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Abstract 

Background The vasoactive neuropeptide calcitonin gene-related peptide alpha (αCGRP) enhances nociception 
in primary knee osteoarthritis (OA) and has been shown to disrupt cartilage and joint integrity in experimental rheu-
matoid arthritis (RA). Little is known about how αCGRP may alter articular structures in primary OA. We investigated 
whether αCGRP modulates local inflammation and concomitant cartilage and bone changes in a murine model 
of age-dependent OA.

Methods Sixteen- to 18-month-old αCGRP-deficient mice (αCGRP−/−
aged) were compared to, first, age-matched 

wild type  (WTaged) and, second, young 4- to 5-month-old non-OA αCGRP-deficient (αCGRP−/−
CTRL) and non-OA WT 

animals  (WTCTRL). αCGRP levels were measured in serum. Knee and hip joint inflammation, cartilage degradation, 
and bone alterations were assessed by histology (OARSI histopathological grading score), gene expression analysis, 
and µ-computed tomography.

Results WTaged mice exhibited elevated αCGRP serum levels compared to young  WTCTRL animals. Marked signs 
of OA-induced cartilage destruction were seen in  WTaged animals, while αCGRP−/−

aged mice were mostly protected 
from this effect. Age-dependent OA was accompanied by an increased gene expression of pro-inflammatory Tnfa, 
Il1b, and Il6 and catabolic Mmp13, Adamts5, Ctsk, Tnfs11 (Rankl), and Cxcl12/Cxcr4 in  WTaged but not in αCGRP−/−

aged 
mice. αCGRP-deficiency however further aggravated subchondral bone sclerosis of the medial tibial plateau 
and accelerated bone loss in the epi- and metaphyseal trabecular tibial bone in age-dependent OA.

Conclusions Similar to its function in experimental RA, αCGRP exerts a dual pro-inflammatory and bone-protective 
function in murine primary OA. Although anti-CGRP treatment was previously not successful in reducing pain in OA 
clinically, these data underline a crucial pathophysiological role of αCGRP in age-related OA.
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Introduction
With a global prevalence of more than 15% in the adult 
population [1], osteoarthritis (OA) is the third most 
rapidly growing disease associated with disability [2], 
affecting more than 500 million people globally [3]. 
Intraarticular micro- and macro-injuries trigger repara-
tion processes that initiate pro-inflammatory immune 
cascades which contribute to progressive and irrevers-
ible joint destruction. The vicious cycle of inflammation 
and tissue damage results in cartilage degradation, patho-
logical subchondral bone remodeling, and synovitis [4], 
causing debilitating pain, loss of mobility, and decreased 
quality of life.

Calcitonin gene-related peptide (CGRP) is a nocicep-
tive neuropeptide that contributes to pain perception and 
sensitization in OA [5]. The 37 amino acid peptide is a 
member of the calcitonin (CT) peptide family and exists 
in two isoforms, αCGRP and βCGRP. Whereas αCGRP 
is encoded by the gene Calca and, among other tissues, 
expressed in the central and peripheral nervous sys-
tem, βCGRP is encoded by the gene Calcb and primar-
ily expressed in the intestine [6]. CGRP can be found in 
intraarticular perivascular sensory nerve fibers [5] and 
synovial fluid [7] of osteoarthritic joints. It has both, 
nociceptive/sensory and efferent/effector functions and 
arthritic pain develops partially through CGRP-mediated 
neurogenic vasodilation and inflammation [8]. The den-
sity of intraarticular CGRP-positive perivascular nerve 
fibers is positively correlated with OA severity [5].

We previously showed that αCGRP exhibits an inde-
pendent pro-inflammatory role in antibody-mediated 
experimental rheumatoid arthritis (RA) [9]. While RA is 
however a systemic inflammatory auto-immune disease, 
OA is characterized by local low-grade inflammation 
with moderately elevated pro-inflammatory proteins in 
the plasma and synovial fluid [10]. Interestingly, the den-
sity of CGRP-positive nerve fibers is reportedly higher 
in the synovial tissue of knee joints from OA compared 
to RA patients [11]. Further, intraarticular CGRP can be 
secreted by fibroblast-like synoviocytes and its expres-
sion correlates with pain in OA [12]. Interestingly, CGRP 
seems to affect cartilage differently depending on the 
pre-existing phenotype of chondrocytes. In this regard, 
a chondro-protective and anti-apoptotic response was 
observed when CGRP was added to healthy chondro-
cytes, yet when added to OA-derived chondrocytes, col-
lagen formation markers, and glycosaminoglycans were 
markedly reduced [13]. However, data from a placebo- 
and celecoxib-controlled clinical trial failed to show rel-
evant pain relief following monoclonal CGRP-antibody 
therapy in knee OA patients [14]. A pathophysiological 
role of αCGRP in OA is therefore possible, yet in vivo evi-
dence is scarce [15].

To explore the effects of αCGRP on intraarticular knee 
and hip joints during primary OA, αCGRP-deficient 
(αCGRP−/−) and wild-type (WT) mice were exposed 
to age-dependent OA and compared to young control 
(CTRL) animals. Our results suggest an independent 
dual role of αCGRP contributing to pro-inflammatory 
and catabolic changes intraarticularly, while protecting 
bone structures from sclerosis and erosion.

Materials and methods
Animals and naturally occurring (primary) OA
Female αCGRP−/− and WT mice were used for all 
experiments [16, 17] and backcrossed at least seven 
times to ensure a pure C57BL/6  J genetic background. 
Based on age, WT and αCGRP−/− mice were sepa-
rated in four groups: Young, 4- to 5-month-old  WTCTRL 
(n = 10) and αCGRP−/−

CTRL animals (n = 10) and aged, 
16- to 18-month-old  WTaged (n = 10) and αCGRP−/−

aged 
mice (n = 10). The employed primary OA model is age-
dependent and was previously described in animals with 
a C57BL/6 J genetic background [18, 19]. Aged WT ani-
mals develop spontaneous OA-like joint lesions with a 
prevalence of up to 90% [20–23]. αCGRP−/− mice exhibit 
a normal skeletal phenotype, but develop mild spontane-
ous osteopenia, starting at the age of 4–6  months [24]. 
All animals were kept at a 12 h light/12 h dark cycle, fed a 
standard diet, and had access to water ad libitum. Ethical 
approval was obtained by the competent authority.

The body weight was recorded for all animals before 
euthanasia using a scale (EMB Scale Ø 150  mm, 
KERN&SOHN GmbH, Germany).

αCGRP serum protein analysis
Thirty microliters of snap frozen serum were analyzed 
with an ELISA kit (CSB-EQ027706MO, CUSABIO, 
Houston, TX, USA), according to the manufacturer’s 
instructions.

Sample preparation
Both knee and hip joints were isolated when  WTCTRL and 
αCGRP−/−

CTRL had reached 4 to 5  months and  WTaged 
and αCGRP−/−

aged 16 to 18 months. Right knee and hip 
joints were fixed in paraformaldehyde (PFA) 4% for 48 h, 
washed and stored in phosphate-buffered saline (PBS) 
for µ-computed tomography (µCT) analysis. Following 
µCT scanning, samples were decalcified in 25% EDTA 
for 20 days, dehydrated (TP 1020 Tissue Processor, Leica 
Biosystems, Germany, protocol: ethanol 70% 1 h, 80% 3 h, 
96% 4 h, 100% 7 h, xylol 2,5 h, paraffin 4 h), and embed-
ded in paraffin (Surgipath Paraplast Plus, Leica Biosys-
tems, Germany). Left knee joints were stripped of all 
muscle and soft tissue and snap-frozen in liquid nitrogen 
for RNA isolation and gene expression analysis.
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Histology
Two-micrometer coronal sections of knee and hip joints 
were cut using a microtome (Rotary 3000 Compact, pfm 
medical, Germany) and stained with methylene blue 
(MB) and safranin O (SO). The previously established 
OARSI histopathological scoring system [25] from 0 to 
6 was applied (Supplementary Data S1) by two blinded 
investigators (AH and TM). For the knee joint, each of 
the four quadrants of the knee joint: medial femoral con-
dyle (MFC), medial tibial plateau (MTP), lateral femo-
ral condyle (LFC), and lateral tibial plateau (LTP) were 
assessed separately and scored. For the hip joint, the fem-
oral head (FH) and the acetabulum (AC) were assessed 
separately and scored. A total joint score was calculated 
as a mean of all individual scores obtained from MB- and 
SO-stained slides [25].

qRT‑PCR
Snap-frozen knee joints were trimmed to thin corre-
sponding articular surfaces consisting of synovium, car-
tilage, and the subchondral bone layer. RNA isolation and 
reverse transcription to complementary DNA (cDNA) 
were conducted as previously reported [26]. Snap-fro-
zen joint samples were treated as previously described 
[9] and quantitative real-time polymerase chain reac-
tion (qRT-PCR) was performed on a 384 well-plate 
reader in a 7900HT Fast Real-Time PCR System (Thermo 
Fisher). Raw data were analyzed with SDS v2.4 software 
(Applied Biosystems). Primers were designed as previ-
ously described [9] and provided by Eurofins Genomics 
GmbH. Primer sequences of assessed genes can be found 
in Supplementary Data S2. Data points for  WTaged and 
αCGRP−/−

aged mice are displayed as mean fold changes of 
two pipetted runs for each sample relative to respective 
CTRL samples which were set to 1 according to the ddct 
method [27].

µCT
Knee and hip joints were analyzed and reconstructed 
post mortem by µCT (Skyscan 1172, Bruker, MA, USA,). 
Parameters were set as follows: 70  kV, 142 µA, slice 
thickness 5.1  µm, filter 0.5 Al, rotation step 0.2, aver-
aging frames 3, random movement 10. Raw data were 
reconstructed as previously described [9]. Systemic 
bone changes were evaluated in proximal tibiae where a 
volume of interest (VOI) of 1  mm in length was placed 
around the outer cortical bone layer, starting 0.5  mm 
below the most distal point of the growth plate. Assessed 
global bone parameters included bone volume/total vol-
ume (BV/TV) in % and bone density in mg hydroxyapa-
tite (HA)/ccm, as well as trabecular bone parameters, 
including bone surface in µm2, trabecular number (Tb.N) 

in 1/µm, trabecular separation (Tb.Sp) in µm, and trabec-
ular thickness (Tb.Th) in µm. For evaluation of subchon-
dral bone sclerosis, parameters included cortical volume/
total volume (Ct.V/TV) in %, subchondral bone, and 
pore (Bo&Po) density in mg HA/ccm, and average pore 
diameter (AvgPo.Dm) in µm [28]. For subchondral bone 
analysis of the hip joint, a VOI was placed around the 
femoral head, framing a plate of subchondral bone with 
a thickness of 80  µm. For radiological evaluation of the 
subchondral knee joint, the MTP and the epiphyseal tra-
becular bone were analyzed separately. A VOI was placed 
around the subchondral MTP, using the same tech-
nique as for the femoral head (Supplementary Data S3). 
The tibial epiphysis was evaluated using a separate VOI, 
excluding the subchondral bone plate, and avoiding the 
medial and lateral cortical bone and growth plates (Sup-
plementary Data S3). A threshold of 70 mg HA/ccm for 
trabecular parameters and 80 mg HA/ccm for subchon-
dral bone parameters was set. Bone density is displayed 
as 3D images using color maps with a maximum value of 
130 mg HA/ccm.

Statistical analysis
We estimated mean OARSI histopathological grading 
scores of 2 SD ± of 1.0 for  WTaged, and mean scores of 
0.75 for  WTCTRL animals. To obtain a power of 0.8 with 
an α of 0.05 we calculated that 10 animals per group 
would be necessary to show an effect size of 1.25. End-
point comparisons between groups were performed in 
Prism 9 using the Wilcoxon-Mann–Whitney test. For 
group comparisons of the ordinal OARSI histopatho-
logical grading score and body weight, a non-parametric 
Kruskal–Wallis test with Dunn’s test for multiple com-
parisons was performed. Outliers were included in the 
analysis. Unless stated otherwise, data are presented as 
median ± minimum and maximum. Significance was 
accepted where p < 0.05. For data reporting and stor-
age, we followed the internationally established ARRIVE 
guidelines [29].

Results
Serum αCGRP is elevated in OA and αCGRP‑deficiency 
protects knee joints from histological signs of cartilage 
degradation in age‑related OA
αCGRP was significantly elevated in serum samples 
of  WTaged compared to  WTCTRL animals (p = 0.0410) 
(Fig. 1A).

OA development was accompanied by a signifi-
cant body weight gain in  WTaged (p = 0.0012) and 
αCGRP−/−

aged animals (p = 0.0025) compared to their 
respective CTRL groups while no significant differ-
ence was seen between  WTaged and αCGRP−/−

aged mice 
(p > 0.9999) (Fig. 1B).
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In  WTaged animals, OA was evidenced by a marked loss 
of cartilage integrity in knee joints  (WTaged vs.  WTCTRL 
p = 0.0031), which was also more pronounced when 
compared to αCGRP−/−

aged animals, although not sta-
tistically significant (p = 0.867). Further, no significant 
difference was seen between αCGRP−/−

aged and CTRL 
mice (p > 0.9999) (Fig. 1C, E). Overall, knee cartilage loss 
was most pronounced in the LTP and the MTP (data not 
shown).

OA was further observed in hip joints of  WTaged 
(p = 0.0061) and αCGRP−/−

aged (p = 0.0019) when com-
pared to CTRL animals (Fig.  1D, F). Cartilage loss was 
evident in both, the FH and the AC (data not shown).

αCGRP‑deficiency prevents overexpression 
of inflammation markers in OA‑affected knee joints
To assess molecular gene expression patterns in OA-
affected knee joints, qRT-PCR analyses of osseocartilagi-
nous knee joint samples were performed.  WTaged mice 
showed an increased expression of Tnfa (p = 0.0115), 
Il1b (p = 0.0433), and Il6 (p = 0.0115), when compared 
to  WTCTRL mice, while αCGRP-deficient animals were 
protected from this effect. Pro-inflammatory Cxcl12 
and Cxcr4 were also increased in  WTaged compared to 
 WTCTRL animals, while only reaching statistical signifi-
cance for the latter (p = 0.0355) (Fig. 2A).

Expression of catabolic cartilage turnover markers 
is reduced in mice deficient for αCGRP in primary OA
Expression of catabolic cartilage turnover markers 
Mmp13 (p = 0.0028) and Adamts5 (p = 0.0062), and 
bone resorption markers Ctsk (p = 0.0021), Tnfs11 
(Rankl) (p < 0.0001), and Acp5 (Trap) (p = 0.0001) were 
exclusively reduced in αCGRP−/−

aged mice compared to 
CTRLs while Casp3 was exclusively elevated in  WTaged 
compared to CTRLs (p = 0.0355) (Fig.  2B). Further ana-
bolic cartilage turnover markers also decreased with 
OA development including Col2a1  (WTaged vs.  WTCTRL 
p = 0.0021; αCGRP−/−

aged vs. αCGRP−/−
CTRL p < 0.0001) 

and Acan  (WTaged vs.  WTCTRL p < 0.0001; αCGRP−/−
aged 

vs. αCGRP−/−
CTRL p = 0.0002), however without differ-

ences between genotypes. The osteoblast transcription 
marker Runx2 was exclusively reduced in αCGRP−/−

aged 
mice compared to CTRLs (p = 0.0242) (Fig. 2C).

αCGRP protects from medial tibial subchondral bone 
sclerosis in age‑related OA
To evaluate OA-induced subchondral bone sclerosis 
and changes in cortical bone architecture, knee and hip 
joints were analyzed by µCT. Increased cortical volume 
(p < 0.0001) and subchondral bone density (p = 0.035), 
both indicative of subchondral bone sclerosis of the MTP, 
were exclusively increased in αCGRP−/−

aged mice but not 

Fig. 1 Serum αCGRP is elevated in primary OA and knee but not hip joints of aged αCGRP-deficient mice are protected from cartilage degradation. 
A αCGRP serum concentrations and B body weight of indicated groups. C OARSI histopathological grading scores of knee and D hip joints 
of indicated groups. E Representative histological images of MB- and SO-stained sections of knee and F hip joints of indicated groups. Red dotted 
boxes indicate cartilage damage. Scale bars = 500 µm. Given values are median ± minimum and maximum. MB, methylene blue; SO, safranin O
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in  WTaged animals when compared to respective CTRLs 
(Fig. 3A + B). While cortical volume  (WTaged vs.  WTCTRL 
p = 0.0021; αCGRP−/−

aged vs. αCGRP−/−
CTRL p < 0.0001) 

and subchondral bone density  (WTaged vs.  WTCTRL 
p = 0.0355; αCGRP−/−

aged vs. αCGRP−/−
CTRL p = 0.0089) 

of the femoral head were elevated in both genotypes dur-
ing OA, subchondral porosity was exclusively decreased 
in  WTaged animals compared to CTRLs (p = 0.0185) 
(Fig. 3C + D).

αCGRP‑deficiency promotes osteopenia and bone sclerosis 
in the tibial epi‑ and metaphysis during primary OA
To evaluate if age-induced OA further affects osseous 
structures distal to the subchondral bone, we inves-
tigated cortical and trabecular bone structures of the 
tibial epi- and metaphysis. αCGRP−/−

aged mice showed 
marked signs of osteopenia accompanied by sclerotic 
changes of the tibial epiphysis, while bone integrity was 

preserved in  WTaged mice. In particular, decreased bone 
volume (p < 0.0001), bone surface (p = 0.0279), and tra-
becular number (p < 0.0001) and increased bone density 
(p = 0.0004) and trabecular separation (p < 0.0001) were 
observed in αCGRP−/−

aged animals compared to CTRLs 
(Fig. 4A + B).

In the tibial metaphysis, bone density was also exclu-
sively increased in αCGRP−/−

aged mice (p = 0.0011), 
while bone volume was reduced in both genotypes dur-
ing OA  (WTaged vs.  WTCTRL p = 0.0029; αCGRP−/−

aged 
vs. αCGRP−/−

CTRL p < 0.0001) (Fig.  4C + D). Bone sur-
face was lower in αCGRP−/−

aged than in  WTaged mice 
(p = 0.0089), while a loss of bone surface was seen in both 
genotypes compared to CTRLs (p < 0.0001 for both). 
Trabecular deterioration was present in all aged animals 
when compared to CTRL mice, indicated by increased 
trabecular separation and decreased trabecular numbers 
(p < 0.0001 for both genotypes).

Fig. 2 αCGRP promotes intraarticular expression of pro-inflammatory and catabolic cartilage markers in OA-affected knee joints. A qRT-PCR gene 
expression analysis of inflammation markers, B catabolic/hypertrophic cartilage/bone turnover markers, and C anabolic cartilage/bone turnover 
markers in knee joint samples of indicated groups. Given values are median ± minimum and maximum. Values for  WTaged and αCGRP.−/−

aged mice are 
shown as relative fold changes with respect to CTRL groups that were set to 1
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Discussion
In this study, the lifelong absence of αCGRP prevented 
cartilage degradation of the knee joint and decreased 
the expression of pro-inflammatory and catabolic car-
tilage markers in mice suffering from age-induced OA. 
Yet, aged αCGRP-deficient mice showed distinct signs 

of tibial subchondral bone sclerosis, impaired bone 
quality of the epi- and metaphysis, and marked tra-
becular bone loss. Similar to the observed effects in 
experimental RA [9], we found αCGRP to display a dual 
pro-inflammatory and bone protective role in primary, 
age-dependent OA.
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Anti-CGRP therapy has recently been clinically intro-
duced for the prevention and treatment of migraine 
[30]. Although the pharmacological blockade of CGRP 
was unable to provide clinically meaningful pain 
reduction in knee OA patients in a double-blind and 
placebo-controlled clinical trial [14], an independent 
pathological role of CGRP in OA—beyond its nocicep-
tive function—is currently being debated [13, 15, 31].

While most in vivo studies employ surgically induced 
OA models [15, 31] to examine CGRP in OA, this study 
investigated the role of αCGRP in a murine model of 
naturally occurring primary OA, which resembles the 
most common form of OA to date [32].

We were previously able to show that αCGRP-
deficiency is associated with decreased intraarticular 
expression of Tnfa, Il1b, and Mmp13 in animals suf-
fering from experimental RA [9]. Here, we again found 
elevated expression levels of Tnfa, Il1b, and Il6 in knee 
joints of  WTaged mice while αCGRP−/−

aged animals were 
protected from increased gene expressions of pro-inflam-
matory cytokines. TNFα, IL1β, and IL6 all contribute to 
low-grade inflammation and progressive cartilage loss in 
primary OA [4]. Chondrocytes show reduced prolifera-
tion when exposed to IL1β, which further increases the 
expression of catabolic markers (Adamts5 and Mmp13) 
and decreases the expression of anabolic markers (Col2a1 
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Fig. 4 αCGRP prevents radiological OA-related alterations in the tibial epi- and metaphysis. A µCT parameters of the tibial epiphysis, and B 
representative 3D images of bone density of the trabecular architecture of the tibial epiphysis using color maps (anterior and posterior sections). 
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scales were set to 130 mg HA/ccm
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and Acan) in cartilage matrix [33]. Elevated serum con-
centrations of TNFα and IL6 further correlate with radio-
graphic loss of cartilage volume in human knee OA [34].

Binding of the chemokine CXCL12/SDF-1 to its recep-
tor CXCR4 upregulates MMP13, prevents apoptosis of 
intraarticular leukocytes, and has pro-sclerotic proper-
ties in OA-affected joints [35]. SDF-1 is elevated in the 
synovium of OA patients [36] and pharmacological dis-
ruption of SDF-1/CXCR4 signaling leads to a partial 
attenuation of cartilage damage in preclinical primary 
OA [37]. In line with these data, we detected an increased 
expression of SDF-1/CXCR4 signaling in  WTaged mice 
which was not the case in aged αCGRP-deficient mice.

Naturally occurring deterioration of cartilage is 
observed in mice between 3 and 9  months [20]. Previ-
ous in  vitro data showed a chondroprotective effect of 
αCGRP in healthy chondrocytes but a contribution to 
cartilage deterioration in OA-altered chondrocytes [13]. 
Accordingly, we saw a protection from histological signs 
of cartilage destruction and a reduction of catabolic car-
tilage markers in αCGRP−/−

aged mice exclusively, while 
anabolic Col2a1 and Acan were reduced in αCGRP−/−

aged 
and  WTaged mice alike. In line with our findings, Nakasa 
et  al. showed that blocking CGRP pharmacologically 
reduced Mmp13 expression levels and OA progression 
in vivo [31].

Cathepsin K was previously shown to promote carti-
lage degradation [38], and mice deficient in cathepsin K 
were partially protected from surgically induced OA [39]. 
In addition, receptor activator of NF-κB ligand (RANKL) 
and Runx2 are overexpressed in OA cartilage [40, 41], 
and the cell-type specific deletion of Runx2 in chondro-
cytes protects from experimental OA [42]. Our study 
showed that αCGRP deficiency led to a marked decrease 
of Mmp13, Adamts5, Ctsk, Tnfsf11 (Rankl), and Runx2, 
which further underlines the catabolic role of αCGRP for 
cartilage in primary OA.

While TRAP is traditionally understood an osteoclast 
marker, an intraarticular role for TRAP in cartilaginous 
tissues is being discussed. TRAP-positive chondroclasts 
were previously identified as cells capable of resorbing 
mineralized cartilage [43] and serum-TRAP was pro-
posed as a clinically relevant and pain-associated bio-
marker for OA monitoring [44]. We observed a marked 
reduction of Acp5 (Trap) in aged OA mice deficient for 
αCGRP, suggesting a protection from catabolic and pro-
inflammatory cartilage changes through an inactivation 
of αCGRP.

As cartilage damage worsens during the course of 
OA, subchondral bone remodeling is initiated, caus-
ing increased sclerotic bone formation and ossification 
[45]. There is compelling evidence that subchondral 
bone stiffening further increases mechanical stress to the 

overlying remaining articular cartilage [46]. In this study, 
αCGRP−/−

aged mice showed pronounced signs of sub-
chondral bone sclerosis of the MTP while  WTaged ani-
mals were partially protected from this effect. The limited 
extent of sclerotic changes of the MTP in WT mice was 
previously reported for surgically [15] and age-dependent 
OA [18, 47]. Together, these findings go in accordance 
with a reported subtle pro-sclerotic tendency in both, 
αCGRP-deficient mice receiving destabilizing meniscus 
surgery and animals receiving sham knee surgery [15]. 
As immunohistological data showed that the subchon-
dral bone plate of the proximal tibia of healthy rat knee 
joints contains CGRP-positive nerve fibers [48] this may 
explain the observed bone-protective effect of αCGRP.

While some authors argue that bone sclerosis in knee 
OA is limited to the subchondral bone plate [45, 49], 
recent findings suggest that the epiphysis is also affected 
by OA-induced defects of the subchondral bone plate, 
causing a subsequent deterioration of the trabecular 
architecture beneath [50]. We saw an impaired epiphy-
seal and metaphyseal trabecular bone structure in all 
OA animals; however, αCGRP-deficient OA mice exclu-
sively exhibited reduced bone volume and surface with 
an increased bone density of the epi- and metaphysis. As 
αCGRP−/− mice develop mild spontaneous osteopenia 
with age [24], bone deterioration of the subchondral met-
aphyseal-, and potentially epiphyseal bone may be attrib-
uted to the genetically altered skeletal phenotype, while 
the increased sclerosis of the subchondral bone plate is 
likely to be caused by an interaction of αCGRP and OA.

Treatment with galcanezumab, an antibody against 
CGRP, was previously not successful in human OA [14]. 
The results of this well-conducted clinical trial were 
surprising, as a previously published preclinical study 
using the same antibody had shown a significant reduc-
tion in pain-related behavior in monoiodoacetate (MIA) 
-induced and meniscal tear (MT) -induced OA [51]. One 
potential reason for the observed differences is the choice 
of preclinical OA model. While the clinical trial was con-
ducted in primary OA patients, all pre-clinical data were 
based on two secondary OA models [51]. The difference 
between primary and secondary OA is well researched 
as recently laid out by Poulsen et  al., 2023 [52]. Fur-
ther, current research in the OA field moves away from 
understanding OA as one disease and instead strives to 
identify different endo- and phenotypes which are likely 
to respond differently to available and newly developed 
treatments. This may explain in part why numerous “suc-
cessful” preclinical studies can rarely confirm their find-
ings clinically [53]. Interestingly, galcanezumab has not 
been tested in a primary OA model before.

We showed that a lifelong blockade of αCGRP signal-
ing alleviates naturally occurring OA in female mice. 
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Our results imply that the inhibition of αCGRP signaling 
could be a promising therapeutic approach with transla-
tional potential in OA therapy when applied to the right 
disease and at the right disease stage.

The current study has several limitations. First, the 
radiological data sets do not allow to distinguish between 
OA-induced subchondral bone changes and calcified 
cartilage. The diameter and density of both, calcified 
cartilage and subchondral bone, increase similarly dur-
ing progression of OA [15, 45]. This additional informa-
tion has thus little relevance for the data presented in 
our study. Second, while joint samples were carefully and 
precisely dissected, the employed gene expression analy-
ses lack tissue specificity, as samples were comprised of 
a mixture of cartilage, synovium, and small amounts of 
subchondral bone. When processing murine joint sam-
ples, a selective tissue examination is technically diffi-
cult, as joint samples are commonly crushed, minced, 
or digested [9, 12]. Third, we were only able to report 
changes that occurred until or during end-stage OA. OA 
is however a multi-stage disease with various origins and 
courses. This needs to be taken into consideration when 
interpreting the results. Fourth, our data did not include 
human samples. A lifelong blockade of αCGRP signaling, 
as utilized in our experiment, is an artificial model lack-
ing direct translational potential. Further studies must 
include human samples, longitudinal disease evalua-
tion, and pharmacological inhibition of αCGRP must be 
tested in primary and secondary OA. And finally, due to 
the higher prevalence of OA in women [1], we exclusively 
investigated female mice. The deterioration of estrogen 
activity during aging may however have impacted bone 
and cartilage quality additionally [54], warranting further 
studies on the role of αCGRP in the male organism.

Conclusions
In this study, we demonstrated that lifelong disruption 
of endogenous αCGRP-signaling protected animals from 
histological and molecular signs of cartilage degrada-
tion in primary, age-dependent OA. αCGRP serum lev-
els were increased in primary OA and the inactivation 
of αCGRP impeded OA-associated overexpression of 
intraarticular inflammation and catabolic cartilage mark-
ers including IL1β, IL6, TNFα, MMP13, ADAMTS5, 
Cathepsin K, RANKL, RUNX2, and SDF-1/CXCR4 in 
joint tissues. In contrast, lack of αCGRP was associated 
with subchondral bone sclerosis and tibial osteopenia in 
primary OA. Although the clinical application of anti-
CGRP treatment did previously not meet the primary 
endpoint of pain reduction in knee OA patients, our 
study provides first-hand evidence for a dual pro-inflam-
matory and bone-protective role of αCGRP in naturally 
occurring OA.
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