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Abstract 

Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic synovitis and bone destruction. Proin‑
flammatory cytokines activate pathways of immune-mediated inflammation, which aggravates RA. The mechanistic 
target of rapamycin (mTOR) signaling pathway associated with RA connects immune and metabolic signals, which 
regulates immune cell proliferation and differentiation, macrophage polarization and migration, antigen presenta‑
tion, and synovial cell activation. Therefore, therapy strategies targeting mTOR have become an important direction 
of current RA treatment research. In the current review, we summarize the biological functions of mTOR, its regulatory 
effects on inflammation, and the curative effects of mTOR inhibitors in RA, thus providing references for the develop‑
ment of RA therapeutic targets and new drugs.
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Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune 
disease characterized by erosive arthritis and a patho-
logical basis of synovitis, which causes morning stiff-
ness, joint pain, and impairment of movement functions 
[1]. Extraarticular symptoms of severe active RA gen-
erally occur in the cardiovascular, respiratory, blood, 
and urinary system and may cause other comorbidi-
ties [2]. The global incidence of RA is approximately 1%, 
and two thirds of the cases are women [3]. At the joint 

inflammatory site, abnormal modulation of mTOR sign-
aling results in continuous feedback between stromal 
cells and infiltrating immune cells, leading to persistent 
inflammation and tissue damage, driving the pathologi-
cal tissue refactoring and eventually causing organ dys-
function [4]. Recent studies reported that activation of 
the mechanistic target of rapamycin (mTOR) affects the 
abundance and functioning of immune and stromal cells 
and may thus be an essential pathway in the pathogenesis 
of RA. In this review, we describe the structure and pro-
cesses of the mTOR pathway and highlight its role in the 
pathogenesis of RA to provide a reference for the devel-
opment of novel clinical treatment avenues.

The biology of mTOR
In 1975, Sehgal et  al. [5] discovered an antifungal mac-
rolide antibiotic produced by the bacterium Streptomyces 
hygroscopicus, which was termed rapamycin. Rapamycin 
binds to the 12-kD intracellular protein FKBP12, thus 
forming a high-affinity complex with the protein FK506 
[6]. The FKBP12-rapamycin complex then fuses with the 
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mTOR protein, which was first isolated from mammalian 
tissue [7]. mTOR is a highly conserved serine/threonine 
protein kinase that regulates cell proliferation, differen-
tiation, and angiogenesis [8].

mTOR complexes
mTOR forms two functionally distinct complexes with 
proteins: mTOR complex (mTORC)1 and mTORC2 
[9]. mTORC1 comprises mTOR, regulatory-associated 
protein of TOR (raptor), mammalian lethal with sec-
13 protein 8 (mlst8), DEP domain–containing mTOR 
interacting protein (deptor), and proline-rich Akt sub-
strate of 40kD (pras40) [8, 10]. mTORC2 is composed of 
mTOR, rapamycin-insensitive companion of mTOR (ric-
tor), stress-activated protein kinase interacting protein 
1 (msin1), mlst8, deptor, and protor-1/2 [11–13]. mTOR 
bears several conserved domains, including the N ter-
minus HEAT repeats, FAT domain, FRB domain, Kinase 
domain, and the C-terminal FATC domains [14] (Fig. 1).

In more detail, the FKBP12-rapamycin complex binds 
to the FRB domain of mTORC1 to produce steric hin-
drance, which interferes with interactions between the 
substrate and the active site of mTORC1 [15, 16]. Fur-
thermore, mTORC1 promotes cell growth by control-
ling glycolysis, upregulating mRNA transcription, and 
synthesizing and breaking down proteins and lipids 
[17]. In addition, mTORC1 regulates catabolic processes 

including autophagy [18]. Unlike mTORC1, in mTORC2, 
rictor and msin1 block the binding of the FKBP12-
rapamycin complex to the FRB domain of mTORC2, 
thus revealing the potential mechanism underlying the 
insensitivity of mTORC2 to rapamycin (Fig.  1) [19, 20]. 
mTORC2 regulates cell survival, migration, metabolism, 
and cytoskeleton arrangement through molecular net-
works [21].

Upstream regulators of mTOR
Several ligands activate mTOR signaling, including 
growth factors, amino acids, antigens, and cytokines [22]. 
The pathways of mTORC1 activation have been exten-
sively researched; however, mTORC2 regulation is cur-
rently less understood. Compared to mTORC1, mTORC2 
is an insensitive signaling factor [8].

The activity of mTORC1 is primarily mediated by phos-
phatidylinositol-3-OH kinase/RAC-α serine/threonine-
protein kinase/tuberous sclerosis complex (PI3K/AKT/
TSC) and liver kinase B1/the mitogen-activated pro-
tein kinase (LKB1/AMPK) axis. Growth factor receptor, 
cytokines, and Toll-like receptor (TLR) ligands regulate 
mTORC1 activity by the PI3K/AKT/TSC signaling path-
way. They phosphorylate PI3K to activate downstream 
effector AKT, then restrain the TSC1/TSC2 complex 
[23]. Ras homolog enriched in the brain (Rheb) pri-
marily occurs in a GTP-bound activated state [14, 24]. 

Fig. 1  The mTORC1 and mTORC2 complex. The FKBP12-rapamycin complex binds to the FK506-binding protein 12 and inhibits mTORC1 
by blocking its association with the FRB domain. This leads to steric hindrance and prevents the activation of mTORC1. On the other hand, 
mTORC2 is resistant to rapamycin due to the presence of rictor and msin1, which block the binding of the FKBP12-rapamycin complex to the FRB 
domain of mTORC2. In the mTORC1 complex, raptor plays a crucial role in promoting the phosphorylation of various downstream targets. mlst8 
stabilizes the mTORC1 complex, whereas deptor negatively regulates its activity. pras40 also interacts with mTORC1. In the mTORC2 complex, rictor 
is an essential component that helps stabilize the complex while msin1 contributes to its regulation. This figure provides insight into the structural 
components and interactions within mTORC1 and mTORC2 complexes, highlighting their sensitivity or insensitivity to the FKBP12-rapamycin 
complex and the respective roles of key proteins. raptor, regulatory-associated protein of TOR; mlst8, mammalian lethal with sec-13 protein 8; 
deptor, DEP domain–containing mTOR interacting protein; pras40, proline-rich Akt substrate of 40kD; rictor, rapamycin-insensitive companion 
of mTOR; msin1, stress-activated protein kinase interacting protein 1
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Inactivation of the TSC complex restrains the hydrolysis 
of Rheb-GTP, preventing it from conversion into Rheb-
GDP. Finally, Rheb-GTP directly activates mTORC1 
[25]. Through continuously improving understanding of 
the pathway, phosphatase and tensin homolog deleted 
on chromosome 10 (PTEN) was found to neutralize the 
activity of PI3K by dephosphorylating the downstream 
products of PI3K, which include ephosphatidylinosi-
tol-3,4-bisphosphate (PIP2) and phosphatidylinositol 
-3,4,5-triphosphate (PIP3) [14, 26]. The most remarkable 
characteristic of mTORC1 is its activating ability on the 
surface of the lysosomal membrane [27]. Growth fac-
tors activate Rheb, and amino acids recruit mTORC1, 
both of which are indispensable for the activation of 
mTORC1. AMPK regulates glucose metabolism and per-
ceives changes in ATP levels [28, 29]. Energy stress acti-
vates LKB1-dependent AMPK, which phosphorylates 
downstream TSC2, then promotes the formation of the 
TSC1/TSC2 complex, and further inhibits the activity 
of mTORC1 [30]. In addition, AMPK directly phospho-
rylates raptor and suppresses mTORC1 signaling [31] 
(Fig. 2A).

The activity of mTORC2 is mainly regulated through 
the PI3K/AKT axis. In detail, PI3K induces PtdIns(3,4,5)
P(3) to combine with the pleckstrin homology domain of 
msin1, blocking inhibition of the mTOR kinase domain 
by msin1, thereby activating mTORC2 [32, 33]. PI3K 
also promotes the combination of the ribosome and 
mTORC2, and the ribosome is necessary for inducing 
mTORC2 kinase activity [34]. Of note, partial activation 
of Akt boosts the activation of mTORC2, which phos-
phorylates and ultimately activates Akt, resulting in a 
positive feedback loop [35] (Fig. 2A).

Downstream targets of mTOR
mTORC1 maintains metabolic homeostasis by regulat-
ing biological synthesis and catabolic processes. Acti-
vated mTORC1 phosphorylates its downstream targets 
S6 kinase 1 (S6K1) and the eIF4E binding protein 1 

(4E-BP1) to regulate protein synthesis [36]. Phospho-
rylated 4E-BP1 releases cap-binding protein eukaryotic 
translation initiation factor 4E (eIF4E), which counteracts 
inhibition of protein synthesis by enabling eIF4E to form 
the eIF4F complex and to participate in cap-dependent 
translation [37, 38]. S6K1 regulates eukaryotic transla-
tion initiation factor 4B (eIF4B), programmed cell death 
protein 4 (PDCD4) [39], and S6K1 Aly/REF-like target 
(SKAR) [40] to participate in protein synthesis. eIF4B is 
a positive regulator of eIF4F complex, and PDCD4 is a 
negative regulator of eIF4A [41, 42]. The mTORC1 phos-
phorylates lipin 1 to increase the activity of SREBP1 or 
activates SREBP1 through an S6K1-dependent mecha-
nism, thus participating in lipid synthesis [43, 44]. In 
addition, mTORC1 promotes nucleotide synthesis by 
stimulating the mTHF cycle, which increases ATF4 lev-
els to upregulate the expression of methylenetetrahydro-
folate dehydrogenase 2 (MTHFD2) [45]. Moreover, S6K1 
phosphorylates carbamoyl-phosphate synthetase (CAD) 
to activate the de novo pyrimidine synthesis pathway 
[46]. Furthermore, mTORC1 increases the expression of 
transcription factor HIF1α to promote glucose metabo-
lism [44]. SREBP1 is also involved in the regulation of the 
pentose phosphate pathway. Taken together, mTORC1 
regulates various metabolic pathways to coordinate anab-
olism (Fig. 2B).

mTORC1 negatively regulates catabolic processes such 
as autophagy to promote cell growth [17, 47]. Under 
nutrient sufficiency, activated mTORC1 phosphorylates 
and suppresses unc-51-like kinase1 (ULK1) [48]. Tran-
scription factor EB (TFEB) regulates the expression of 
autophagy and lysosomal genes, which is also phospho-
rylated and inhibited by mTORC1 to regulate autophagy 
indirectly [49] (Fig. 2B).

Primary downstream targets of mTORC2 include AKT 
[50], serum and glucocorticoid inducible kinase 1 (SGK1) 
[51], and protein kinase C-α (PKCα) [11] (Fig. 2C). PKC-α 
regulates the actin cytoskeleton to adjust cell shape [52]. 
Activated SGK1 controls ion transport and cell survival 

Fig. 2  A The upstream pathway of mTORC1 and mTORC2. Growth factor, cytokines, or TLR signaling activates PI3K, which in turn activates AKT. 
The AMPK, LKB1, and IRS are also involved in regulating mTORC1 and mTORC2. TLR, Toll-like receptor; PI3K, phosphatidylinositol-3-OH kinase; 
AKT, RAC-α serine/threonine-protein kinase; TSC, tuberous sclerosis complex; Rheb, Ras homolog enriched in the brain; PTEN, phosphatase 
and tensin homolog deleted on chromosome 10; PIP2, ephosphatidylinositol-3,4-bisphosphate; PIP3, phosphatidylinositol-3,4,5-triphosph
ate; AMPK, the mitogen-activated protein kinase; LKB1, liver kinase B1, IRS, insulin receptor substrate. B The downstream pathway of mTORC1. 
mTORC1 activates S6K1 and eIF4E to promote protein synthesis and cell growth. mTORC1 also inhibits 4E-BP1 to initiate translation. Additionally, 
mTORC1 influences PDCD4, SKAR, ATF4, MTHFD2, CAD, HIF1α, ULK1, and TFEB to regulate glucose metabolism, lipid synthesis, and autophagy. 
S6K1, S6 kinase 1; eIF4E, eukaryotic translation initiation factor 4E; eIF4B, eukaryotic translation initiation factor 4B; 4E-BP1, the eIF4E binding 
protein 1; PDCD4, programmed cell death protein 4; SKAR, S6K1 Aly/REF-like target; ATF4, activating transcription factor 4; MTHFD2, 
methylenetetrahydrofolate dehydrogenase 2; CAD, carbamoyl-phosphate synthetase; HIF1α, hypoxia-inducible factor-1α; ULK1, unc-51-like 
kinase1; TFEB, transcription factor EB. C The downstream pathway of mTORC2. mTORC2 activates SGK1 and PKCα, which play roles in cell survival 
and cytoskeletal organization. SGK1, serum and glucocorticoid inducible kinase 1; PKCα, protein kinase C-α

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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[51]. Additionally, Akt phosphorylates and inhibits tran-
scription factor FoxO1/3a to promote metabolic homeo-
stasis [53].

The role of mTOR in the pathogenesis of RA
The pathogenesis of RA reflects the complex interac-
tions between various cell groups in the synovium, medi-
ated by direct contact between cells and various types of 
secreted or exfoliated molecules. mTOR signaling con-
trols the recruitment and activation of innate, acquired 
immune cells and fibroblast-like synoviocytes (FLSs) 
during RA, resulting in the production of numerous 
chemokines, pro-inflammatory cytokines, and cathep-
sin to degrade extracellular matrix and cartilage, further 
contributing to the early characteristics of synovitis [3, 
54] (Fig. 3).

mTOR regulates proliferation and differentiation of T 
lymphocytes
T lymphocytes play crucial roles in the progression of 
RA. Effector T cells (Teffs) such as Th1, Th2, and Th17 
cells stimulate monocytes or macrophages to synthe-
size pro-inflammatory cytokines, leading to destruc-
tive changes in RA-affected joints [55]. By contrast, 

regulatory T cells (Tregs) promote the secretion of inhib-
itory cytokines to inhibit the proliferation and activation 
of autoreactive T cells and maintain immune homeosta-
sis [56]. Thus, a disturbed Teffs/Tregs balance determines 
the progression of RA [57]. mTOR signaling is essential 
for the proliferation and activation of T cell lineages, and 
mTORC1 and mTORC2 make distinct respective contri-
butions [58, 59].

mTORC1 regulates HIF1α to promote the change from 
oxidative phosphorylation to glycolysis, thereby support-
ing the differentiation of T lymphocytes [60]. Increased 
glycolysis promotes T cells to differentiate into Th1, Th2, 
and Th17 cells [61]. By contrast, deprivation of glycolysis 
promotes the development of Tregs [61]. Glycolysis acti-
vates mTORC1 to block the expression of FOXP3 and 
affects the function of Tregs [62]. Leucine or serine defi-
ciency can inhibit the activity of mTORC1 and restrict 
the differentiation of T cells into Teffs [63]. Indoleam-
ine 2,3-dioxygenase negatively regulates mTORC1 sig-
nal transduction via PTEN, preventing proliferation 
of Teffs and promoting induction of Tregs [62, 64]. De 
novo fatty acid synthesis inhibits differentiation of Th17 
cells and stimulates expansion of Tregs [65]. By contrast, 
mTORC2 regulates the activity of RhoA to accelerate Th2 

Fig. 3  Inflammation in RA-affected joints. The pathogenesis of RA reflects the complex interactions between various cell groups in the synovium, 
mediated by direct contact between cells and various types of secreted or exfoliated molecules. mTOR signaling controls the recruitment 
and activation of innate, acquired immune cells and FLSs during RA, thus producing numerous chemokines, pro-inflammatory cytokines, 
and cathepsin to degrade the extracellular matrix and cartilage, further contributing to the early characteristics of synovitis
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cell differentiation [66]. Consequently, mTORC1-defi-
cient T cells cannot differentiate into Th1 or Th17 cells, 
and mTORC2-deficient T cells lack the ability of Th2 
differentiation [66, 67]. Further mTORC1 and mTORC2 
negatively regulate the differentiation and functioning of 
Tregs [68].

mTOR regulates the proliferation and activation of B 
lymphocytes
B cells participate in the pathogenesis of RA by produc-
ing autoantibodies, proinflammatory cytokines, and 
chemokines, acting as efficient antigen-presenting cells 
and regulating T cell activation and differentiation [69, 
70]. mTOR signaling pathway regulates immune function 
and homeostasis of peripheral B cell in RA [71].

Inhibition of the mTOR pathway in B cells restrains 
the growth of mitogen-dependent embryonic cells and 
suppresses cell proliferation by blocking cell cycle pro-
gression in the G1 phase, which markedly inhibits the 
differentiation and secretory functions of B cells. mTOR 
acts as an essential factor in B cell lineage differentiation; 
for example, mTOR negatively regulates the develop-
ment of memory B cells [72]. Activated mTORC1 com-
bines with Syk and induces EZH2 expression to inhibit 
BACH2 transcription, resulting in increased expression 
of Blimp-1 and XBP1, which are essential for differenti-
ation and antibody secretion of plasma B cells [73–75]. 
mTORC1 signaling is critical for the early development 
of B cells and primary or secondary immune responses 
to T-dependent antigens. However, excessive activation 
of mTORC1 is pernicious to B cell maturation, especially 
with respect to marginal zone B cells [76, 77].

mTORC2 signaling regulates PI3K signaling in early B 
cells to upregulate IL-7R signaling and Rag gene expres-
sion, and pathway disruption results in interrupted B 
cell development [76]. Moreover, mTORC2 regulates 
the expression of NF-κB target genes, which affects cell 
survival downstream, mediated by BCR and BAFF-R 
signaling, and also influences antibody production in ric-
tor-deficient mice [78]. BAFF-R plays a role in the activa-
tion of PI3K signaling pathways, as well as classical and 
alternative NF-κB signaling networks. The alternative 
NF-κB signal pathway involves phosphorylation of IKK1 
by NF-κB -induced kinase (NIK), and IKK1 phosphoryl-
ates mTOR, leading to the transduction of downstream 
signaling. Moreover, BAFF-R is also involved in the 
induction of PI3K signaling, which enhances the activ-
ity of mTORC1 [79]. In addition, IL-27 has been identi-
fied as the critical driver of mTOR activation in B cells 
during RA. The mTOR inhibitor effectively restores IL-
27-induced excessive activation, proliferation, and secre-
tion of B cells and the abnormal ratio of regulatory B cells 
to plasma cells in  vivo and in  vitro [71]. Therefore, the 

mTOR pathway plays a crucial role in B cell immune dys-
functions during RA.

mTOR regulates macrophage activation, polarization, 
and migration
Macrophages are the first line of defense against patho-
gen invasion and the principal response to infection [80]. 
The normal synovial membrane is divided into the lining 
and synovial sub-lining layers. The lining layer includes 
macrophage-like synoviocytes (MLS) and FLSs. The sub-
lining comprises synovial macrophages (SMs), a network 
of vascular capillaries, and fibrous and adipose tissue 
[81]. The occurrence of abundant activated macrophages 
in the synovia is an early marker of RA. M1 secretes pro-
inflammatory cytokines (mainly IL-1, IL-6, and TNF), 
which lead to osteoclast (OC) activation and joint ero-
sion, and M2 produces anti-inflammatory cytokines such 
as IL-10 and transforming growth factor-β (TGF-β) to 
promote angiogenesis and tissue remodeling [82, 83]. 
M1 macrophages show high expression of MHCII and 
costimulatory molecules such as CD80 and CD88, which 
are the basis of effective T cell antigen presentation. 
M1 macrophages in RA synovium also secrete multiple 
chemokines to promote the recruitment of macrophages 
or neutrophils in arthritic sites, which corresponds to 
clinical severity of RA [84]. Taken together, during RA, 
macrophages produce proinflammatory cytokines, 
chemokines, and free radicals to activate immune and 
non-immune cells, leading to joint inflammation and 
destruction.

The essential roles of the mTOR pathway in mac-
rophage biology have been partially elucidated over the 
past few years. Macrophage function depends on activa-
tion and polarization into subtypes with distinct effec-
tor functions. Macrophage polarization is regulated by 
various factors, including cytokines, growth factors, and 
environmental stimuli. Therefore, the mTOR pathway 
changes environmental and metabolic factors to influ-
ence the polarization of macrophages [85]. Inhibition of 
mTORC1 enhances the polarization of M1 macrophages, 
whereas TSC1 deletion increases the activity of mTORC1 
and reduces mTORC2 activity to promote the polariza-
tion of M1 and decrease M2 macrophage polarization 
[86, 87]. In addition, differences of AKT subtypes con-
trol macrophage polarization [88]. AKT1 deletion pro-
motes M1 macrophages, and AKT2 ablation produces 
M2 macrophages. Consistent with this, AMPK deletion 
decreases the activation of AKT and promotes M1 mac-
rophage polarization [89]. With regard to metabolism 
functions, the activation of pyruvate dehydrogenase 
kinase 1 (PDK1) promotes M1 macrophage polariza-
tion, and aerobic glycolysis stimulator MYC polarizes M2 
macrophages [90]. Overall, macrophage polarization is 
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controlled by the mTOR pathway; however, the role of 
individual pathway members requires further research. 
mTORC1 inhibits the migration of macrophages and 
reduces the migratory activity of immune cells, and 
activation of mTORC1 induces the translation conver-
sion of transcription factors to reduce the expression of 
chemokines CCL2, CCL3, and CCL4 [91]. In addition, 
it has been confirmed that the arthritogenicity of RA 
induced by Syntenin-1 relies on the remodeling of mac-
rophages activated by mTOR and their capacity to cross-
regulate Th1 cells through induction of IL-12 and IL-18. 
This interaction closely associated with mTOR’s regula-
tion of T cell and macrophage differentiation, and holds 
significant implications for guiding future research in this 
field [92].

mTOR regulates dendritic cell (DC) differentiation, 
maturation, and function
DCs are efficient antigen-presenting cells that initiate 
the initial immune response. During infection or under 
stressful conditions, mature DCs present antigens to 
naive T cells, resulting in the differentiation of effector 
CD4+T cells, production of B cell antibodies, and acti-
vation of macrophages [93]. DCs also contribute signifi-
cantly to maintaining immune homeostasis and tolerance 
[94]. DCs secrete chemokines to attract macrophages, 
neutrophils, and T cells to the synovium during RA, 
which potentiates subsequent immune responses [95]. 
The specific mechanisms of various pro-inflammatory 
immune cells are described in detail above. DCs are 
directly or indirectly involved in the development of RA, 
and interactions between DCs and Tregs also interfere 
with RA development. Tregs express cytotoxic T-lym-
phocyte-associated protein-4, lymphocyte-activating 
gene-3, and neuropilin-1 to suppress DC functions [96].

The suppressive effects of mTOR inhibition on DCs 
have thoroughly investigated. Inhibition of mTOR 
reduces the expression of antigen uptake receptors and 
costimulatory molecules in DCs and restrains receptor-
mediated phagocytosis [97]. Furthermore, inactivation 
of mTOR was suggested to inhibit CD86 expression 
induced by TLR ligands (such as LPS) or CD40-specific 
during DCs differentiation [98]. mTOR inhibitors atten-
uate the HIF-1α pathway to suppress hypoxia-induced 
inflammation and affect the differentiation of immature 
DCs [99]. mTOR is induced by Flt3 ligand (Flt3L) and 
is necessary for the Flt3L-driven development of DCs 
[100], and mTOR inhibits IL-1β production to impede 
DC maturation and the ability to stimulate effector T 
cell responses. In contrast, DCs under mTOR inactiva-
tion conditions favor differentiation of FOXP3+ Tregs 
[98]. In conclusion, mTOR exerts multiple effects on 
DC differentiation and functioning, which interferes 

with antigen uptake and presentation, and it affects 
cytokine production and chemokine receptor expres-
sion to modulate immune responses.

mTOR regulates the proliferation of RA FLSs
Abnormal proliferation, as well as high invasion and 
migration of FLSs in joints, are the main characteristics 
of RA [101]. Inflammation of RA-affected joints com-
mences with FLS proliferation and invasion of immune 
cells into the synovium. FLSs then elicit overproduc-
tion of chemokines, cytokines, and matrix degradation 
molecules, thereby promoting immune cell infiltration 
and cartilage degradation [102]. Additionally, activated 
FLSs migrate to the synovial sub-lining layer to pro-
mote angiogenesis and exacerbate synovial hyperplasia 
and bone destruction [103]. In RA synovial cells, the 
mTOR signaling pathway is abnormally activated to 
participate in the regulation of RA FLS invasion [104]. 
Aberrant activation of PI3K/Akt/mTOR leads to high 
expression of anti-apoptosis genes, reduced autophagy, 
and continuous proliferation of FLSs [105, 106]. Inac-
tivating mTOR prevents FLSs from recombining the 
actin cytoskeleton and eliciting bone destruction [104].

mTOR regulates differentiation and formation of OCs
OCs, differentiated giant multinucleated cells derived 
from the monocyte/macrophage lineage, decompose 
the bone matrix by producing various enzymes and 
acids [107]. OCs are hyperfunctioning during RA, 
resulting in bone destruction. mTOR controls the 
autophagy pathway to participate in OC differentiation 
and formation [108]. Inhibition of autophagy blocks the 
differentiation of RA mouse macrophages into OCs, 
decreases bone erosion, and reduces OC abundances. 
Conditional deletion of mTOR (raptor) in OCs results 
in decreased OC differentiation and activity. The 
increased expression of structurally active S6K1 rescues 
damage of OCs differentiation under Raptor-deficiency 
[109]. The AMPK/mTOR/p70S6K signaling pathway 
induces autophagy to inhibit OC differentiation, thus 
regulating bone mineral density and improving bone 
mass [110]. Furthermore, inhibition of the AMPK/
mTOR/ULK1 pathway reduces autophagy in OCs 
exposed to high levels of glucose [111], and activation 
of the PI3K/AKT/mTOR axis suppresses autophagy of 
OCs treated with hydrogen sulfide [108]. Additionally, 
pharmacological inhibition of mTOR induces OC apop-
tosis and inhibits OC activity and differentiation [112, 
113]. In conclusion, elucidating the mTOR pathway 
provides essential insights into the molecular mecha-
nism of regulating OCs.
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mTOR‑targeted therapy
As described above, mTOR regulates many cellular pro-
cesses and participates in the development of RA. Block-
ing this pathway through mTOR inhibitors is beneficial 
for RA treatment through changes in the immune and 
metabolic environment.

Rapamycin
Rapamycin is a potent mTOR inhibitor that controls anti-
gen-induced T-cell expansion, antibody production, and 
cellular proliferation [114]. This compound was origi-
nally approved by regulatory authorities in 1999, with 
the purpose to prevent kidney allograft rejection. Further 
research revealed that mTOR is generally activated in 
neoplasms and controls cancer cell metabolism by regu-
lating key metabolic enzymes; thus, it has been targeted 
for cancer treatment [115]. Moreover, rapamycin inhib-
its the proliferation of endothelial cells and prevents the 
deterioration of disease by intra-arterial drug-eluting 
stents [116]. In short, rapamycin has been successfully 
used for numerous medical applications, such as anti-
inflammation, anti-immune rejection, anti-tumor, and 
anti-endothelial proliferation treatments, and it plays a 
key role in the treatment of many diseases.

Rapamycin significantly inhibits the activity of arthri-
tis and improves immune function in RA mice [117, 118]. 
Rapamycin was also successfully used in clinical trials for 
RA treatment [119–121]. For instance, Wen et  al. [120] 
found that patients receiving rapamycin therapy achieved 
profound clinical improvement through increased circu-
lating Tregs during RA. In addition, rapamycin reduces 
the secretion of inflammatory cytokines such as IL-6, 
TNF, and IL-1β, relieving the symptoms of RA [122]. 
Moreover, rapamycin also decreases the necessity for 
conventional disease-modifying antirheumatic drugs 
in controlling RA activities [120]. Taken together, rapa-
mycin induces autoimmune tolerance to reduce joint 
inflammation and is expected to be a new option for 
treating RA.

Rapalogues
Semi-synthetic rapamycin analogs are collectively 
referred to as rapalogues, such as everolimus (also known 
as RAD001), temsirolimus (CCI779), and ridaforoli-
mus [123–125]. Compared with rapamycin, rapalogues 
are designed for higher water solubility and oral admin-
istration [126]. Everolimus inhibits the proliferation 
of synovial cells and the activity of OCs, which affects 
bone erosion during RA [112, 127]. Everolimus has the 
advantages of a simple administration route (oral), low 
cost, and low risk of infection [128]. A multicenter, ran-
domized, double-blind trial investigating the safety and 
efficacy of everolimus reported that everolimus plus 

methotrexate showed better clinical efficacy and reduced 
adverse reactions [129]. Temsirolimus neutralizes the 
stimulation of LAT1 by IL-17 and reduces leucine uptake 
and fibroblast migration to prevent further erosion of the 
cartilage and bone [130].

Second‑generation mTOR inhibitors
Dual PI3K and mTOR inhibitor NVP-BEZ23527 
decreases mTOR and Akt phosphorylation to acceler-
ate the apoptosis of bone cells. Furthermore, the dual 
effects of BEZ235 on PI3K/Akt and mTOR signaling 
pathways inhibit the activation of fibroblasts and elimi-
nate the defect of rapamycin in p-Akt feedback activa-
tion of Ser473 after treatment with TGF-β [131]. Clinical 
trials with other dual mTOR/PI3K inhibitors, such as 
GSK2126458, PI103, SF1126, and GSK2126458, for the 
treatment of rheumatic diseases are underway [132].

N‑acetylcysteine (NAC)
NAC is an antioxidant and anti-inflammatory agent 
whose functions are to promote glutathione biosynthe-
sis and scavenge free radicals [133]. Glutathione modu-
lates T-cell differentiation by regulating mitochondrial 
transmembrane potential (Δψm) and mTOR [134]. Dur-
ing RA, oxidative stress stimulates OC formation and 
activation to promote bone resorption. NAC reduces 
IL-17-induced activation of the mTOR/JNK/NF-κB 
(nuclear factor κB) pathway to regulate the expression of 
RANKL in synovial fibroblasts and osteoblasts, prevent-
ing inflammation and bone destruction during RA [135]. 
NAC supplementation improves clinical indicators of RA 
[136]. Additionally, continued exposure of T cells at sites 
of inflammation elicits high levels of reactive oxygen spe-
cies (ROS), which results decreased intracellular levels 
of GSH, dysregulation of redox balance, impaired signal 
transduction of the TCR/CD3 complex, and ultimately 
to synovial T cell hyporesponsiveness during RA [137]. 
Accumulation of ROS induces oxidative damage and 
chondrocyte senescence, thereby accelerating the degen-
eration of the cartilage matrix, and antioxidant NAC 
reverses this process [138]. NAC effectively scavenges 
free-oxygen radicals, decelerates the process of cartilage 
degradation, reduces synovitis, and relieves pain [139]. 
Furthermore, NAC prevented chondrocyte apoptosis 
and cartilage destruction in an experimentally induced 
rat model of RA [140]. However, long-term oral NAC 
administration is associated with higher risk of RA [141], 
and potential clinical application of NAC requires further 
study.

Metformin (Met)
Met is the cornerstone of diabetes treatment, and dur-
ing treatment of rheumatic diseases, it activates AMPK 



Page 9 of 13Zhang et al. Arthritis Research & Therapy          (2023) 25:187 	

and inhibits mTORC1 [142–144]. Met-mediated AMPK 
activation and inhibition of mTOR activity regulate 
autophagy flux, inhibit NF-κB signal transduction and 
production of inflammatory cytokines, and reduce 
inflammation during experimentally induced arthritis 
[145, 146]. Met effectively inhibits the proliferation of 
RA-FLS by inducing G2/M cell cycle phase arrest, thus 
upregulating and downregulating phosphorylation of 
p70S6K and 4E-BP1 [147]. Furthermore, Met exerts an 
immunomodulatory effect of collagen induced arthritis 
by inhibiting Th17 cell differentiation and upregulating 
Treg differentiation [148]. Met inhibits differentiation of 
B cells into plasma cells and formation of spontaneous 
germinal center through the AMPK/mTOR/STAT3 sig-
nal pathway and thus reduces autoantibodies production 
and inflammation [149]. A retrospective cohort study 
found that long-term use of Met is related to reduced risk 
of developing RA [150].

Statins
Statins are lipid-lowering drugs that prevent cholesterol 
synthesis by inhibiting 3-hydroxy-3-methylglutaryl-CoA 
reductase, commonly used in treating hypercholester-
olemia and cardiovascular-related diseases [151]. Statins 
are also used as immunomodulators to block the adhe-
sion of antigen-presenting cells to T cells, thus preventing 
the proliferation and function of T cells. Statins influence 
the activation of GTPases, such as Rho-GTPases, thereby 
regulating the transduction of PI3K/Akt/mTOR and ERK 
signaling pathways. The effects of statins on Tregs in RA 
patients in  vivo and in  vitro confirm that Tregs partici-
pate in the immunomodulatory impact of statins on RA 
[152].

Conclusion
During the pathogenesis of RA, the mTOR pathway is 
activated by multiple antigens, resulting in the recruit-
ment and differentiation of immune cells and the acti-
vation of synovial and osteoclastic cells. Current studies 
suggest that targeting the mTOR pathway holds promise 
as a treatment for RA. However, indiscriminate suppres-
sion of mTOR to prevent RA may have unintended con-
sequences. Long-term immunosuppressive therapy can 
compromise immune defense and surveillance, thereby 
increasing the risk of infections and tumors. Therefore, it 
is crucial to clarify the precise role of mTOR pathway in 
different stages of RA and its interaction with other sign-
aling pathways and develop targeted therapies that do not 
disrupt essential physiological processes. Future investi-
gations should prioritize understanding the potential side 
effects of immunotherapy in order to ensure the safety 
and efficacy of mTOR-based therapy for RA.
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