
Jian et al. Arthritis Research & Therapy          (2023) 25:246  
https://doi.org/10.1186/s13075-023-03208-2

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Arthritis Research & Therapy

Comprehensive multi-omics analysis 
reveals the core role of glycerophospholipid 
metabolism in rheumatoid arthritis 
development
Congcong Jian1,2†, Lingli Wei3†, Tong Wu4†, Shilin Li2, Tingting Wang3, Jianghua Chen5, Shengjia Chang6, 
Jie Zhang2, Binhan He2, Jianhong Wu3, Jiang Su4, Jing Zhu4, Min Wu7*, Yan Zhang8* and Fanxin Zeng1,2,9* 

Abstract 

Objectives Rheumatoid arthritis (RA) is a chronic autoimmune disease with complex causes and recurrent attacks 
that can easily develop into chronic arthritis and eventually lead to joint deformity. Our study aims to elucidate poten-
tial mechanism among control, new-onset RA (NORA) and chronic RA (CRA) with multi-omics analysis.

Methods A total of 113 RA patients and 75 controls were included in our study. Plasma and stool samples were 
obtained for 16S rRNA sequencing, internally transcribed spacer (ITS) sequencing and metabolomics analysis. 
And PBMCs were obtained for RNA sequencing. We used three models, logistic regression, least absolute shrinkage 
and selection operator (LASSO), and random forest, respectively, to distinguish NORA from CRA, and finally we vali-
dated model performance using an external cohort of 26 subjects.

Results Our results demonstrated intestinal flora disturbance in RA development, with significantly increased abun-
dance of Escherichia-Shigella and Proteobacteria in NORA. We also found that the diversity was significantly reduced 
in CRA compared to NORA through fungi analysis. Moreover, we identified 29 differential metabolites between NORA 
and CRA. Pathway enrichment analysis revealed significant dysregulation of glycerophospholipid metabolism 
and phenylalanine metabolism pathways in RA patients. Next, we identified 40 differentially expressed genes 
between NORA and CRA, which acetylcholinesterase (ACHE) was the core gene and significantly enriched in glyc-
erophospholipid metabolism pathway. Correlation analysis showed a strong negatively correlation between glyc-
erophosphocholine and inflammatory characteristics. Additionally, we applied three approaches to develop dis-
ease classifier models that were based on plasma metabolites and gut microbiota, which effectively distinguished 
between new-onset and chronic RA patients in both discovery cohort and external validation cohort.
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Conclusions These findings revealed that glycerophospholipid metabolism plays a crucial role in the development 
and progression of RA, providing new ideas for early clinical diagnosis and optimizing treatment strategies.

Keywords Rheumatoid arthritis, Multi-omics, New-onset RA, Chronic RA

Introduction
Rheumatoid arthritis (RA) is a chronic, systemic auto-
immune disease, characterized by symmetrical synovial 
inflammation and eventual involvement of other organ 
systems [1–3]. According to epidemiological surveys, the 
global prevalence of RA is 0.2–1.0%, and nearly 5 mil-
lion people in China suffer from RA, with a prevalence 
of 0.28–0.41% [4]. The pathogenesis of RA is not fully 
understood, and its highly specific, inherited, and envi-
ronmental factors combine to influence the onset and 
progression of the disease [5–7]. Symptoms of new-onset 
RA (NORA) are mainly characterized by high disease 
activity, joint inflammation, and pain. Most patients have 
delayed treatment due to ineffective treatment regimens 
or poor compliance, and as the disease progresses and 
the inflammatory state worsens, the joints and articular 
cartilage were destroyed, eventually evolving into chronic 
rheumatoid arthritis (CRA) with a range of extra-artic-
ular damages [8, 9]. Therefore, early diagnosis and early 
treatment of RA can effectively prevent disease progres-
sion, joint damage, and destruction of other organ sys-
tems in most patients.

Among the many influential factors, intestinal flora is 
considered to be an important trigger for immune sys-
tem abnormalities in RA [10]. Previous studies showed 
that a decrease in the composition and diversity of the 
intestinal flora in RA patients, with an increase in the 
abundance of Klebsiella, Escherichia, and a decrease in 
the abundance of Megamonas and Enterococcus, and an 
expansion of Prevotella associated with an increased sus-
ceptibility to arthritis, suggesting that the development 
of RA is closely associated with dysbiosis of the intesti-
nal flora [11, 12]. In recent years, with the development 
of metabolomics technology, more and more evidences 
revealed that patients with RA have significant changes 
in plasma metabolites and metabolic pathways, such as 
lipid metabolism and amino acid metabolism [11, 13]. 
Transcriptomic analysis is widely used in the field of RA 
research. Gene expression profiles of peripheral blood 
mononuclear cells (PBMCs) could reveal the pathologi-
cal process and pathogenesis of RA involving immune 
cells and play an important role in predicting response 
to drug therapy, screening for key differential genes and 
explaining the pathogenesis of RA [14, 15]. A study had 
demonstrated that HLA-DRB1 was a susceptibility gene 
that triggers RA, affecting disease activity and treatment 
response [16]. At present, multi-omics combined analysis 

is broadly applied in the research field, which can explore 
the interactions and potential links between gut microbes 
and metabolites, and elucidate the pathogenesis of dis-
eases as a result of the combined influence of multiple 
factors. However, multi-omics researches are less well 
studied in explaining the pathogenesis of RA develop-
ment, and it is essential to use multi-omics approaches to 
gain a comprehensive understanding of the pathogenesis 
of RA.

In our study, we combine gut flora, plasma metabo-
lism, and transcriptome analysis to explore the changes 
and potential relationships between control, NORA, 
and CRA patients, to elucidate the interactions between 
gut microbes, plasma metabolites, and genes, and to 
reveal the pathogenesis of RA with the joint influence 
of multiple factors, providing a new perspective and 
research direction for early clinical diagnosis and precise 
treatment.

Materials and methods
Participant recruitment
The study population consisted of RA patients 
aged > 18  years from the Department of Rheumatology 
and Immunology, and control from the medical exami-
nation center, Dazhou Central Hospital. NORA included 
those with less than 6  months of disease and who have 
never used antirheumatic drugs, CRA with more than 
6 months of disease who have used traditional antirheu-
matic drugs (methotrexate, leflunomide, and hydroxy-
chloroquine), and were accompanied by the use of 
non-steroidal anti-inflammatory drugs (NSAIDs) and 
glucocorticoids. Patients were diagnosed with rheuma-
toid arthritis in this study according to the 2010 Ameri-
can College of Rheumatology (ACR) and European 
League of Rheumatology (EULAR) criteria [17]. Clinical 
data from RA patients were recorded, including rheuma-
toid factor (RF), erythrocyte sedimentation rate (ESR), 
C-reactive protein (CRP), 28 tender joints count (TJC28), 
28 swollen joints count (SJC28), disease activity score of 
28 joints (DAS28), and interleukin-6 (IL-6).

Study design
Our study included 188 subjects (NORA = 42, CRA = 71, 
control = 75), stool and plasma samples were collected 
for 16S, ITS sequencing and metabolomics analysis 
respectively, to identify differential flora and differential 
metabolites between control, NORA, and CRA. PBMCs 
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were collected for transcriptome sequencing to identify 
differentially expressed genes among three groups, and 
finally, a combined multi-omics analysis and correlation 
and classification analysis was performed to establish 
classification models, and we use an external cohort to 
verify the performance of the model details as described 
in Fig. 1.

Stool sample DNA extraction and Illumina sequencing
Total DNA extraction from stool samples of the subjects 
were performed according to the instructions. 16S rRNA 
sequencing V3–V4 variable region PCR amplification 
primers were 338F (5′-ACT CCT ACG GGA GGC AGC 
AG-3′) and 806R (5′-GGA CTA CHVGGG TWT CTAAT-
3′), and ITS amplification primers were ITS1F (5′-CTT 

GGT CAT TTA GAG GAA GTAA-3′) and ITS2R (5′-GCT 
GCG TTC ATC GATGC-3′), and sequenced using Illu-
mina Miseq PE300 platform (Majorbio Bio-Pharm Tech-
nology Co. Ltd. (Shanghai, China)).

Microbiomics data processing and analysis
The raw data we obtained for sequencing were firstly 
quality controlled and spliced by fastp and FLASH soft-
ware, and secondly, the sequences were processed for 
noise reduction using the DADA2 plug-in to obtain 
amplicon sequence variants (ASVs). We sampled the 
amplicon ASVs by minimum number of sequences, and 
subsequently we performed gut microbial community 
composition analysis, alpha diversity, and beta diversity 
analysis on the Majorbio cloud platform (https:// cloud. 

Fig. 1 Overview of the study design. NORA, new-onset rheumatoid arthritis; CRA, chronic rheumatoid arthritis; ESR, erythrocyte sedimentation rate; 
CRP, C-reactive protein; DAS28, disease activity score; SJC28, number of swollen joints; TJC28, number of tender joints; IL-6, interleukin-6; PBMCs, 
peripheral blood mononuclear cells

https://cloud.majorbio.com
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major bio. com). In alpha diversity analyses, mothur-1.30 
analyses were used with the rank-sum test method, and 
the Tukey–Kramer method was used for the calculation 
of 95% confidence intervals; in beta diversity analyses, 
PCoA analyses were performed using R software analyses 
(R-3.3.1 ( vegan)) Bray–Curtis distance algorithm, Adonis 
for between-group difference tests; python-2.7 was used 
for species composition analysis; in differential species 
analysis, R-3.3.1 (stat) was used, Wilcoxon rank-sum two-
tailed test, and 95% confidence intervals were computed 
using the bootstrap method. Detailed depictions of spe-
cific analysis methods are described in Supplementary 
Material 1.

Non‑targeted metabolomics analysis
We collected plasma samples from subjects for liquid 
chromatography-tandem mass spectrometry (LC–MS/
MS) analysis through a bioassay company (Majorbio 
Bio-Pharm Technology Co. Ltd. Shanghai, China). We 
obtained raw metabolic data which were first pre-pro-
cessed using the metabolomics software Progenesis QI 
(Waters Corporation, Milford, USA), removing missing 
values > 80% in each group, filling missing values with the 
minimum values, and removing metabolites with relative 
standard deviations (RSD) > 30% in QC samples. Subse-
quently, the mass spectral information of the metabolites 
was matched with the metabolic public databases HMDB 
(http:// www. hmdb. ca/) and Metlin (https:// metlin. scrip 
ps. edu/) to obtain the final metabolite expression profiles 
for subsequent analysis of the results. The results of dif-
ferential metabolite analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses were 
carried out on the online platform of Majorbio (https:// 
cloud. major bio. com), in which the differential metabolite 
analysis Metabolites with VIP > 1 and p < 0.05 were iden-
tified as significant differential metabolites using the vari-
able weight values (VIP) obtained from the orthogonal 
partial least squares discriminant analysis (OPLS-DA) 
model and Wilcox test p-value. In enrichment analysis, 
KEGG enrichment pathway used topology methods, the 
Python package scipy.stats, and the pathways involved 
in the differential metabolites were obtained from the 
metabolic pathway annotations in the KEGG database 
(https:// www. kegg. jp/ kegg/ pathw ay. html). A detailed 
description of the metabolomics methods can be found 
in Supplementary Material 2.

Transcriptomic sequencing and data analysis
We collected PBMCs from subjects for transcriptomic 
sequencing and total RNA was extracted by the com-
pany’s (Novogene, Beijing) standard extraction method 
and quality control and RNA integrity assays were per-
formed using an Agilent 2100 Bioanalyzer. Libraries were 

prepared using the NEBNext® Ultra™ RNA library Prep 
Kit for Illumina®, and libraries were sequenced using 
the Illumina NovaSeq 6000 after passing library assays. 
Finally, reads were generated using the HISAT2 (v2.0.5) 
reference gene library and genetically matched to the 
reads, resulting in final data for subsequent bioinformat-
ics analysis. We performed differentially expressed genes 
screening, KEGG and Gene Ontology (GO) enrichment 
analyses on the Novogene online platform (https:// magic. 
novog ene. com/). In the differentially expressed gene 
analysis, we first normalized the read count expression 
matrix, followed by statistical analysis and mapping using 
the R (Version 3.0.3) ggplot2 package. Simultaneously, we 
used clusterProfiler software to perform GO functional 
enrichment analysis and KEGG pathway enrichment 
analysis on the differential gene sets. In addition, we used 
Gene Set Enrichment Analysis (GSEA_4.3.2) for pathway 
enrichment analysis and also employed STRING for pro-
tein–protein interaction network analysis.

Multi‑omics integration and models establishment
We selected differential gut flora (bacteria and fungi) and 
differential metabolites significantly in glycerophospho-
lipid metabolism and phenylalanine metabolism path-
ways between NORA and CRA for Spearman correlation 
analysis, and then visualized them on Cytoscape soft-
ware. Moreover, we applied logistic regression, LASSO 
and random forest for screening features to build the 
classification models, as well as an independent cohort to 
validate the performance of the models.

Statistical analysis
In the course of data processing, we also used SPSS Sta-
tistics (V.25) and GraphPad Prism (v8.0.2) for data statis-
tical analysis.

Results
Clinical differences in RA patients
In our study, we found that SJC28 and the level of IL-6 
were higher in NORA than in CRA patients and were 
apparently significant. We also noticed that CRP, TJC28, 
and DAS28 were higher in NORA compared to CRA, 
although there was no difference between them. Simi-
larly, the levels of ESR and RF were not different between 
two groups. In the validation cohort, we observed a sig-
nificant difference in RF level between the two groups, as 
detailed in Supplementary Table 1.

Dysregulation of metabolites and metabolism pathways 
in the plasma metabolic profile of RA patients
To identify differential metabolites between control, 
NORA and CRA groups, we performed non-target 
metabolomics analysis of three groups. We found 

https://cloud.majorbio.com
http://www.hmdb.ca/
https://metlin.scripps.edu/
https://metlin.scripps.edu/
https://cloud.majorbio.com
https://cloud.majorbio.com
https://www.kegg.jp/kegg/pathway.html
https://magic.novogene.com/
https://magic.novogene.com/


Page 5 of 14Jian et al. Arthritis Research & Therapy          (2023) 25:246  

111 differential metabolites between NORA and con-
trol, of which 66 were anionic and 45 were cationic 
metabolites. OPLS-DA demonstrated a clear separa-
tion of differential metabolites between two groups in 
the anionic and cationic modes (Supplementary Fig-
ure  1A,B). A volcano plot showed 111 differentially 
significant metabolites, with 70 upregulated and 41 
downregulated significant metabolites (Supplementary 
Figure  1C). Meanwhile, we identified 110 differential 
metabolites between CRA and control, and OPLS-DA 
plots illustrated a clear distinction between differential 
metabolites in anionic and cationic modes, respectively 

(Supplementary Figure  1D-E), and volcano demon-
strated significant upregulation of 41 metabolites and 
downregulation of 69 metabolites (Supplementary Fig-
ure  1F). Furthermore, we also identified 29 differenti-
ated metabolites between NORA and CRA patients, 
and OPLS-DA plots demonstrated an apparent differ-
entiation between two groups in terms of differential 
metabolites in anionic and cationic modes (Fig. 2A,B). 
Volcano plot illustrated that 10 differential metabo-
lites were significantly upregulated and 19 differential 
metabolites were significantly downregulated (Sup-
plementary Figure  1G). To observe the clustering of 

Fig. 2 Identification of differential metabolites in plasma metabolic profile between NORA and CRA patients. A, B OPLA-DA analysis 
showed 29 differential metabolites between NORA and CRA in anionic and cationic patterns, respectively. C The bubble diagram showed 
a significant enrichment of differential metabolites between NORA and CRA in the glycerophospholipid metabolism and phenylalanine 
metabolism pathways, including 1-Palmitoyl-sn-glycero-3-phosphocholine, S-lysoPC, glycerophosphocholine, trans-cinnamate, 
L-Phenylalanine, and alpha-N-Phenylacetyl-L-glutamine. D–G Scatter plots demonstrated the relative abundance of 4 differential metabolites 
on glycerophospholipid metabolism and phenylalanine metabolism pathways between controls, NORA, and CRA. H Correlation heatmap showed 
the interrelationship between 6 differential metabolites and clinical characteristics. (S-lysoPC: 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine; 
D-duration: disease duration)
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differential metabolites between groups, the heat maps 
showed 111, 110, and 29 differential metabolites clearly 
distinguished between the three groups, respectively 
(Supplementary Figure 1H-J).

Afterwards, we performed KEGG enrichment analy-
sis of differential metabolites and found 6 metabolic 
pathways were altered in NORA and 9 metabolic path-
ways were changed in CRA patients compared to 
control, with significant deregulation of glycerophos-
pholipid metabolism, histidine metabolism, citrate 
cycle (TCA cycle), and glycine, serine, and threonine 
metabolism pathways common among them (Supple-
mentary Figure  1K-L). We also detected glycerophos-
pholipid metabolism and phenylalanine metabolism 
pathways were significantly disordered between NORA 
and CRA patients, including 6 differentially significant 
metabolites (1-Palmitoyl-sn-glycero-3-phosphocholine, 
1-Stearoyl-2-hydroxy-sn-glycero-3- phosphocholine (S- 
lysoPC), glycerophosphocholine, trans-cinnamate, L- 
Phenylalanine and alpha-N-Phenylacetyl-L-glutamine) 
(Fig.  2C–G, Supplementary Figure  1M-N, Supplemen-
tary Table 2), and 6 differential metabolites were also sig-
nificantly differentiated between NORA versus control 
and CRA versus control. More importantly, we found 
that the expression levels of the first three metabolites 
were higher in controls than in RA patients, while the 
last three metabolites were higher in RA patients than 
in controls. Therefore, we performed correlation analy-
sis of 6 metabolites, and the heatmap demonstrated a 
significant positively correlation between trans-cinna-
mate and L-Phenylalanine, and a strong positively asso-
ciation among 1-Palmitoyl-sn-glycero-3-phosphocholine, 
S-lysoPC, and glycerophosphocholine. While a signifi-
cant negatively correlation between glycerophosphocho-
line and trans-cinnamate (Supplementary Figure  1O). 
Simultaneously, we found strong correlations between 
six differential metabolites and clinical characteristics, 
with significant negative correlations between glycer-
ophosphocholine and ESR, CRP, IL-6, and age, positive 
correlations between S-lysoPC and disease duration. The 
heat map also exhibited a significant positive correlation 
between DAS28, CRP, and L-Phenylalanine (Fig. 2H).

These results suggested significant alterations in plasma 
metabolic profile of RA patients, with disturbed amino 
acid metabolism and lipid metabolic pathways, and glyc-
erophospholipid metabolism pathway appeared to play 
an important role in the progression of RA disease.

An apparently increased abundance of Escherichia‑Shigella 
and decreased Bifidobacterium in RA patients
To investigate the community structure of intestinal 
bacteria among control, NORA, and CRA patients, 
we performed 16S rRNA sequencing on stool samples 

from subjects. We found a reduced number of gut bac-
teria in NORA compared to control, although there 
was no significant difference between them, and the 
Venn diagram showed a total of 133 species between 
the three groups (Supplementary Figure  2A). In com-
munity composition analysis, the relative abundance 
of the Proteobacteria was significantly increased at 
the phylum level in NORA compared to control, while 
the abundance of Firmicutes, Bacteroidota, and Act-
inobacteriota did not differ between the three groups 
(Fig.  3A,B, Supplementary Figure  2B-D). At the fam-
ily level, stacked bar chart showed the relative abun-
dance of each family in the three groups in different 
samples, and we found that Lachnospiraceae was the 
dominant species in three groups (Supplementary Fig-
ure 2E). The relative abundance of Pasteurellaceae was 
significantly increased in NORA compared to control 
and CRA groups (Supplementary Figure  2F). Moreo-
ver, we found an apparent increase in the abundance of 
Enterobacteriaceae and decrease in the abundance of 
Bifidobacteriaceae and Acidaminococcaceae in NORA 
patients (Fig. 3C,D, Supplementary Figure 2G). We also 
focused on a reduced abundance of Bacteroidaceae in 
CRA, while Prevotellaceae and Lactobacillaceae did 
not differ between the three groups (Supplementary 
Figure 2H-J). In alpha diversity analysis, we discovered 
no significant differences in community richness and 
diversity between control, NORA, and CRA patients 
(Supplementary Figure  3A-F). In beta diversity based 
on Bray–Curtis distance, principal co-ordinates analy-
sis (PCoA) showed that NORA could be distinguished 
from control (P = 0.021), whereas no distinction could 
be observed between CRA and control (P = 0.055) and 
NORA compared with CRA (P = 0.535) (Fig.  3E, Sup-
plementary Figure 3G-H). Applying the Wilcoxon rank-
sum test, we found 26 differential genera at genus level 
between controls and NORA, with Escherichia-Shigella 
and Veillonella significantly increasing in abundance 
and Bifidobacterium decreasing in NORA (Fig.  3F). 
Meanwhile, we identified 17 differential genera between 
CRA and controls, with a dramatically increased abun-
dance of Eubacterium_hallii_group in CRA, and we 
also identified 7 differential genera between NORA 
and CRA, with a significant decrease in abundance of 
Veillonella and Haemophilus, and Anaerostipes sig-
nificantly increased in CRA (Fig.  3G–H). LDA dem-
onstrated the importance of species from phylum to 
genus level among control, NORA, and CRA groups, 
we found that f_Bifidobacteriaceae, g_Bifidobacterium, 
o_Bifidobacteriales, and c_Actinobacteria were domi-
nant in control, while p_Proteobacteria, g_Escherichia-
Shigella and g_Veillonella were predominant in NORA. 
Compared to CRA, g_Bacteroides and f_Bacteroidaceae 
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were the predominant genera in control, and LDA anal-
ysis demonstrated the significance of f_Pasteurellaceae 
and g_Anaerostipes in both groups in NORA versus 
CRA (Supplementary Figure 3I-K).

These results indicated a significant variation in the 
abundance of gut bacteria from phylum to genus level 
between the three groups. It reflected the disruption of 
the intestinal microecosystem and dysbiosis of the intes-
tinal flora during the disease state, which exacerbated the 
inflammatory response and contributed to the progres-
sion of RA.

Altered diversity of intestinal fungi among control, NORA, 
and CRA groups
To observe the alterations in intestinal fungal diversity 
and composition between control, NORA, and CRA 
groups, we performed ITS sequencing on stool samples 
from subjects. Venn diagram showed a total of 64 spe-
cies across three groups and 14 species between NORA 
and CRA patients (Supplementary Figure 4A). In alpha 
diversity analysis, we found a measurable increase in 
community richness in Ace, Chao, and Sobs indexes for 
NORA compared to control and CRA. The diversity of 

Shannon and pd indexes were obvious reduced in CRA 
compared with NORA (Fig. 4A–E). We found that the 
abundance of Aspergillaceae was significantly higher 
in control than in RA patients as the dominant genus, 
while Saccharomycetales_fam_Incertae_sedis was the 
dominant genus in RA at family level with commu-
nity composition analysis (Supplementary Figure  4B). 
The abundance of Cladosporiaceae was significantly 
reduced in RA patients compared to control, and the 
abundance of Phaffomycetaceae, Debaryomycetaceae, 
and Didymellaceae was increased in NORA (Supple-
mentary Figure  4C-F). PCoA analysis demonstrated 
that control and CRA could be distinguished from 
each other, whereas NORA could not be distinctly 
separated from control and NORA from CRA (Fig. 4F, 
Supplementary Figure  3G-H). Subsequently, using the 
Wilcoxon rank-sum test, we identified 17 differential 
genera between control and NORA, and 14 genera 
differed in control and CRA groups, with an apparent 
decrease of Cladosporium in RA. Candida was sig-
nificantly increased in CRA compared to control. In 
addition, we also found 8 differential genera between 
NORA and CRA (Fig. 4G–I).

Fig. 3 Alterations in the structural composition and diversity of the intestinal bacterial community. A Stacked bar graph showed the community 
composition at the phylum level among control, NORA, and CRA. B Bar plots displayed the relative abundance expression of P_Proteobacteria 
in three groups, indicating a significant difference in abundance between new-onset RA and control. C, D The bar graphs showed the relative 
abundance of f_Enterobacteriaceae and f_Bifidobacteriaceae among the three groups, respectively. E PCoA revealed differential community 
structure between NORA and control in the beta diversity analysis. Adonis between-group difference test using Bray–Curtis distance algorithm, 
analyzed by number of 999 substitutions. F–H Using the Wilcoxon rank-sum test, we identified 26 differential genera between NORA and control, 
17 differential genera between CRA and control, and 7 differential genera between NORA and CRA. Values represented mean and standard error. 
Control (n = 30), NORA (n = 14), CRA (n = 26)
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Taken together, these data suggested that dysbiosis of 
intestinal fungi was closely related to the progression of RA.

Gene expression profiles were significantly dysregulated 
between control, NORA, and CRA patients
To further explore the characteristics of gene expression 
profiles in control, NORA, and CRA, we performed RNA 
sequencing of PBMCs from subjects. Among NORA ver-
sus controls, we selected protein-coding genes for GSEA, 
of which 9 gene sets were significantly enriched in con-
trol, including glycerophospholipid metabolism, glyco-
sylphosphatidylinositol gpi anchor biosynthesis, calcium 
signaling pathway, taste transduction, neuroactive ligand 
receptor interaction, RNA polymerase, arachidonic acid 
metabolism, hedgehog signaling pathway, and basal cell 
carcinoma (Fig.  5A, Supplementary Figure  5A-H, Sup-
plementary Table 3). Furthermore, of the protein-coding 
genes we screened in CRA versus control, GSEA analysis 
showed 3 gene sets enriched in control and 16 gene sets 

enriched in CRA, like citrate cycle (TCA cycle) (Fig. 5B, 
Supplementary Table 4). Subsequently, we identified 196 
differentially expressed genes between NORA and con-
trol, a volcano plot showed 11 significantly upregulated 
and 185 significantly downregulated genes (|FC|> 4, 
P < 0.05). Between CRA and control, we found 211 dif-
ferentially expressed genes and volcano displayed 48 
genes significantly upregulated and 163 downregulated 
(|FC|> 4, P < 0.05). Also, we identified 40 differential 
genes between NORA and CRA, and the volcano plot 
demonstrated significant upregulation of 10 genes and 
downregulation of 30 genes (|FC|> 4, P < 0.05) (Fig. 5C–
E). Moreover, we performed KEGG enrichment analysis 
on 196 genes and identified 3 pathways that were signifi-
cantly dysregulated. We also identified 89 pathways sig-
nificantly disordered by GO enrichment analysis, and the 
bubble demonstrated 22 of them, and we noticed that the 
differential genes were mainly enriched in metabolic pro-
cess (Supplementary Figure 5I-J, Supplementary Table 5). 

Fig. 4 Changed intestinal fungal community composition and reduced diversity in CRA patients. A–E The bar graphs displayed the relative 
abundance of ace, chao, sob, shannon, and pd indexes between the three groups, respectively, with significantly lower community richness 
and diversity in CRA. Kruskal–Wallis rank-sum test for three group comparisons, with the error bars representing the standard deviation. F PCoA 
demonstrated significant differences in community structure between CRA and control. Adonis between-group difference test using Bray–
Curtis distance algorithm, analyzed by number of 999 substitutions. G–I Using the Wilcoxon rank-sum test, we identified 17 differential genera 
between NORA and control, 14 differential genera between CRA and control, and 8 differential genera between NORA and CRA. Values represented 
mean and standard error. Control (n = 30), NORA (n = 14), CRA (n = 20)
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Based on 211 differentially expressed genes between 
CRA and control, we identified 23 pathways significantly 
enriched using KEGG enrichment analysis. In total, 253 
pathways were discovered to be apparently altered in GO 
analysis, with bubble showing 24 of them (Supplementary 
Figure 5K-L, Supplementary Table 6). More importantly, 
we performed KEGG enrichment analysis of 40 differen-
tially expressed genes between NORA and CRA patients. 
We identified 3 pathways significantly dysregulated, 
including glycerophospholipid metabolism, glycosphin-
golipid biosynthesis—ganglio series and proximal tubule 
bicarbonate reclamation. Using GO enrichment analysis, 
we identified 128 pathways of biological process signifi-
cantly dysregulated, and bubble plot showed 20 of them, 
mainly enriched in biosynthetic and metabolic processes 
(Fig.  5F–G, Supplementary Table  7). Among the -128 
GO terms, we found significant dysregulation of the Wnt 
signaling pathway, the G protein-coupled receptor signal-
ing pathway, and the negative regulation of cAMP-medi-
ated signaling, these pathways were closely associated 
with the immune system (Supplementary Table  7). Fur-
thermore, we found the expressions of ACHE and DGKI 
were significantly increased in CRA compared to NORA 

patients in glycerophospholipid metabolism pathway, 
which may be associated with dysregulated lipid metabo-
lism (Fig. 5H, I).

These outcomes indicated a significantly dysregulated 
gene expression profile in RA patients and a predomi-
nant enrichment in the glycerophospholipid metabolism 
pathway.

Multi‑omics combined analysis and ROC classification 
models establishment
To further explore the potential interrelationship 
between differential metabolites and genes, we focused 
on the interconnection between proteins in the glycer-
ophospholipid metabolism and phenylalanine metabo-
lism pathways enriched by 29 differential metabolites 
and 12 genes in the differential gene enrichment analy-
sis. Protein–protein interaction network analysis dem-
onstrated that acetylcholinesterase (ACHE), fibronectin 
1 (FN1), and aquaporin 1 (AQP1) were core genes, and 
we found that ACHE was interlinked with lysophos-
pholipase I (LYPLA1), AQP1 and FN1, and lecithin-
cholesterol acyltransferase (LCAT) was interlinked with 
LYPLA1, glucokinase regulator (GCKR) and tyrosine 

Fig. 5 Differences in gene expression profile and enrichment analysis between NORA and CRA groups. A GSEA (Gene Set Enrichment Analysis) 
enrichment analysis demonstrated that glycerophospholipid metabolism was significantly enriched in the control compared to NORA group. 
B GSEA enrichment analysis demonstrated a significant enrichment of citrate cycle (TCA) cycle in CRA compared to control. C Volcano plot 
showed differentially expressed genes between NORA and control, with 11 upregulated and 185 downregulated genes. D Volcano plot showed 
211 differentially expressed genes between CRA and control, with 48 upregulated and 163 under-regulated genes. E Volcano plot showed 40 
differentially expressed genes between NORA and CRA, with 10 were upregulated and 30 were downregulated. F, G Bubble plots illustrated 
the results of KEGG and GO enrichment analysis for 40 differentially expressed genes, respectively. H, I The bar graphs demonstrated the expression 
of ACHE and DGKI genes in the glycerophospholipid metabolism pathway
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aminotransferase (TAT). The ACHE gene was enriched 
in the glycerophospholipid metabolism pathway, and 
the downstream metabolites of LCAT and LYPLA1 
proteins were the differential metabolites 1-Palmitoyl-
sn-glycero-3-phosphocholine, 1-Stearoyl-2-hydroxy-sn-
glycero-3- phosphocholine, and glycerophosphocholine, 
suggesting that the LCAT and LYPLA1 proteins interact 
with the ACHE gene, resulting in altered metabolites in 
the glycerophospholipid metabolic pathway (Fig.  6A). 
Correlation heatmap and network demonstrated strong 
correlation between differential flora, differential metab-
olites, and clinical inflammatory indicators, and we found 
that CRP, DAS28, ESR, and IL-6 were significantly nega-
tively correlated with glycerophosphocholine, whereas 
positively correlated with the level of L-Phenylalanine. 
Trans-cinnamate showed a significantly positive correla-
tion with CRP and negative correlation with Sutterella. 
DAS28, ESR, and TJC28 showed a significant positively 
correlation with alpha-N-Phenylacetyl-L-glutamine. Veil-
lonella was negatively correlated with 1-Palmitoyl-sn-
glycero-3-phosphocholine, while positively correlated 

with Hungatella and Haemophilus genera (Fig. 6B, Sup-
plementary Figure 6A).

To identify crucial biomarkers to illustrate the differ-
ences between NORA and CRA, we selected 10 can-
didate markers with an area under the curve greater 
than 0.7 based on 7 differential bacteria, 8 differential 
fungi, and 6 differential metabolites (Supplementary 
Figure 6A-C). Subsequently, we applied logistic regres-
sion, LASSO, and random forest algorithms to iden-
tify essential features to build classification models to 
distinguish NORA from CRA patients, respectively, 
and we evaluated and validated the performance of the 
three models using an external cohort of 26 subjects. 
We filtered 4 key features (1-Stearoyl-2-hydroxy-sn-
glycero-3-phosphocholine, glycerophosphocholine, 
g_Rhodotorula, g_Cystobasidium) by logistic regres-
sion with an area under the curve (AUC) of 0.8519 
and 0.8264 for the validation cohort. Meanwhile, the 
LASSO machine learning algorithm selected g_Cysto-
basidium and glycerophosphocholine with AUCs of 
0.8148 and 0.8056 for the training and validation sets, 
respectively. The random forest algorithm screened 

Fig. 6 Multi-omics combined analysis and ROC classification models establishment. A Protein–protein interaction network analysis illustrated 
the interconnections between 12 differentially expressed genes and proteins on the glycerophospholipid metabolism and phenylalanine 
metabolism pathways between NORA and CRA. Red represented 12 of the 40 differentially expressed genes between NORA and CRA, and blue 
represented the proteins on the glycerophospholipid metabolism and phenylalanine metabolism pathways. B Correlation heatmap and network 
revealed the interrelationship between differential bacteria, differential fungi, differential metabolites, and clinical inflammatory indicators, showing 
a strong correlation between flora, metabolites, and inflammatory features. Red represented the differential flora, purple represented the differential 
metabolites, and blue represented the clinical inflammatory features. The size of the graph represented degree, the thick line of the line represented 
the correlation, the solid line represented the positive correlation, and the dashed line represented the negative correlation. C, D ROC analysis 
demonstrated a combined AUC of 0.8519 and 0.8264 for training set and validation set of 4 features selected by logistic regression, respectively. 
E, F ROC analysis demonstrated a combined AUC of 0.8148 and 0.8056 for training set and validation set of 2 features selected by LASSO. G, H 
ROC analysis demonstrated a combined AUC of 0.9259 and 0.6736 for training set and validation set of 6 features selected by random forest. ROC: 
receiver operating characteristic
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6 key features with an AUC of 0.9259 for the training 
set, while the AUC was 0.6736 for the validation cohort 
(Fig. 6C–H, Supplementary Figure 7D-F). These results 
demonstrated that logistic regression and LASSO can 
distinguish between NORA and CRA patients with 
good performance.

The data suggested a potential relationship between 
intestinal flora, metabolites, and clinical inflammatory 
indicators, which play an important role in the progres-
sion of RA.

Discussions
Our findings explain the dysregulation in plasma meta-
bolic profiles, gut flora, and gene expression profiles 
between the control, NORA, and CRA, revealing that 
the pathogenesis of RA involves multi-factor interaction 
and regulation. We found that the differential metabo-
lites between NORA and CRA are significantly enriched 
in glycerophospholipid metabolism and phenylalanine 
metabolism pathways. Meanwhile, we also found that 
the dysbiosis in the abundance and diversity of intestinal 
flora in RA patients. Additionally, we found that the dif-
ferential genes are enriched in lipid metabolism, amino 
acid metabolism, biosynthesis, and metabolic processes. 
Lastly, correlation analysis suggested a strong association 
between flora, metabolites, genes, and clinical features in 
RA development.

Currently, a growing body of evidence suggests that 
the occurrence and development of RA are intimately 
tied to intestinal flora dysbiosis, and experimental studies 
have shown that intestinal dysbiosis triggers arthritis in 
mouse models [18–21]. Previous studies have confirmed 
that Prevotella is significantly increased in the intestine 
of early-diagnosed RA patients and activated the immune 
system and immune response, suggesting that Prevotella 
alterations appear to be a crucial factor in the pathogen-
esis of RA [12, 22, 23]. The composition and diversity of 
intestinal flora were significantly reduced in RA patients, 
along with a decrease in the abundance of beneficial bac-
teria and an increase in the abundance of harmful bacte-
ria, and it has been proved that probiotics can slow the 
progression of RA and lower levels of inflammatory fac-
tors [24]. According to our findings, NORA patients had 
higher abundance of the bacteria Escherichia-Shigella 
and Veillonella and lower abundance of Bifidobacterium, 
which accelerated the progression of RA, in agreement 
with previous findings [12, 25, 26]. However, some studies 
on Chinese RA patients have found a rise in Lactobacil-
lus abundance during acute phase of RA, suggesting that 
the role of probiotics in the development of RA remains 
unclear [27, 28]. We also observed that the abundance 
of Veillonella was reduced and differential in patients 
with CRA when compared with NORA, indicating that 

the inflammatory state may influence the change in the 
abundance of the flora. Proteobacteria were more preva-
lent and Firmicutes and Bacteroidota were less prevalent 
in RA patients, which was in line with previous research 
findings [11, 25]. The gut bacterial community structure 
was similar between NORA and CRA patients, but β 
diversity revealed a substantial divergence between con-
trol and NORA patients, indicating that intestinal bac-
teria were distinct between RA and control. Intestinal 
fungi play an important role in the development of RA, 
and in our study, we discovered a significantly decreased 
abundance and diversity in patients with CRA compared 
to NORA, as well as significantly increased abundance 
of Candida. These findings are consistent with those of 
Sokol et al. in patients with inflammatory bowel disease, 
which suggests that altered abundance of Candida cor-
relates with inflammatory status [29]. According to these 
findings, intestinal flora imbalance may have a role in the 
occurrence and progression of RA, and a rise in patho-
genic bacteria and a decrease in probiotic bacteria are 
crucial factors in the disease’s development.

Previous studies, both in plasma metabolic profiles and 
in fecal metabolic analysis, have shown that RA patients 
have considerable alterations in metabolites and meta-
bolic pathways [11, 25, 30]. In our findings, disturbances 
in glycerophospholipid metabolism and phenylalanine 
metabolism pathways which are enriched by differential 
metabolites in RA patients, suggested that lipid metabo-
lism and amino acid metabolism pathways apparently 
play a key role in the initiation and progression of RA. 
Consistent with our result, Yu et al. also found dysregula-
tion of glycerophospholipid metabolism and amino acid 
metabolic pathways in RA patients [11]. More impor-
tantly, we also discovered a strong correlation between 
metabolites and clinical characteristics, with the metabo-
lite glycerophosphocholine showing a significant negative 
correlation with CRP, while the metabolites L-Phenylala-
nine and trans-cinnamate showed a significant positive 
correlation with CRP. DAS28 and ESR showed significant 
positive correlations with metabolites L-Phenylalanine 
and alpha-N-Phenylacetyl-L-glutamine and negative cor-
relations with glycerophosphocholine, which justified the 
close association of metabolites with CRP in previous 
studies, revealing that the activation of inflammatory fac-
tors during inflammatory states may influence the meta-
bolic levels of metabolites [31]. In addition, we noted that 
the clinical data was associated with intestinal flora, with 
Cystobasidium and DTU089 genera showed demonstrat-
ing a significant positive correlation with RF, and DAS28 
being positively correlated with Issatchenkia genus and 
CRP expression levels and negatively correlated with Sut-
terella. Correlation analysis revealed that plasma metab-
olites are significantly dysregulated in RA patients and 
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correlate and interact with intestinal flora and clinical 
features.

Inflammatory factors such as IL-7, IL-6 and tumor 
necrosis factor play an essential role in the activation of 
the inflammatory response in RA [32–34]. Our results 
showed that differentially expressed genes were enriched 
in the TGF-beta signaling pathway, the IL-17 signaling 
pathway, the MAPK signaling pathway, indicating that 
the inflammatory response pathway was disrupted in 
RA. A study reported that the MAPK signaling pathway 
was involved in cellular pathways in diseases such as RA, 
which was in accordance with our results [35]. Previous 
studies have described the involvement of interferons in a 
number of autoimmune diseases, including RA and SLE. 
Macías-Segura et al. showed that gene expression of type 
1 interferon signaling was associated with autoantibody 
production in RA [36–38]. Consistent with the results of 
our GO enrichment analysis, significant dysregulation 
of type 1 interferon, platelet degradation, cell differen-
tiation, and inflammatory response was demonstrated 
in RA patients. Importantly, we found that the results of 
KEGG enrichment analysis of differential genes are coin-
cident with the results of KEGG analysis of differential 
metabolites, implying gene and metabolite interactions.

One of the highlights of our study was the multi-omics 
combination analysis of the potential associations among 
control, NORA, and CRA patients. Nevertheless, we noted 
the limitations of our study. First, the small sample size 
of our study may limit the reliability and accuracy of our 
findings, which will need to be investigated in multicenter 
cohort and experimental studies to further validate our 
findings. Second, although our study elucidated the pro-
gression of RA from molecular layer to metabolic level, we 
need to gain insight into the intrinsic associations between 
multiple omics to reveal the essential role of glycerophos-
pholipid metabolism in the development of RA.

Conclusion
In summary, comprehensive multi-omics analysis demon-
strates that there is an inextricable link between control, 
NORA, and CRA, that intestinal flora interacts with plasma 
metabolites, and that the differential core gene may influ-
ence changes in glycerophospholipid metabolism pathway. 
These findings suggest that glycerophospholipid metabo-
lism is involved in the pathogenesis and development of 
RA from the molecular to the metabolite level and plays a 
significant role in RA pathogenesis, offering suggestions for 
early clinical diagnosis and therapeutic approaches.
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Additional file 5: Supplementary Figure 3. Gut bacterial community 
diversity among control, NORA and CRA groups. (A-F) The bar graphs 
showed the relative abundance of ace, chao, sobs, shannon, simpson and 
pd indexes between the three groups, although there was no difference 
in community richness and diversity among the three groups. (G, H) PCoA 
in beta diversity analysis demonstrated the community structure between 
CRA and control, and between NORA and CRA, respectively, indicating 
similar community between them. Adonis between-group difference 
test using bray-curtis distance algorithm, analyzed by number of 999 
substitutions. (I-K) Linear discriminant analysis (LDA) demonstrated the 
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among control, NORA and CRA. (C-F) The bar graphs exhibited the abun-
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and f_Didymellaceae among the three groups, respectively, indicating 
the differences in abundance among the three groups. (G, H) PCoA 
demonstrated similar community structure between NORA and control, 
and between NORA and CRA, respectively. Adonis between-group differ-
ence test using bray-curtis distance algorithm, analyzed by number of 999 
substitutions.

Additional file 7: Supplementary Figure 5. Gene enrichment analysis 
between controls, NORA and CRA groups. GSEA enrichment analysis 
showed 8 gene sets that were significantly enriched in control compared 
to NORA, including (A)glycosylphosphatidylinositol gpi anchor biosyn-
thesis, (B)calcium signaling pathway, (C)taste transduction, (D)neuroac-
tive ligand receptor interaction, (E)RNA polymerase, (F)arachidonic acid 
metabolism, (G)hedgehog signaling pathway, and (H)basal cell carcinoma. 
(I, J) The bubble plots displayed KEGG and GO enrichment analysis for 196 
differentially expressed genes between NORA and control, respectively. (K, 
L) The bubble plots displayed KEGG and GO enrichment analysis for 211 
differentially expressed genes between CRA and control, respectively.

Additional file 8: Supplementary Figure 6. (A) Correlation heat map 
showed the interactions and associations between differential flora, dif-
ferential metabolites and clinical features.

Additional file 9: Supplementary Figure 7. Signatures were selected 
based on LASSO machine algorithms and random forest. (A) ROC analysis 
of 7 species of differential bacteria. (B) ROC analysis of 8 differential 
fungi. (C) ROC analysis of 6 differential metabolites. (D) Graph of features 
screened based on the LASSO machine algorithm. (E) Random forest 
model showed the evaluation of the top important features (n=6, 
AUC=0.856). (F) 6 crucial signatures were selected based on applying 
random forest algorithm.
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Supplementary Table 5. KEGG and GO enrichment analysis of 196 dif-
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