genes was constructed into a gene co-expression net-
work using the WGCNA package in R software. By set-
ting the soft-threshold power as 6 (scale-free R2 = 0.92, 
slope = -2.15; Fig.  2c, d) and cut height as 0.25, we 
acquired 12 modules (Fig. 2e–g), genes that cannot be 
included in any module were added to the grey module 
and rejected in subsequent analyses.

From the heatmap of module-trait correlations, we 
found that the turquoise module was the most highly 
correlated with DM (correlation coefficient = 0.61, 
p = 2e − 05; Fig. 2h). We analyzed the correlation between 
module membership and gene significance in the tur-
quoise module. The results showed that module mem-
bership in the turquoise module (r = 0.84, p = 1e − 200) 
was significantly correlated with gene significance for 
DM. The turquoise module contained 954 genes; 120 
genes were identified as core genes with high MM (> 0.8) 
and GS (> 0.2) values (Fig.  2i). We found that the core 
genes were the most enriched in the immune system 
process through GO and KEGG enrichment analysis on 
the metascape website (Fig. 2j). In the major PPI network 

Fig. 2  Screening of hub-genes related to the immune system process in DM. a PCA before the batch correction of three datasets. b PCA after the 
batch correction of three datasets. c Analysis of the scale-free fit index for various soft-threshold powers; the red line was set at 0.90. d Analysis 
of the mean connectivity for various soft-threshold powers. e Clustering dendrogram of genes in the co-expression network. f Clustering of all 
modules, the red line indicates the height cutoff (0.25). g Cluster of merged modules. h Identification of weighted gene co-expression network 
modules associated with DM. i The MM versus GS scatter plot of the turquoise module. j Functional annotation of the 120 hub-genes involved in 
the turquoise module. k The major PPI network analysis of the top 10 hub-genes from 120 hub-genes through cytoHubba software
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analysis of top 10 hub-genes from 120 hub-genes through 
the cytoHubba software, the shade of the node’s color 
reflects the degree of connectivity (Fig.  2k); all 10 hub-
genes were enriched in the immune system process.

Identification and analysis of DEGs in myocarditis database
We identified 570 DEGs composed of 253 upregulated 
and 317 downregulated genes by using the limma pack-
age. The volcano plot (Fig.  3a) showed DEGs between 
inflammatory cardiomyopathy and normal controls. We 
imported 253 upregulated and 317 downregulated genes 
into STRING database to construct the PPI network 
complex respectively; we then used cytoHubba App in 
cytoscape to examine hub-genes based on the “degree” 
algorithm. The genes ISG15, IFIT3, XAF1, RSAD2, IGF1, 
OAS3, IFI44, SAMD9L, IFI44L, and TLR3 were the top 
ten upregulated genes (Fig.  3d), and the genes EGFR, 
CDH1, WDTC1, NGF, BYSL, CCL2, TGFB1, SOCS3, 
POLR1A, and NOL6 were the top ten downregulated 
genes (Fig.  3c). GO and KEGG enrichment analyses of 
the above 20 hub-genes were performed using the metas-
cape (Fig. 3e). Among them, IFIT3, OAS2, ISG15, XAF1, 
and RSAD2 were enriched in the immune system pro-
cess. The subsequent intersection between hub-genes 

related to the immune system process in inflammatory 
cardiomyopathy and hub-genes in DM using the VennDi-
agram package yielded 4 common DEGs: IFIT3, OAS3, 
ISG15, and RSAD2 (Fig. 3f ).

Evaluation of immune cell infiltration and immune cell 
correlation analysis
CIBERSORT analytical tool calculated the fractions of 
22 types of leukocyte subpopulations in myocardial tis-
sue and skeletal muscle samples respectively, including 
naïve B cells, memory B cells, plasma B cells, CD8 + T 
cells, CD4 + naïve T cells, CD4 + memory resting T 
cells, CD4 + memory activated T cells, follicular helper 
T cells, regulatory T cells (Tregs), gamma delta T cells, 
resting natural killer (NK) cells, activated NK cells, 
monocytes, M0, M1, and M2 macrophages, resting and 
activated myeloid dendritic cells, resting and activated 
mast cells, eosinophils, and neutrophils. The violin plot 
of the immune cell infiltration difference showed that M1 
macrophages in the DM were higher than that in the con-
trol group, while M2 macrophages in both the DM and 
the inflammatory cardiomyopathy group were higher 
than that in the control group (Fig. 4). Then, the spear-
man correlation coefficient between hub-genes and the 

Fig. 3  Screening of hub-genes related to the immune system process in inflammatory cardiomyopathy. a The volcano plot of DEGs in 
inflammatory cardiomyopathy. b Heat map clustering of the DEGs between normal controls and inflammatory cardiomyopathy patients. c The 
major PPI network analyzing of top 10 hub-genes from downregulated genes. d The major PPI network analyzing of top 10 hub-genes from 
upregulated genes. e Functional annotation of the 20 hub-genes contained in c and d. f A Venn diagram showing the number of commonly 
expressed genes between hub-genes related to the immune system process in inflammatory cardiomyopathy and DM
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infiltration level of the immune cell was calculated. As a 
result, M2 macrophages were positively associated with 
the expression of IFIT3, OAS3, ISG15, and RSAD2 in 
patients with inflammatory cardiomyopathy and dermat-
omyositis, respectively (Fig. 4c, f ).

Validation hub‑genes with GEO databases
To further validate the expression of IFIT3, OAS3, ISG15, 
and RSAD2 in myocardial tissue and skeletal muscle tis-
sue, we selected GSE128470 and GSE35182 as testing 
datasets. As shown in Fig.  5a, the expression levels of 
IFIT3, OAS3, ISG15, and RSAD2 were verified in myo-
cardial tissue between myocarditis mice and normal con-
trol. Then, the expression levels of IFIT3, OAS3, ISG15, 
and RSAD2 were also significantly higher in DM skeletal 
muscle tissues than in the normal controls (Fig. 5b).

Functional enrichment analysis of IFIT3, OAS3, ISG15, 
and RSAD2
To further explore the potential function of the com-
mon hub-genes, GO/KEGG enrichment analysis was 
performed. We divided the samples from the GSE128470 
dataset into a high-expression group and a low-expres-
sion group according to the median expression level of 

the common hub-genes and identified DEGs between the 
two clusters. As shown in Fig. 5c, d, DEGs were mainly 
enriched in type I interferon signaling pathway, cellu-
lar response to type I interferon, and response to type I 
interferon.

Prediction and validation of potential miRNAs targeting 
hub‑genes
We applied the miRNet database to screen the targeted 
miRNAs of ISG15, IFIT3, RSAD2, and OAS3. As illus-
trated in Fig. 6a, a total of 122 miRNAs were predicted, 
23 with association with three or more genes, six of which 
were confirmed to be upregulated in serum exosomes of 
patients with myocarditis than normal control (Fig. 6b).

Validation of miRNAs in serum samples
To verify the clinical application potential of miR-27b-3p, 
miR-130a-3p, miR-1-3p, miR-133a-3p, miR-16-5p, and 
miR-146a-5p, comparative analysis of these 6 micro-
RNAs between DM with myocardial injury and DM 
without myocardial injury was performed. The base-
line demographic and clinical characteristics of 10 DM 
patients were shown in Table 1. The level of miR-146a-5p 
expression was statistically significantly higher in the 

Fig. 4  Immune cell infiltration analysis. a Heat map of relative proportions of 22 infiltrated immune cells in patients with DM. b Violin chart of the 
abundance of each type of immune cell infiltration in DM and control groups. c The correlation analysis of hub-genes and M2 macrophages in DM. 
d Heat map of relative proportions of 22 infiltrated immune cells in patients with inflammatory cardiomyopathy. e Violin chart of the abundance 
of each type of immune cell infiltration in inflammatory cardiomyopathy and control groups. f The correlation analysis of hub-genes and M2 
macrophages in inflammatory cardiomyopathy
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DM with myocardial injury group than the other group 
(p = 0.0009) (Fig. 6c).

Discussion
Although the cause of DM pathogenesis remains unclear, 
previous studies have established the existence of myo-
cardial injury in DM. Autopsy studies indicate that 
myocarditis is the most frequent pathological manifes-
tation [3, 31]. Some serological biomarkers may serve 
as a screening tool for myocardial injury in DM such as 
cTNI and GDF-15 [32, 33]. Despite this, little research 
has explored the genetic underpinnings of myocardial 
injury in DM. Our study has identified several common 
hub-genes that are associated with both the immune 
process of myocarditis and DM. These genes may play a 
role in the onset of myocardial injury in DM. By identify-
ing miRNAs that target these genes and validating their 
potential, we have found miR-146a-5p to be a promising 
biomarker for detecting myocardial injury in DM.

Autopsy studies have revealed that myocarditis is the 
predominant pathological feature of myocardial injury in 
DM, with the immune system thought to play a pivotal 
role in the development of both conditions. Based on the 
above two reasons, we used an integrated bioinformat-
ics analysis to screen hub-genes related to the immune 
system process in DM and myocarditis respectively. The 
intersection of these two sets of genes represents a group 
of common hub-genes that are believed to be linked to 
myocardial injury in DM. This approach has been suc-
cessfully applied in a variety of biological contexts to 
identify common risk genes and mechanisms associated 
with multiple disease phenotypes [34–36]. In our study, 
the similarity of immune cell infiltration in the myocar-
dium and skeletal muscle could also in turn suggest that 
immune system processes may play a role in the process 
of myocardial injury in dermatomyositis.

We finally identified 4 common hub-genes related 
to the immune process of myocarditis and DM: IFIT3, 
OAS3, ISG15, and RSAD2. Gene function enrichment 
analysis showed these genes were mainly enriched 

Fig. 5  Validation and functional enrichment analysis of hub-genes in GEO databases. a Validation of hub-genes in GSE35182. b Validation of 
hub-genes in GSE128470. c The enriched biological process, cell component, molecular function, and KEGG pathways of DEGs (DEGs between two 
clusters divided by the expression of common hub-genes). d Circos plot to indicate the relationship between genes and biological process terms
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in type I interferon (IFN) signaling pathway, cellular 
response to type I interferon, and response to type I 
interferon. The maladaptive immune response created 
by type I IFN signaling is upregulated in many autoim-
mune diseases such as systemic lupus erythematosus 
(SLE), rheumatoid arthritis, Sjogren’s syndrome, and 

systemic sclerosis [37–39]. Several previous studies 
have confirmed that the type I IFN signaling pathway 
plays a prominent role in DM, and the expression lev-
els of it is associated with DM activity [40–45]. Cassius 
et al. reported type I interferon signature was also to be 
highly expressed in the MDA5 + DM subtype [43]. In 
fact, a recent study suggests that inhibition of the type 
I IFN signaling pathway may reduce cardiovascular risk 
in SLE patients [46].

Given that immune cells play an essential role in the 
process of myocardial injury in DM, we sought to inves-
tigate the infiltration of immune cells in both DM and 
myocarditis patients. We found that T cells and mac-
rophages comprise the majority of infiltrated immune 
cells in the skeletal muscle of DM, which is consistent 
with a recent study [47]. Furthermore, we observed an 
increase in both M1 and M2 macrophages in DM patients 
compared to healthy controls. Prior studies also revealed 
macrophages infiltration in the muscle is involved in 
the development and progression of DM [48, 49] and is 
associated with disease severity [50]. Increasing evidence 

Fig. 6  Screening and validation of potential miRNAs targeting hub-genes. a An Interaction network of four hub-genes and potential 
miRNAs-targeted. b The volcano plot of DE-miRNAs between myocarditis and normal control in GSE147517. c Validation of miR-146a-5p expression 
in the serum of patients with DM

Table 1  The characteristics of DM patients between two groups 
with and without myocardial injury

DM with 
myocardial 
injury (n = 5)

DM without 
myocardial injury 
(n = 5)

p value

Age, year 47.80 ± 6.61 52.00 ± 9.43 0.441

Female (n, %) 5 (100%) 5 (100%) 1

Disease duration, 
month

6.20 ± 4.66 3.20 ± 2.77 0.251

cTNT, ng/L 80.85 ± 14.95 168.21 ± 125.36 0.347

CKMB, U/L 70.94 ± 128.15 218.36 ± 190.35 0.189

Pro-BNP, pg/ml 83.98 ± 70.58 198.93 ± 164.78 0.246
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showed that immune cell infiltration in the myocardium 
has adverse effect on heart function recently [51–53]. 
In the myocardium, macrophages are one of the most 
important cardiac immune cells and the central regulator 
of immune systems. In the past, macrophages were clas-
sified into M1 and M2 types by their surface molecules. 
Further, research indicated that M1 macrophages have a 
pro-inflammatory phenotype with anti-pathogen activ-
ity while M2 macrophages promote anti-inflammatory 
effects and tissue repair responses [54]. In animal models 
of experimental autoimmune myocarditis and viral myo-
carditis, the acute phase of myocarditis is dominated by 
pro-inflammatory macrophages, while the chronic phase 
is dominated by M2 macrophages [55–57]. The activation 
of the autoimmune system will eventually lead to exces-
sive accumulation and transformation of macrophages, 
resulting in myocardial inflammation and fibrosis [58, 
59]. In this study, the M2 macrophages of myocardi-
tis patients increased while M1 macrophages were not 
statistically different from normal controls, which may 
be due to the fact that myocardium specimens in the 
selected dataset were in the chronic phase of myocarditis. 
Considering the similarities of immune cell infiltration in 
the myocardium and skeletal muscle, we speculated that 
the disorder in macrophages might play a potentially sig-
nificant role in the process of myocardial injury in DM.

Previous studies have shown that miRNAs can be used 
as markers in a variety of cardiovascular diseases [60]. 
miR-146a-5p is an important regulator of the immune 
response and inflammation [61, 62] and is abundant in 
immune cells and the heart [63, 64]. It has been impli-
cated in cardiac hypertrophy, ischemia/reperfusion 
injury, peripartum cardiomyopathy, doxorubicin toxic-
ity, diabetic cardiomyopathy, and atherosclerosis [65–70]. 
The increased presence of circulating miR-146a-5p has 
been reported in patients with spontaneous coronary 
artery dissection, aortic dissection, and acute coronary 
syndromes [71–73]. Our study found that serum miR-
146a-5p was significantly elevated in DM patients with 
myocardial injury than without myocardial injury, sug-
gesting the potential of miR-146a-5p as a biomarker for 
assessing myocardial injury in DM.

There were certain limitations in our study. First, our 
study was based on bioinformatics analysis from public 
datasets, which may not fully reflect the actual situation. 
Secondly, due to the difficulty of obtaining cardiac sam-
ples from DM patients, we analyzed the gene sets of myo-
carditis and DM separately. Further in vitro and in vivo 
experiments are needed to confirm the role of common 
hub-genes in DM with myocardial injury. Thirdly, we 
searched only one dataset containing myocardial speci-
mens in myocarditis patients, so we used murine myo-
cardium for our subsequent validation. Finally, a larger 

sample size will be needed in future studies to verify the 
role of miR-146a-5p as a biomarker predicting myocar-
dial injury in DM.

Conclusion
Our study identified 4 common hub-genes related to the 
immune system process of myocarditis. We speculated 
that these genes may play a role in the process of myocar-
dial injury in DM. Serum miR-146a-5p could be a poten-
tial biomarker to predict myocardial injury in DM.
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