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Abstract 

Background Juvenile idiopathic arthritis (JIA) is one of the most prevalent rheumatic disorders in children and is clas-
sified as an autoimmune disease (AID). While a robust genetic contribution to JIA etiology has been established, 
the exact pathogenesis remains unclear.

Methods To prioritize biologically interpretable susceptibility genes and proteins for JIA, we conducted transcrip-
tome-wide and proteome-wide association studies (TWAS/PWAS). Then, to understand the genetic architecture of JIA, 
we systematically analyzed single-nucleotide polymorphism (SNP)-based heritability, a signature of natural selection, 
and polygenicity. Next, we conducted HLA typing using multi-ethnicity RNA sequencing data. Additionally, we exam-
ined the T cell receptor (TCR) repertoire at a single-cell level to explore the potential links between immunity and JIA 
risk.

Results We have identified 19 TWAS genes and two PWAS proteins associated with JIA risks. Furthermore, we 
observe that the heritability and cell type enrichment analysis of JIA are enriched in T lymphocytes and HLA regions 
and that JIA shows higher polygenicity compared to other AIDs. In multi-ancestry HLA typing, B*45:01 is more 
prevalent in African JIA patients than in European JIA patients, whereas DQA1*01:01, DQA1*03:01, and DRB1*04:01 
exhibit a higher frequency in European JIA patients. Using single-cell immune repertoire analysis, we identify clonally 
expanded T cell subpopulations in JIA patients, including CXCL13+BHLHE40+  TH cells which are significantly associated 
with JIA risks.

Conclusion Our findings shed new light on the pathogenesis of JIA and provide a strong foundation for future 
mechanistic studies aimed at uncovering the molecular drivers of JIA.
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Introduction
Juvenile idiopathic arthritis (JIA) is one of the most 
common rheumatic diseases in children; it is mainly 
regarded as an autoimmune disease (AID) whose clini-
cal manifestations include persistent limping, painful 
joints, stiffness, and inflammation [1, 2]. The exact JIA 
pathogenesis remains unclear; however, it has been dem-
onstrated that there is a strong genetic contribution to 
the etiology of JIA. The single-nucleotide polymorphism 
(SNP)-based heritability for JIA was estimated to be 73%, 
among the most highly heritable pediatric AIDs. Even 
though genome-wide association studies (GWASs) have 
identified many risk variants of JIA, most are located in 
non-coding regions, making it difficult to interpret their 
functional consequences [3]. By integrating GWASs with 
expression quantitative trait loci (eQTL), transcriptome-
wide association studies (TWASs) provide a powerful 
approach to prioritize susceptibility genes affected by risk 
variants [4].

Investigating the genetic architecture of complex dis-
eases is essential for understanding the genetic basis 
of phenotypic variations and evolutions [5]. For com-
plex diseases, natural selection plays an essential role in 
forming the genetic architecture and provides valuable 
insights into biological mechanisms [6]. In AIDs, the sig-
nature of negative selection is significant because it sheds 
light on how the human immune system has evolved 
to defend against pathogens while avoiding harmful 
responses against self-tissues.

Moreover, given that JIA is considered an AID, it is also 
important to further understand the underlying mecha-
nisms of immune responses affecting the JIA etiologies. 
Human leukocyte antigen (HLA) molecules present-
ing peptide antigens to receptors on T lymphocytes are 
highly polymorphic at their peptide-binding site and 
mediate the adaptive immune responses [5]. Moreover, T 
cell receptors (TCRs) interacting with HLA molecules are 
essential components of adaptive immune responses [7]. 
Through the somatic recombination of TCRs, self-reac-
tive T cells can be produced, and the recognition of self-
antigens can affect the development of AIDs [8]. Even 
though there is some evidence that T cells are involved 
in JIA etiologies, their contributions to the pathogenesis 
of AIDs including JIA have not been completely revealed 
[9, 10].

Herein, we prioritized susceptibility genes/proteins for 
JIA by conducting a multi-tissue TWAS and proteome-
wide association study (PWAS) by integrating JIA GWAS 
summary statistics data (n = 3,305 cases and n = 9,196 
controls) with reference eQTL/protein QTL (pQTL) 
panels (n = 14,037). We identified 19 genes and two pro-
teins associated with JIA risk using TWAS and PWAS. 
We then estimated disease heritability and signatures of 

natural selection to understand the genetic architecture 
and to prioritize the most relevant tissue and cell types of 
JIA. We observed that the heritability of JIA was enriched 
in T lymphocytes and HLA regions and that JIA showed 
higher polygenicity than other AIDs. Next, HLA typing 
was conducted using multi-ancestry RNA sequencing 
(RNA-seq) data, and TCR repertoire analysis was per-
formed at a single-cell level to investigate the associa-
tions between immunity and JIA risks. We found some 
HLA types, such as B*45:01, DQA1*01:01, DQA1*03:01, 
and DRB1*04:01, which were more frequent in the Euro-
pean or African JIA patients. In addition, we identified 
clonally expanded T cell subpopulations in JIA patients, 
among which CXCL13+BHLHE40+ T cells were signifi-
cantly associated with JIA risks at the single-cell level. 
We believe that these findings could provide new insights 
into understanding the underlying mechanisms of JIA 
etiology.

Methods
Genome‑wide association summary statistics of JIA
GWAS summary statistics data of JIA were retrieved 
from the GWAS catalog and the most recent dataset was 
used for this study (catalog ID: GCST90010715) [11, 12]. 
Details on the process of genotyping and quality control 
were described by López-Isac et  al. [12]. The summary 
statistics of JIA were computed only for the European 
population (n = 3305 JIA patients and n = 9196 control 
subjects), and the JIA samples consist of 8 subtypes (n = 
860 persistent oligoarthritis, oligo-JIA; n = 505 extended 
oligo-JIA; n = 825 rheumatoid factor-negative polyarthri-
tis, RF-negative poly-JIA; n = 195 RF-positive poly-JIA; 
n = 205 systemic JIA, sJIA; n = 252 enthesitis-related 
arthritis, ERA; n = 225 juvenile psoriatic arthritis, JPsA; 
n = 238 Undifferentiated/Missing). The GWAS study 
resulted in 6,334,221 SNPs with minor allele frequency 
(MAF) ≥ 1%. The JIA summary statistics file was con-
verted into a sumstats-formatted file by LD score (LDSC) 
software (v1.0.1) [13].

Transcriptome‑wide association study and proteome‑wide 
association study
To identify susceptibility genes associated with the 
pathogenesis of JIA, a TWAS was performed using func-
tional summary-based imputation (FUSION) [4]. Briefly, 
TWAS identifies risk genes associated with the target 
disease by integrating GWAS summary statistics data 
with the reference eQTL data of specific tissues, consid-
ering linkage disequilibrium (LD) structures. Using the 
eQTL panels and LD information, the cis-genetic compo-
nents of gene expression are imputed from the JIA sum-
mary statistics data. Then, the predicted gene expression 
is used for association tests with JIA risks to identify 
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significant associations between the gene expression and 
the disease. Twelve connective tissue panels from the 
Genotype-Tissue Expression project v7 (GTEx v7; n = 
449), the Metabolic Syndrome in Men study (METSIM; n 
= 563), the Netherlands Twin Registry (NTR; n = 1247), 
and the Young Finns Study (YFS; n = 1264) were selected 
as expression weights for transcriptomic imputation 
(Table S1) [14–19]. For each panel, predictive models for 
gene expression were trained using cis-regulated genes 
by SNPs within ±500kb of the transcription start site and 
are significant for heritability (cis-h2) with P < 0.01. The 
European LD information from the 1000 Genomes pro-
ject accounted for the LD regions [20]. Due to the com-
plex LD patterns, we excluded the TWAS associations 
from major histocompatibility complex (MHC) regions 
[21]. The significance threshold of TWAS associations 
was corrected with the Bonferroni correction (PTWAS < 
7.55 ×  10−07, 0.05/66,196).

We conducted a PWAS using the pQTL data from the 
INTERVAL (n = 3301) [22] and Atherosclerosis Risk in 
Communities (ARIC; n = 7213) study [23] of European 
individuals. For each pQTL panel, predictive models 
were trained using cis-regulatory proteins with SNPs 
within ±500 kb of the same transcriptional start site, and 
the significance levels of cis-h2 in INTERVAL (n = 1031 
models) and ARIC (n = 1309 models) were 0.05 and 0.01, 
respectively. The predictive models in the INTERVAL 
study were fitted using the sum of single effects (SuSiE) 
[24], and the elastic net was used in the ARIC study. As 
with TWAS, the PWAS associations in the MHC region 
were excluded. The same significance thresholds with 
the Bonferroni correction were used for the PWAS asso-
ciations as the TWAS associations (PPWAS < 2.16 ×  10−05, 
0.05/2311).

Fine‑mapping of TWAS and PWAS associations
We performed fine-mapping of causal gene sets (FOCUS) 
to identify TWAS/PWAS associations responsible for the 
disease, estimating gene-trait associations at the GWAS 
risk regions while considering LD structures and control-
ling for pleiotropic SNP effects [25]. FOCUS calculates 
the posterior inclusion probability (PIP) per the TWAS/
PWAS association and suggests credible gene sets con-
taining susceptibility genes at a 90% confidence level. We 
applied FOCUS to the specific loci for each panel where 
the significant TWAS/PWAS associations (PTWAS < 7.55 
×  10−07 and PPWAS < 2.16 ×  10−05) identified by FUSION 
were detected. The weight database for FOCUS was gen-
erated from the GTEx and INTERVAL FUSION weights.

Pathway enrichment analysis
We conducted a TWAS-based Gene Set Enrichment 
Analysis (TWAS-GSEA) using the TWAS results from 

individual tissue panels [26]. The TWAS associations 
with a panel and the 12 eQTL panels containing informa-
tion on the position of genes were used as inputs for this 
analysis. We retrieved curated gene sets from canonical 
pathways (CP), WikiPathways, Kyoto Encyclopedia of 
Genes and Genomes (KEGG), BioCarta, Reactome, and 
Pathway Interaction Database (PID) from the Molecular 
Signatures Database (MSigDB v7.2) [27–32].

A GWAS-based pathway enrichment analysis was 
carried out using the multi-marker analysis of genomic 
annotation (MAGMA v1.07) [33]. The SNPs were anno-
tated to the corresponding genes, based on dbSNP v151 
SNP locations for the European group and NCBI Build 
37 gene definitions [20, 34]. Gene sets retrieved from the 
CPs of MSigDB were used [27–32].

Genetic correlation analyses with other traits
To estimate genetic correlations at the genome-wide 
level between JIA and other AID-like (n = 10) and non-
AID-like (n = 15) traits, an LD score regression was per-
formed using the GWAS summary statistics data of JIA 
and 25 traits using LDSC [13, 35]. Sumstats-formatted 
publicly available summary statistics (PASS) data of 22 
traits, excluding type 1 diabetes (T1D), were retrieved 
from LD Hub [36]. The summary statistics data of T1D 
were obtained from the GWAS catalog (catalog ID: 
GCST005536) because T1D PASS data were not reported 
in the LD hub, although the comorbidity of JIA and T1D 
has previously been reported [11, 37, 38]. Summary sta-
tistics data of  AIDALL and  AIDSURE traits, the remaining 
two traits, reported in UK Biobank (UKBB) were also 
used. The LD score data for the European samples were 
used for this analysis [20].

To estimate transcriptome-wide genetic correlations 
between JIA and the 23 traits, the TWAS results of these 
traits were retrieved from the TWAS-hub [4]. Eight-
een of the 23 traits were obtained from the TWAS-hub 
and TWAS analyses of T1D,  AIDALL, and  AIDSURE traits 
were conducted using the same procedure as JIA. Tran-
scriptome-wide genetic correlations between JIA, T1D, 
 AIDALL,  AIDSURE, and the 18 traits were estimated using 
the RHOGE [39].

Weighted gene co‑expression network analysis
This study used an Affymetrix microarray dataset (GEO 
study: GSE13501 [40]) and two RNA-seq datasets (GEO 
study: GSE112057 [41] and GSE79970 [42]) containing 
mRNA expression data on JIA patients and healthy con-
trols. The preprocessing and normalization of datasets 
were performed in accordance with Kim et al. [2]. The top 
7000 most-expressed genes of the GSE13501 [40] dataset 
were selected for simplicity after normalization follow-
ing Jung et al. [43]. A signed weighted gene co-expression 
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network analysis (WGCNA) was performed to identify 
co-expression modules comprising positively correlated 
genes based on bi-weight mid-correlation [44]. A soft-
thresholding power (β) of seven was selected for the net-
work construction (scale-free r2 = 0.8). The expression 
profile of each module was summarized by the module 
eigengene (ME). The minimum size of modules was 50 
genes and paired modules with high ME (r > 85) were 
merged. With the co-expression modules, module pres-
ervation analyses were conducted using the microarray 
dataset as a reference set and each RNA-seq dataset as a 
test set with the co-expression modules [45]. The analy-
ses were permuted up to 1000 times and Z-summary 
scores were computed to identify the preserved modules. 
To examine whether TWAS associations were enriched 
in the co-expression modules, GSEA was performed with 
the fgsea R package using the co-expression modules 
as the reference gene sets [46]. The TWAS associations 
from each panel, arranged by their Z-scores in descend-
ing order, were used as the pre-ranked gene sets. Func-
tional annotation of the co-expression modules, in which 
TWAS associations were enriched, was carried out using 
the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) [47].

JIA‑relevant‑tissue and cell‑type analyses
LD score regression to specifically expressed genes 
(LDSC-SEG) v1.0.1 was applied to determine disease-
relevant tissues and cell types in JIA [48]. Two types of 
precomputed expression datasets were downloaded 
for the analysis: (1) human RNA-seq data of 53 tissues/
cell types from the GTEx [49] and human/mouse/rat 
array data of 152 tissues/cell types from Franke lab [50, 
51] and (2) mouse array data of 292 immune cell types 
from ImmGen [52]. Two types of precomputed chro-
matin datasets were also downloaded: (1) human 431 
tissue-specific epigenomic annotations from peaks for six 
epigenetic marks from Roadmap Epigenomics [53] and 
ENCODE projects [54] and (2) human ATAC-seq peaks 
from 13 cell types for human hematopoietic hierarchy 
[55]. Fetal data was excluded from the epigenomic data. 
The Bonferroni correction was applied to determine the 
significance levels.

Estimating the SNP‑based heritability 
and expression‑mediated heritability
We estimated SNP-based SNP heritability ( h2HESS ) in a set 
of 1702 independently partitioned genomic blocks [56] 
across the genome using Heritability Estimation from 
Summary Statistics (HESS) [39] v0.5.3-beta. To account 
for the large number of hypotheses tested, the Bonfer-
roni correction was performed at α = 0.05/1702 to deter-
mine significant levels. The mediated expression score 

regression (MESC) [57] was used to estimate the propor-
tion of heritability mediated by a cis-genetic component 
of gene expression levels ( h2med/h

2
g ). The MESC software 

was downloaded, along with its precomputed expression 
scores from the GTEx consortium and eQTLGen [58].

Genetic architecture analysis
To identify signatures of negative selection for JIA, we 
utilized summary-data-based BayesS (SBayesS) [59] in 
the GCTB software by estimating the joint posterior dis-
tribution of effect size and MAF. Based on the Markov-
chain Monte Carlo sample, the posterior mean was used 
as a point estimation, and the posterior standard error 
was approximated by the standard deviation. Moreover, 
a sparse LD matrix was used for computational efficiency 
[59].

Estimation of HLA gene expression and HLA typing 
analysis
Consensus HLA typing analysis was carried out using the 
GSE112057 [41] RNA-seq dataset by seven HLA-typing 
software: seq2HLA (v2.3), arcasHLA (v0.2.0), HLAforest, 
HLA-VBSeq (v2), OptiType (v1.3.3), PHLAT (v1.0), and 
HLA typing from the high-quality dictionary (HLA-HD) 
(v1.2.1) [42, 60–66]. The GSE112057 [41] dataset con-
tains expression data on 115 JIA patients (43 oligo-JIA, 
46 poly-JIA, and 26 sJIA; 34 African JIA and 81 European 
JIA) and 12 control subjects. The reads mapped to chro-
mosome 6 were detected by STAR software [67] (v2.5.3a) 
using the human reference genome (hg19) and were then 
analyzed by seven HLA-typing software with default set-
tings. The International Immunogenetics Project/HLA 
database [68, 69] (v3.10.0) was used for arcasHLA, HLA-
VBSeq, and HLA-HD. The consensus frequencies of HLA 
allele types (HLA class I: A, B, and C; HLA class II: DP 
alpha 1 [DPA1], DP beta 1 [DPB1], DQ alpha 1 [DQA1], 
DQ beta 1 [DQB1], DR alpha [DRA], DR beta 1 [DRB1], 
DRB3, DRB4, and DRB5) were calculated using the HLA 
typing result per the software at two-field resolution as 
a replica and integrating the seven replicates, grouped 
by disease states (control and JIA). The same procedure 
was also performed using the GSE112057 [41] grouped 
by disease subtypes (healthy control, oligo-JIA, poly-JIA, 
and sJIA) and ancestry (healthy control, African JIA, and 
European JIA).

The expression levels of HLA genes were estimated 
by seq2HLA [60] using the GSE112057 [41] dataset. 
FASTQ-formatted files in GSE112057 [41] were used 
as input files and the locus-specific expression levels of 
HLA genes were measured as read per kilobase million. 
HLA class I and II gene expression levels were compared 
between JIA and control groups.
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Profiling adaptive immune repertoires in JIA
The unmapped reads were extracted from the 
GSE112057 [41] dataset following a read origin pro-
tocol (ROP) [70]. SRR6868722 and SRR6868696 were 
excluded due to quality problems. To analyze the TCR 
repertoires, the reads mapped onto the complementary 
determining region 3 (CDR3) in TCR loci were identi-
fied using immune profiling by ROP (ImReP) [71]. ImReP 
assembles the clonotypes, defined as clones having iden-
tical CDR3 amino-acid sequences, and identifies the cor-
responding V(D)J recombination. The alpha diversity 
(Shannon entropy) of TCRs was measured within the 
immune repertoire of an individual. The alpha diversi-
ties of TCRs (TCR α and β) were respectively compared 
between control and JIA groups. The same analyses were 
conducted using the GSE112957 [41] dataset grouped by 
JIA subtypes (healthy controls, oligo-JIA, poly-JIA, and 
sJIA).

Single‑cell analysis
The single-cell RNA-seq (scRNA-seq) of JIA were 
downloaded from NCBI SRA (SRA study: SRP288574 
[72]). The 10x Genomics BAM file contains single-cell 
transcriptome and TCR repertoire data from single 
 CD4+CD45RO+CD25−  (CD4+) and  CD8+CD45RO+ 
 (CD8+) T cells of synovial fluid (SF) and peripheral 
blood (PB) tissue in seven oligo-JIA patients. The BAM 
files mapped to human hg19 references were converted 
into FASTQ files using the bamtofastq (v1.3.1) tool and 
remapped to human GRCh38 references (ref-2020-A). 
The FASTQ data were processed using the cellranger [73] 
(v6.1.2) count tools and analyzed using the Seurat [74] 
R package. To preprocess the data, we filtered out cells 
with either >4000 or <200 distinct features and those 
with >10% mitochondrial count. We conducted nor-
malization, identification of highly variable features (i.e., 
feature selection), and scaling data with default settings. 
After performing dimensional reduction using principal 
component analysis (PCA), we used the Harmony [75] R 
package to integrate datasets derived from seven patients 
and two tissue types. Based on the 40 components of 
Harmony, we carried out Uniform Manifold Approxima-
tion and Projection (UMAP) [76] and nearest-neighbor 
graph construction. Then, we determined single-cell 
clusters using 0.5 resolution. We retrieved the results of 
the single-cell TCR repertoire profiling from NCBI GEO 
(GEO study: GSE160097).

Statistical analysis
The Bonferroni correction was applied to determine the 
significance thresholds of TWAS associations (PTWAS < 
7.55 ×  10−07, 0.05/66,196) and PWAS associations (PPWAS 
< 2.16 ×  10−05, 0.05/2311). The significance thresholds 

with the Bonferroni correction were also used in the 
LDSC-SEG analysis, heritability enrichment analysis, 
and genetic architecture analysis. A false discovery rate 
(FDR) was used to determine the significance threshold 
for the TWAS-GSEA, the MAGMA gene set analysis, the 
genetic correlation analyses, and the functional annota-
tion analysis using DAVID. The consensus frequencies of 
HLA allele types were compared using two-sided 2- (con-
trol and JIA), 3- (control, African JIA, and European JIA), 
and 4-sample (control, oligo-JIA, poly-JIA, and sJIA) 
proportion tests, respectively. Using a two-tailed t-test, 
HLA class I and II gene expression levels were compared 
between control and JIA groups. The alpha diversities of 
TCRs were compared between control and JIA groups 
using a two-tailed t-test. When grouped by JIA subtypes 
(control, oligo-JIA, poly-JIA, and sJIA), the alpha diversi-
ties of TCRs were compared using one-way ANOVA with 
post hoc Tukey HSD.

Results
Identification of susceptibility genes associated with JIA 
risk using TWAS and PWAS
To prioritize susceptibility genes and proteins for JIA 
risk, we performed a TWAS by integrating JIA GWAS 
data with the predicted expression of 66,196 gene/tis-
sue pairs from 12 eQTL datasets. We focused on eQTL 
derived from connective tissues due to JIA reflecting a 
chronic inflammation of connective tissues (Table S2) 
[4, 77]. We identified 35 significant TWAS associations 
across 19 genes in four independent genomic regions 
(1p13.2, 1q21.3, 5q11.2, and 16p11.2-12.1) (PTWAS < 7.55 
×  10−07; Fig. 1 and Table S3). Excluding three non-coding 
genes and one pseudogene (NPIPB7) from the 19 TWAS 
genes, 11 out of 15 (73%) genes have been suggested as 
JIA-associated genes, which confirms that our results 
were consistent with previous studies [3, 12, 78–80]. 
Among the remaining four genes, MAGI3 and NFATC2IP 
were mentioned by a previous JIA TWAS study [81], 
while DCLRE1B and NPIPB9 have not previously been 
emphasized as susceptibility genes for JIA, to the best 
of our knowledge (Fig. 1). Next, we conducted a PWAS 
using predictive models of plasma proteins from INTER-
VAL [22] and ARIC [23]. We observed two significant 
PWAS associations of IL27 and ERAP2 in two genomic 
regions (16p11.2-12.1 and 5q15) (PPWAS < 2.16 ×  10−05; 
Fig.  1 and Table S4), which were reportedly involved in 
JIA risks [12, 81].

To distinguish between genes likely causal for JIA risk 
from those that tag risk due to LD and shared regula-
tory features, we performed a probabilistic fine-map-
ping analysis by FOCUS [25] using the same expression 
weights used in our FUSION analyses. Among the 19 
TWAS genes identified by FUSION, FOCUS identified 
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nine genes in 90%-credible sets, which we denote as puta-
tively causal genes affected by genome-wide significant 
GWAS signals (Table S5). Six of the nine (67%) genes had 
>0.4 PIPs, of which MAGI3 (PIP = 0.5), NFATC2IP (PIP 
= 0.417), and DCLRE1B (PIP = 0.405) were putatively 
responsible for JIA risk. Similarly, fine-mapping of PWAS 
results prioritized IL27 with a PIP of 0.98 in the plasma 
protein from the INTERVAL study (Table S5). ERAP2 
from the ARIC study was included in credible sets with 
a PIP of 0.23. Altogether, we identified 19 susceptibility 
genes/ two risk proteins for JIA using TWAS/PWAS and 
prioritized likely causal genes for JIA risk, suggesting that 
our findings provide novel insights into the etiology of 
JIA.

Exploring biological pathways that may contribute 
to the pathogenesis of JIA
To explore the biological effects derived from overall 
TWAS associations from the multi-tissue panels, we 

conducted GSEA with the JIA TWAS results using CP 
gene sets [26]. We found a total of nine CP gene sets 
were significantly involved with JIA TWAS associations 
(FDR < 0.05). Three of the nine gene sets are character-
ized by sulfation (Table 1). The impaired sulfation path-
way was reportedly implicated in diastrophic dysplasia 
leading to cartilage disorder and joint degradations, simi-
lar to the clinical manifestations of JIA [82]. In addition, 
tyrosine-sulfated proteins were reported to play roles in 
the pathogenesis of various AIDs [83]. Four other gene 
sets involved in the IL27 pathway, IL6 family signaling, 
nitric oxide 2 IL12 (NO2IL12) pathway, and IL17 path-
way are associated with immune responses that are rep-
resentatives of AIDs. The T cell apoptosis pathway was 
also significantly implicated in JIA associated with the 
dysregulated T cell responses [84]. Moreover, stathmin is 
known to play a critical role in regulating the cell cycle, 
and its phosphorylation is reportedly important in T cell 
activation [85, 86].

Fig. 1 Manhattan plots for JIA TWAS/PWAS result. The upper and lower panels show Manhattan plots for JIA TWAS and PWAS results, respectively. 
Each dot represents a P-value for a TWAS or PWAS association between JIA and the predicted expression level of a gene or cis-regulated plasma 
protein. The black and green horizontal dashed lines indicate the significance thresholds of TWAS and PWAS with Bonferroni correction (PTWAS < 
7.55 ×  10−07 and PPWAS < 2.16 ×  10−05). Statistically significant TWAS associations of JIA are colored by tissue panels. The black dots of the lower panel 
indicate statistically significant PWAS associations of JIA. The names of TWAS genes and PWAS proteins with PIP > 0.2 in FOCUS are labeled
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We additionally performed a GWAS-based path-
way enrichment analysis using MAGMA [33] with JIA 
GWAS summary statistics and CP gene sets, given that 
HLA signals were dropped from TWAS-based results 
due to complicated LD. The results showed that a total of 
40 gene sets were significantly implicated in JIA (FDR < 
0.05; Table S6). Most pathways were associated with vari-
ous immune system components, such as inflammatory 
cytokines, HLA, immunoglobulins, and T cells. The IL27 
pathway, IL6 family signaling, NO2IL12 pathway, and 
IL17 pathway were observed in both TWAS-GSEA and 
MAGMA (Tables 1 and S6). The gene sets representing 
T1D and autoimmune thyroid disease (AITD) were also 
related to JIA, supporting the idea that JIA is indeed an 
AID. Collectively, our results suggest that impaired sul-
fation pathways and immune signaling, especially T cell-
mediated responses, may contribute to the pathogenesis 
mechanism of JIA.

Estimation of genetic correlations between JIA and other 
traits
Considering that the pathway analysis showed certain 
AIDs, such as T1D and AITD, were associated with 
JIA, we carried out genetic correlation analyses to fur-
ther investigate the association of JIA with other AIDs. 
We estimated the genetic correlations between JIA and 
other traits categorized into two groups, AID-like and 
non-AID-like traits, at the genome- and transcriptome-
wide levels. At the genome-wide level, JIA showed sig-
nificant positive correlations  (FDRLDSC < 0.05) with eight 
out of the ten (80%) AIDs including systemic lupus ery-
thematosus (SLE) (r = 0.66 and  FDRLDSC = 1.24 ×  10−08) 
and exhibited the most significant correlation with the 
 AIDALL trait (r = 0.53 and  FDRLDSC = 7.19 ×  10−11) (Fig. 
S3A). At the transcriptome-wide level, we found signifi-
cant genetic overlaps  (FDRRHOGE < 0.05) between JIA 

and seven AID traits including ulcerative colitis (UC), 
 AIDALL trait, Crohn’s disease, rheumatoid arthritis (RA), 
SLE, primary biliary cirrhosis, and  AIDSURE trait. JIA 
was most significantly correlated with UC (r = 0.35 and 
 FDRRHOGE = 1.28 ×  10−06) and had the most positive 
correlation with T1D (r = 0.65 and  FDRRHOGE = 6.91 × 
 10−02) (Fig. S3B). In particular, T1D was simultaneously 
identified to have highly positive correlations with JIA 
at the genome- (r = 0.62 and  FDRLDSC = 3.58 ×  10−05) 
and transcriptome-wide levels (r = 0.65 and  FDRRHOGE = 
6.91 ×  10−02). Overall, these results support the existence 
of shared genetic contributions to JIA and AIDs at the 
genome- and transcriptome-wide levels.

TWAS associations were validated by transcriptomic 
datasets on JIA
To validate TWAS associations are actually related to 
the gene expression patterns of transcriptomic data, we 
conducted WGCNA using a microarray dataset from 
JIA cases and controls (GSE13501) [40] to identify co-
expression modules composed of genes with highly cor-
related expression patterns (see “Methods”). A total of 
11 co-expression modules were detected and are listed 
in Table S7 (Fig. S1). First, we validated that the clus-
tering of co-expression modules from the microarray 
dataset was recapitulated in independent RNA-seq data-
sets (GSE112057 [41] and GSE79970 [42]), respectively 
(Z-summary score > 2; Fig. S1). Next, we conducted 
GSEA using the 11 co-expression modules as reference 
gene sets and TWAS associations of each panel as a 
ranked gene list. Overall, we observed that TWAS asso-
ciations from the GTEx visceral omentum adipose panel 
(normalized enrichment score (NES) = −1.93 and FDR = 
2.50 ×  10−02) and aorta artery panel (NES = −1.93 and 
FDR = 2.40 ×  10−02) were significantly enriched in the 
magenta module (FDR < 0.05; Fig. S2 and Table S8). The 

Table 1 Biological pathways significantly involved in JIA based on the TWAS associations

Gene set Panel P‑value FDR

Wikipathway: Sulfation biotransformation reaction GTEx: Cells - Transformed fibroblasts 4.56 ×  10−07 8.41 ×  10−04

GTEx: Muscle - Skeletal 7.58 ×  10−06 1.12 ×  10−02

Reactome: Cytosolic sulfonation of small molecules GTEx: Cells - Transformed fibroblasts 6.11 ×  10−06 5.63 ×  10−03

KEGG: Sulfur metabolism GTEx: Muscle - Skeletal 1.16 ×  10−05 1.12 ×  10−02

PID: IL27 pathway GTEx: Whole - Blood 4.97 ×  10−07 8.38 ×  10−04

Reactome: Interleukin 6 family signaling GTEx: Whole - Blood 1.65 ×  10−06 1.39 ×  10−03

BioCarta: NO2IL12 pathway GTEx: Whole - Blood 1.10 ×  10−05 6.17 ×  10−03

YFS: Blood 3.09 ×  10−05 2.33 ×  10−02

BioCarta: T cell apoptosis (TCAPOPTOSIS) pathway YFS: Blood 9.47 ×  10−06 1.85 ×  10−02

BioCarta: Stathmin pathway YFS: Blood 3.57 ×  10−05 2.33 ×  10−02

BioCarta: IL17 pathway YFS: Blood 5.82 ×  10−05 2.84 ×  10−02
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TWAS associations from the NTR blood panel and the 
GTEx skeletal muscle panel were significantly involved in 
black (NES = 1.84 and FDR = 2.40 ×  10−02) and yellow 
(NES = 1.43 and FDR = 4.90 ×  10−02) modules, respec-
tively (FDR < 0.05). These three modules were highly pre-
served in both RNA-seq datasets with the Z-summary 
score > 10 (Fig. S1). We performed functional annota-
tion of the 11 identified modules using gene ontology 
(GO) terms to identify their biological functions (FDR 
< 0.05; Table S9) [46, 47]. The significant GO term of 
the magenta module was “Humoral immune response 
(GO:0006959)” (FDR = 4.16 ×  10−02). The black module 
was significantly associated with “Leukocyte migration 
(GO:0050900)” (FDR = 7.73 ×  10−5 ), while the yellow 
module was enriched in “Regulation of transcription, 
DNA-templated (GO:0006355)” (FDR = 4.34 ×  10−8) 
and “Transcription, DNA-templated (GO:0006351)” 
(FDR = 7.11 ×  10−6). Additionally, significant GO 
terms of the tan module were “Translational initiation 
(GO:0006413)” (FDR = 9.78 ×  10−81) and “rRNA process-
ing (GO:0006364)” (FDR = 8.98 ×  10−71). Taken together, 
we observed that TWAS associations were actually 
enriched in the expression pattern of particular immu-
nological and metabolic gene sets derived from JIA tran-
scriptomic data, suggesting that the TWAS signals may 
be along with transcriptomic signals for JIA.

Disease heritability in JIA‑relevant tissues and cell types
To better understand how genetic variants affect JIA 
risks, we aimed to identify the cell types or tissues rel-
evant for the pathogenesis of JIA using LD score regres-
sion in specifically expressed genes (LDSC-SEG) [48]. 
LDSC-SEG tests whether disease heritability is enriched 
in regions of genes in a specific tissue using stratified LD 
score regression [87], analyzing transcriptome or epig-
enome data together with GWAS. We first applied this 
analysis to 53 and 152 tissues or cell types from the GTEx 
project [49] and Franke lab data [50, 51], respectively. 
Consistent with the reason for using connective tissues in 
the JIA TWAS, this analysis showed that lymphocytes or 
blood tissues were enriched in JIA (Fig. S4). Additionally, 
we detected enrichment for the  CD4+ T cells among 292 
immune cell types from ImmGen [52] in JIA (Fig. S5). 
To support the results from the expression-based LDSC-
SEG analysis, we examined whether JIA-related heritabil-
ity is enriched in epigenetic markers from the ENCODE 
projects [54] and Roadmap Epigenomics [53]. Based on 
431 tissue-specific ChIP-seq annotations of six epigenetic 
marks, we detected an enrichment at the 5% Bonferroni 
threshold (P < 1.16 ×  10−04) for only blood tissue (Fig. S6). 
Notably, the most significant enrichment was observed 
in T cells across active promoters and gene markers 
(Fig. 2A) as well as active enhancer markers (Fig. 2B). To 

validate the Chip-seq results, we used ATAC-seq data 
which is associated with chromatin accessibility in 13 
blood cell  types55. In line with the Chip-seq results, we 
found enrichment in T, B, and NK cells after the Bonfer-
roni correction (P < 3.8 ×  10−03; Fig. 2C).

To test whether these enriched tissues and cell types 
causally mediate JIA risk, we next estimated the propor-
tion of heritability mediated by gene expression levels 
( h2med/h

2
g ) in a tissue context using mediated expression 

score regression (MESC) [57]. When using the all-tis-
sue meta-analyzed expression scores from GTEx, we 
observed 0.34 of h2med/h

2
g for JIA (standard error (se) = 

0.16), which was higher than those from other AIDs (P < 
3.37 ×  10−02; Fig. 2D). We estimated lower h2med/h

2
g from 

the tissue-group meta-analyzed (i.e., 12 connective tis-
sues) ( h2med/h

2
g = 0.217 and se = 0.119) and individual-tis-

sue (i.e., whole blood) expression scores ( h2med/h
2
g = 0.137 

and se = 0.085) than from all-tissue expression scores in 
GTEx data (Fig.  2D), consistent with those in previous 
studies using 42 diseases and complex  traits57. We iden-
tified the highest h2med/h

2
g value in the EBV-transformed 

lymphocytes among 48 GTEx tissues ( h2med/h
2
g = 0.189 

and se = 0.067; Fig. S7), and validated the results by 
whole blood data from eQTLGen (Fig. 2E) [58]. Together, 
our findings strongly suggest that the SNP-based herit-
ability of JIA was closely associated with gene expression 
and active epigenetic markers in blood tissue, especially 
in T lymphocytes.

Polygenicity in the genetic architecture of JIA
In complex and polygenic traits, dissecting joint dis-
tribution of effect size and MAF is important to under-
stand the genetic architecture and to detect signals of 
natural selection [88]. Deleterious mutations to fitness 
are selected against and maintained at a low frequency 
by negative (purifying) selection [89, 90]. Moreover, 
the negative selection in autoimmune disease is impor-
tant because it provides insight into the evolution of the 
human immune system. We conducted genetic archi-
tecture analysis using SBayesS, a recently developed 
method based on the Bayesian mixed linear model with 
GWAS summary statistics [88] to estimate the relation-
ship between SNP effect size and MAF ( S ). The SBayesS 
method also allows us to infer multiple genetic archi-
tecture parameters including the SNP-based heritability 
( h2SBayesS ) and polygenicity ( π ) which is the proportion 
of SNPs with nonzero effects. A negative value of S indi-
cates that SNPs with lower MAF are prone to having 
larger effects, consistent with a model of negative selec-
tion. Overall, we estimated S = −0.96 (posterior stand-
ard error (p.s.e) = 0.10), providing evidence that the 
genetic variants related to JIA have been under negative 
selection (Fig.  3A). Excluding SNPs in the HLA region 
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(chr6:28-34Mb) increased the estimate S in JIA ( S = 
−0.49 and p.s.e = 0.2), which suggests that the SNPs in 
the HLA region contributing toward JIA risk may have 
been under negative selection. The previous studies 
showed that the majority of AIDs have genetic relation-
ships with the HLA area, and numerous distinct HLA 

alleles can predispose people to AIDs [91, 92]. For the 
SNP-based heritability, the estimate of h2SBayesS for JIA 
was 0.47 (p.s.e = 0.03), which was higher when compared 
with other AIDs (Fig. 3A). We also observed that exclud-
ing the HLA region reduced the h2SBayesS to 0.34 in JIA, 
which is consistent with previous studies in AIDs [3, 93]. 

Fig. 2 Disease heritability analysis of JIA. A–C LD score regression in specifically expressed genes (LDSC-SEG) analysis applied to JIA GWAS 
data using epigenetic markers from blood cell types. A The enrichment results of LDSC-SEG analysis using active promoter or gene markers. 
B The enrichment results of LDSC-SEG analysis using active enhancer markers. The black dotted line represents a significant threshold based 
on the Bonferroni-corrected P < 1.16 ×  10−04 (0.05/431). C The enrichment results of LDSC-SEG analysis using ATAC-seq data. The black dotted line 
represents a significant threshold based on the Bonferroni-corrected P < 3.85 ×  10−03 (0.05/13). D,E Estimation of the proportion of heritability 
mediated by the gene expression levels ( h2med/h

2
g ) using mediated expression score regression (MESC) for JIA,  AIDALL, and  AIDSURE. D The MESC 

results of all tissues (expression scores from meta-analyses across all 48 GTEx tissues), connective tissues (expression scores from meta-analyses 
using 12 connective tissues), and whole blood tissue from GTEx v8. E The MESC results from whole blood tissue from eQTLGen. Error bars indicate 
jackknife standard errors
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Importantly, the polygenicity increased to 8.57% after 
excluding the HLA region, although the estimated poly-
genicity ( π ) is about 0.09% in JIA.

Moreover, we estimated the SNP heritability ( h2HESS ) 
using HESS [39] in each of 1703 independently parti-
tioned genomic LD blocks across the genome. The results 
revealed that the total h2HESS was 0.28 in JIA (Fig.  3B), 
slightly lower than that based on SBayesS ( h2SBayesS ) 
(Fig.  3A), and the HLA region significantly explained a 
total of 17.5% heritability in JIA (Bonferroni-corrected P 
< 2.94 ×  10−05; Fig. 3B). In line with the h2SBayesS results, 
the total h2HESS in JIA was higher than the other AIDs. 
Aside from the HLA region, most of the SNP-based her-
itability was distributed uniformly across the genome in 
JIA and other AIDs. Collectively, these results strongly 
suggest that JIA shows higher polygenicity than other 
AIDs in both HLA regions and outside of HLA regions, 
and SNP-based heritability comes from a vastly polygenic 
background.

Estimation of the consensus frequencies of HLA allele 
types and HLA gene expression
The HLA genes in the HLA region on chromosome 6p21 
encode several essential proteins in the immune system 
[94]. Consistent with the SNP-based heritability results 
in the JIA (Fig. 3B), variants in the HLA regions explain 
more heritability than many other variants for many dis-
eases [95–97]. Identifying HLA allele type is essential to 
better understanding the disease etiology, and many tools 
have been developed for HLA typing using NGS data [42, 
60–66]. To explore the association between HLA type 
diversity and JIA risk, we estimated consensus HLA allele 
type frequencies at 12 major loci using seven HLA-typ-
ing software (see “Methods”). We focused on the allele 

types with a significantly different distribution between 
healthy subjects (n = 12) and JIA patients (n = 115) (P 
< 0.05; Table S10). At HLA class I loci, the frequency 
of A*03:01 was approximately tripled in JIA patients 
(12.89%) compared with that in healthy subjects (4.22%) 
(P = 1.10 ×  10−03; Fig. S8). At HLA class II loci, the fre-
quencies of DPB1*04:01, DQB1*03:02, and DRB1*01:01 
were increased by more than twofold in the JIA group 
(33.46%, 14.39%, and 10.29%) compared to in the control 
group (11.21%, 4.23%, and 4.17%), respectively (PDPB1*04:01 
= 8.99 ×  10−07, PDQB1*03:02 = 7.24 ×  10−04, and PDRB1*01:01 
= 1.83 ×  10−02). Notably, DRB1*04:01 (11.39%) and 
DRB3*02:01 (11.43%) were only detected in JIA patients. 
When grouped into three JIA subtypes (oligo-JIA, poly-
JIA, and sJIA) (Fig. S9 and Table S11), the frequencies of 
DRB1*04:01 and DRB3*02:01 were the highest in poly-
JIA patients. Additionally, for the transcriptomic analysis 
of HLA regions, we estimated the locus-specific expres-
sion levels of nine HLA genes in JIA patients and healthy 
controls. The results showed that the expression levels of 
HLA-DPA1, DPB1, DQB1, and DRA were significantly 
lower in JIA patients than in healthy controls (P < 0.05; 
Fig. S10). HLA class II is known to be strongly associated 
with susceptibility to many AIDs including JIA [98–100]. 
Although various mechanisms could induce the down-
regulation of HLA class II gene expression, the lowered 
expression could result in diminished tolerance induction 
of self-reactive T cells, leading to AIDs in the end [101].

In the HLA region, haplotypes are specific to an indi-
vidual ancestral population due to the population-spe-
cific positive selection [102]. We calculated the consensus 
frequencies of HLA types of JIA in African and European 
ancestry to investigate whether heterogeneity is derived 
from different ancestry in HLA allele types for JIA. We 

Fig. 3 Genetic architecture of JIA. A Estimation of the three genetic architecture parameters for JIA,  AIDALL, and  AIDSURE using Summary-data-based 
BayesS (SBayesS). The dots and horizontal bars represent the posterior means and standard errors, respectively. The red and orange colors represent 
SBayesS and SBayesS excluding HLA regions. B Cumulative local SNP heritability across the genome using heritability estimates from Summary 
statistics (HESS). Total SNP-based genes are indicated. The red color shows SNP heritability explained by the HLA region
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focused on the allele types with significantly different dis-
tributions between healthy controls (n = 12), African JIA 
(n = 34), and European JIA patients (n = 81) (P < 0.05; 
Table S12). At HLA class I loci, B*45:01 was not detected 
in healthy controls and was more frequent in African JIA 
patients (11.18%) than European JIA patients (0.62%) (P 
= 8.33 ×  10−22; Fig. 4A). B*40:01, which was not observed 
in African patients, had higher frequencies in European 
patients (10.65%) than in healthy controls (5.36%) (P = 
4.90 ×  10−02). At HLA class II loci, the frequencies of 
DQA1*01:01 and DQA1*03:01 were increased by more 
than fourfold in the European JIA patients (13.68% and 
12.84%) compared to in the African JIA patients (3.05% 
and 1.78%), respectively (PDQA1*01:01 = 9.65 ×  10−08, 
PDQA1*03:01 = 2.56 ×  10−09; Fig.  4B). The frequencies of 
DRB1*04:01 observed only in JIA patients were higher in 
European patients (15.10%) than African patients (2.49%) 
(P = 1.02 ×  10−09; Fig.  4B). Collectively, our results 
showed that HLA allele types had significantly imbal-
anced distributions between the JIA and control groups 
as well as between African and European ancestry, which 
suggests that they may be involved in JIA etiologies.

The T cell receptor repertoire reveals clonal relationships 
between different subpopulations
Along with HLA molecules, antigen-experienced mem-
ory T cells have been implicated as critical drivers of 
autoimmune inflammation [103–106]. Consistent with 
these previous studies, we suggested that T cells were 
associated with JIA etiology using TWAS and JIA SNP-
heritability analysis. Therefore, we hypothesize that the 
TCR repertoire may be involved in JIA etiology because 
the TCRs mediate the recognition of HLA and provide 
critical insights into the adaptive immune response in 
health and disease [107]. To dissect whether the TCR 
repertoire is related to JIA, we estimated the locus-spe-
cific alpha diversities of TCR CDR3 reads using the total 
number of distinct clonotypes and their relative fre-
quencies at the bulk RNA-seq level (GSE112057 [41]). 
We observed alpha diversities of TCR α and β were sig-
nificantly decreased in JIA patients compared with con-
trols (PTCRα = 9.60 ×  10−04 and PTCRβ = 1.36 ×  10−02), 
which indicates that the clonotypic diversities of TCRs 
were reduced in the JIA group (Fig. 5A). When JIA was 
grouped into three subtypes (oligo-JIA, poly-JIA, and 
sJIA), the patterns of alpha diversity in all subtypes were 
consistent with those in the JIA group (Fig. S11 and Table 
S13). These results suggest that a few clonotypes posi-
tively affecting the development of JIA may be dominant 
in the immune repertoire of JIA patients.

Next, we investigated whether different T cell popula-
tions showed differences in TCR diversity at the single-
cell level. Single-cell TCR sequencing can accurately 

measure the diversity of T cell populations, which is 
critical for understanding the complexity of the immune 
response by providing paired TCR α and β informa-
tion [108]. We used scRNA-seq data (SRP288574 [72]) 
derived from single  CD4+CD45RO+CD25−  (CD4+) and 
 CD8+CD45RO+  (CD8+) T cells in SF and PB tissues of 
seven oligo-JIA patients. After a series of quality con-
trol filters (see “Methods”), nine  CD4+ and seven  CD8+ 
T cell clusters were identified (Fig. S12, S13, and 5B), 
and each cluster represented a distinct distribution 
of clonotypes (Fig.  5C). Among 67,235 single T cells, 
33,855 cells (50.3%) had at least one pair of full-length 
TCR α and β chains. In addition, 13,113 of the 33,855 
cells (38.7%) expressed a full-length α-β chain pair 
detected at least twice. Expanded clonotype cells were 
most prevalent in two  CD8+ clusters (CD8_C1 and 
CD8_C3) and one  CD4+ cluster (CD4_C5) (Fig.  5C). 
Compared with the other clusters, the CD8_C1 cluster 
had higher expression of several markers of recently 
activated effector memory or effector T cells (desig-
nated as  CD8+ GZMH+  TEMRA cells) and the CD8_C3 
cluster had higher expression of several markers of 
effector memory T cells (designated as  CD8+ GZMK+ 
 TEM cells) (Table S14). The CD4_C5 cluster showed 
higher expression of CXCL13 and BHLHE40 (desig-
nated as CXCL13+BHLHE40+  TH cells) (Fig. S14 and 
Table S14). Each cluster of the  CD8+ GZMH+  TEMRA, 
 CD8+ GZMK+  TEM, and CXCL13+BHLHE40+  TH cells 
was observed to have a substantially lower alpha diver-
sity value than most other clusters (Fig.  5D). Addi-
tionally, the single T cell analysis by RNA-seq and 
TCR tracking expansion (STAR TRA C-expa) index, 
which quantitatively describes tissue clonal expansion, 
revealed the  CD8+ GZMH+  TEMRA,  CD8+ GZMK+  TEM, 
and CXCL13+BHLHE40+  TH cells as the clusters with 
the highest degree of clonal expansion for each cell 
type (Fig. S15).

To emphasize disease-specific memory T cell clus-
ters, we conducted GSEA using the co-expression 
modules from case-control JIA expression data as ref-
erence gene sets (Fig. S16). The results showed that 
only the CXCL13+BHLHE40+  TH cells were positively 
enriched in the black module gene set (NES = 1.93 and 
FDR = 1.20 ×  10−6; Fig. 5E). Notably, the black module 
genes, associated with leukocyte migration essential for 
inflammation and innate immunity [109] (Table S9), 
were positively enriched in TWAS associations from 
NTR blood tissue (Fig. S2C). In summary, we identified 
clonally expanded T cell subpopulations in JIA patients. 
The CXCL13+BHLHE40+  TH cells were significantly 
related to case-control JIA expression data, suggesting 
that the cells might be potential therapeutic targets for 
JIA.
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Fig. 4 Consensus frequencies of HLA allele types in healthy controls, African JIA patients, and European JIA patients. A Bar plots showing 
the consensus frequencies of HLA allele types at HLA class I loci. B Bar plots showing the consensus frequencies of HLA allele types at HLA class II 
loci. The x- and y-axis indicate the names and frequencies of HLA allele types, respectively. The names of HLA types having significantly different 
distributions between healthy controls, African JIA patients, and European JIA patients were represented in bold (P < 0.05)
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Discussion
Using a TWAS/PWAS to identify biologically interpret-
able susceptibility genes/proteins, we detected 19 TWAS 
genes and two PWAS proteins significantly associ-
ated with JIA risks (Fig. 1). Since trait-associated genes/
proteins identified by TWAS/PWAS do not fully elu-
cidate the disease’s causality [110], we performed a fine-
mapping analysis to prioritize putatively causal genes/
proteins for JIA. We found that MAGI3, DCLRE1B, 
NFATC2IP, IL27, and ERAP2 were responsible for JIA 
risks and are implicated in the immune system. MAGI3 
encodes the PDZ proteins involved in T cell homeosta-
sis and mediates the suppression of the PI3K/Akt path-
way [111, 112]. The downregulation of MAGI3 (ZTWAS 
= −5.18; Table S3) may lead to an upregulation of the 
PI3K/Akt pathway, which, in turn, downregulates the dif-
ferentiation of T cells toward Treg [10, 112]. DCLRE1B 
was reportedly implicated in an inherited bone marrow 
failure syndrome associated with immune deficiency 
[113]. NFATC2IP regulates the nuclear factor of activated 
T cells (NFAT)-driven transcription of specific cytokine 
genes, including IL4 in T-helper 2 cells [114]. Con-
sidering that IL4 production is affected by IL27 [115], 
NFATC2IP may be linked to the inflammatory cytokine 
pathways identified by the TWAS-GSEA (Table 1). Con-
sistent with our PWAS result of IL27 (ZPWAS = −5.19; 
Table S4), the synovial fluid level of IL27 was reported 
to be significantly decreased in enthesitis-related arthri-
tis (ERA) patients, one of the JIA subtypes [116]. Addi-
tionally, ERAP2 (ZPWAS = 4.57; Table S4) reportedly has 
crucial roles in immunomodulating immune responses 
[117]. The SNP in a splice site for ERAP2 had a genome-
wide significant association with JIA [99], and polymor-
phism in genes encoding ERAP1 and ERAP2 is known 
to predispose to ERA [118]. While our TWAS genes, 
MAGI3 and NFATC2IP, were mentioned in previous JIA 
TWAS studies [81, 119, 120], we could better understand 
the genetic contribution of risk genes to JIA pathogen-
esis by conducting a PWAS together with fine-mapping 
and TWAS-based pathway enrichment analysis. A pro-
teome-level analysis can provide more relevant biological 

information, capture alternative splicing, and post-trans-
lational modifications about disease mechanisms.

In genetic architecture analysis, SNP-based heritabil-
ity was spread uniformly throughout the genome aside 
from a modest fraction in the HLA regions (about 18%) 
(Fig. 3). The results can be explained by an “omnigenic 
model”. The omnigenic model is a theoretical frame-
work in genetics and genomics that proposes that most 
traits, diseases, and other complex phenotypes are 
influenced by the combined effects of a large number 
of genes, rather than being driven by just a few “core” 
genes [121, 122].

Alongside the TWAS/PWAS and genetic architecture 
analysis, we conducted HLA-typing analyses as per the 
disease state and ancestry. In the investigation of JIA 
susceptibility, HLA typing is an indispensable tool for 
pinpointing genes and proteins linked to the disease, 
becoming essential in immunogenetics research [123]. 
Different human populations exhibit different genetic 
architecture due to diverse LD patterns, and study-
ing multiple ancestries allows for a more comprehen-
sive understanding of HLA variation. Additionally, the 
genes encoding HLA are characterized by a remarkable 
degree of polymorphism, meaning they exist in numer-
ous different HLA alleles. The prevalence of these alleles 
varies considerably across ethnic groups [124, 125]. 
Understanding HLA typing among various ancestries can 
have important clinical consequences, opening doors to 
more precise medical diagnoses and targeted therapeu-
tic interventions. As the rigorous HLA analysis using 
seven HLA-typing software, we suggested DRB1*04:01 
and DRB3*02:01 showing >10% consensus frequencies in 
only JIA patients as risk alleles for JIA. In line with our 
result, it was reported that DRB1*01 and DRB1*04 might 
be implicated in the genetic predisposition of rheuma-
toid factor+ JIA and that DRB1*04 was confirmed to 
be involved in sJIA [126]. In addition, DRB1*04:01 and 
DQB1*03:02 may have a shared contribution to JIA and 
T1D since specific interactions between DRB1*03:01-
DQB1*02:01/DRB1*04:01-DQB1*03:02 genotypes were 
previously described to increase T1D risks [127]. As 

Fig. 5 TCR diversities in JIA. A Box plots showing the alpha diversities of TCR α and β in healthy control and JIA groups. The y-axis indicates 
alpha diversity representing the clonotypic diversity of specific TCR locus. Green and red dots indicate samples of healthy controls and JIA 
patients, respectively. Asterisks denote the significance levels of differences between the clonotypic diversities of TCRs within healthy controls 
and that within JIA patients. *, P < 0.05; **, P < 0.01; ***, P < 0.001. B A Uniform Manifold Approximation and Projection (UMAP) plot of 67,235 T cells 
from seven JIA patients showing 16 major clusters (nine for 34,605  CD4+ and seven for 32,630  CD8+ T cells). Each dot represents an individual T cell 
and color indicates cluster origin. C Left. A bar plot showing the number of single T cells and frequencies of unique and expanded T cell clones 
in each cluster. The inset numbers indicate the proportion of the cell type in the cluster. Right. UMAP plot showing the clusters with the clone types. 
The colors correspond to the number of clones (i.e. clonal abundance). D A scatter plot showing the alpha diversity of TCR in each cluster. The red 
and blue colors denote  CD4+ and  CD8+ T cells, respectively. E Module enrichment analysis between expression levels of scRNA-seq CD4_C5 cluster 
and black co-expression gene set derived from JIA case-control expression data (GSE13501). The gene list of the black modules is in Table  S9.

(See figure on next page.)
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the distribution of HLA alleles varies among different 
ancestries, multi-population needs to be considered an 
important factor in studying the associations between 

HLA allele types and disease risks [128]. Through HLA-
typing analysis utilizing JIA patients’ multi-ancestry 
information, we identified ancestry-specific risk alleles in 

Fig. 5 (See legend on previous page.)
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both HLA class I (B*40:01 and B*45:01) and HLA class 
II (DQA1*01:01, DQA1*03:01, and DRB1*04:01) (Fig. 4). 
Even though some HLA types were previously reported 
as risk alleles for JIA in specific populations, few HLA 
studies have compared risk alleles for JIA between differ-
ent ancestral groups [123, 129].

A recent study showed that there is a hypothesis that 
HLA risk alleles may affect the risks of autoimmunity 
by influencing thymic T cell selection [130]. T cells with 
receptors that recognize self-HLA molecules and interact 
with foreign antigens are selected during T cell devel-
opment in the thymus [131]. In AIDs, self-antigens may 
induce immune responses by self-reactive T cells simi-
lar to how foreign antigens trigger immune responses 
[132]. As the proliferation of antigen-specific lympho-
cytes is induced by immune responses, we believe that 
the reduced alpha diversities of TCRs within JIA patients 
may be attributed to the selective increase of a few dif-
ferent self-reactive clonotypes at the levels of individual 
patients (Fig.  5). In fact, circulating  CD4+ T cells repli-
cating the phenotypical signature of T lymphocytes infil-
trating the inflamed synovium were increased in patients 
with JIA [133]. Previous clinical studies also reported 
that the alpha diversity of the TCR repertoire was sig-
nificantly reduced in patients with RA or SLE that are 
also AIDs [134–136]. At the single-cell level, our results 
showed that clonally expanded T cell subpopulations in 
JIA patients, especially CXCL13+BHLHE40+  TH cells, 
were significantly involved in JIA risks (Fig. 5). The PD-
1+TOX+BHLHE40+ population of  CD4+ T cells was 
reported to presumably support extrafollicular B cell 
activation by secreting IL21 and CXCL13 in JIA [72]. In 
addition, it was reported that CXCL13-producing  CD4+ 
 TH cells induced in RA synovium may be involved in the 
recruitment of B cells and circulating follicular helper T 
cells at inflammation sites [137].

Although our study successfully identified susceptibility 
genes/proteins for JIA by TWAS/PWAS, functional stud-
ies are needed to clarify the exact genetic effects derived 
from the genes/proteins. We excepted genes from the 
HLA region due to its structural diversity and long-range 
LD in the TWAS/PWAS; however, the GWAS trait asso-
ciations have been more reported in the HLA region than 
in any other locus [11]. To compensate for this situation, 
we identified the consensus HLA allele types using seven 
different HLA-typing tools with RNA-seq data. The 
genetic architecture analysis, especially for SNP-based 
heritability, requires additional confirmation because we 
estimated the heritability using GWAS summary statis-
tics data with reference LD dataset. In addition, the pub-
licly available data we used had some limitations. While 
it is crucial to study the pathological differences between 
JIA subtypes, the GWAS summary statistics data for JIA 

comprising 8 subtypes was used because there were very 
few publicly available GWAS data for each JIA subtype 
(See “Methods”). The scRNA-seq dataset was derived 
solely from oligo-JIA patients. Since the RNA-seq data-
set for HLA typing did not contain ancestral information 
on healthy subjects, the ancestry-specific risks of HLA 
alleles need to be further confirmed in the control group. 
Additionally, most eQTL/pQTL datasets for TWAS and 
PWAS, along with GWAS summary statistics for JIA, are 
primarily focused on individuals of European descent. 
This creates a critical gap in our understanding of com-
plex traits across diverse populations [138]. Fortunately, 
recent advancements in comprehensive public resources 
have enabled researchers to employ multi-ancestry 
approaches for TWAS/PWAS [23, 139], providing a way 
for more inclusive and robust genetic analyses for JIA.

Conclusions
Our findings shed new light on the pathogenesis of JIA 
and provide a strong foundation for future mechanistic 
studies aimed at uncovering the molecular drivers of JIA.

Abbreviations
JIA  Juvenile idiopathic arthritis
AID  An autoimmune disease
SNP  Single-nucleotide polymorphism
GWAS  Genome-wide association study
eQTL  Expression quantitative trait loci
pQTL  Protein quantitative trait loci
TWAS  Transcriptome-wide association study
PWAS  Proteome-wide association study
HLA  Human leukocyte antigen
TCR   T cell receptor
LD  Linkage disequilibrium
MHC  Major histocompatibility complex
PIP  Posterior inclusion probability
T1D  Type 1 diabetes
UC  Ulcerative colitis
SLE  Systemic lupus erythematosus
RA  Rheumatoid arthritis
FDR  False discovery rate
SF  Synovial fluid
PB  Peripheral blood
ERA  Enthesitis-related arthritis
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Additional file 1: Supplementary Figure S1. Identification of co-
expression modules using GSE13501 and WGCNA. (A) A dendrogram 
showing co-expression modules based on the dissimilarity of topological 
overlap measurement. Color bars represent the randomly assigned colors 
for the module names. The orders of module colors are purple, green, 
black, magenta, yellow, turquoise, blue, red, pink, tan, and brown. (B) The 
result of module preservation analysis using GSE13501 as a reference set 
and GSE112057 as a test set. (C) The result of module preservation analysis 
using GSE13501 as a reference set and GSE79970 as a test set. The green 
and blue dotted lines indicate the thresholds of significance, respectively 
(Z-summary score > 2 and Z-summary score > 10). Supplementary 
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Figure S2. Functional annotation of co-expression modules enriched 
with TWAS associations. (A) A GSEA plot using a ranked gene list from 
GTEx: Adipose Visceral Omentum and magenta module (normalized 
enrichment score (NES) = −1.93 and FDR = 0.025) (B) A GSEA plot 
using a ranked gene list from GTEx: Artery Aorta and magenta module 
(NES = −1.93, and FDR = 0.024). (C) A GSEA plot using a ranked gene 
list from NTR: Blood and black module (NES = 1.84, and FDR = 0.024). 
(D) A GSEA plot using a ranked gene list from GTEx: Muscle Skeletal 
and yellow module (NES = 1.43, and FDR = 0.049). Supplementary 
Figure S3. Genetic correlations between JIA and other traits at the 
genome- and transcriptome-wide levels. AID-like and non-AID-like 
traits were compared with JIA. The range of genetic correlation coef-
ficient and FDR values are represented by a color bar and symbol size, 
respectively. The shape of the symbol indicates the significance of 
the corresponding correlation. (A) Genetic correlations between JIA 
and other traits at the genome-wide level. (B) Genetic correlations 
between JIA and other traits at the transcriptome-wide level, based 
on the TWAS results. S stands for significant and NS for non-significant. 
Supplementary Figure S4. Heritability enrichment analysis using 
tissue or cell type expression. Linkage disequilibrium (LD) score regres-
sion in specifically expressed genes (LD-SEG) analysis applied to JIA 
GWAS data. (A) The enrichment results of LD-SEG analysis using GTEx 
data. (B) The enrichment results of LD-SEG analysis using Franke lab 
data. The red dotted lines represent a significant threshold based on 
the Bonferroni correction. P-values of 9.43 ×  10−04 (0.05/53) and 3.28 
×  10−04 (0.05/152) are the significant thresholds of the results from 
GTEx and Franke lab data, respectively. Supplementary Figure S5. 
Heritability enrichment analysis using immune cell type expression. 
The enrichment results of LD-SEG analysis using ImmGen datasets. 
The black dotted line represents a significant threshold based on the 
Bonferroni-corrected P < 1.71 ×  10−04 (0.05/292). Supplementary 
Figure S6. Heritability enrichment analysis using epigenetic markers.  
The enrichment results of LD-SEG analysis using epigenetic markers 
of different tissue types. The red dotted lines represent a significant 
threshold based on the Bonferroni-corrected P-value< 1.16 ×  10−04 
(0.05/431). Supplementary Figure S7. Estimation of the proportion 
of heritability mediated by the gene expression levels (). The bar plots 
show the results of mediated expression score regression (MESC) using 
GTEx v8 and eQTLGen data. Error bars indicate jackknife standard errors. 
Supplementary Figure S8. Consensus frequencies of HLA allele types 
in healthy control subjects and JIA patients. (A) Bar plots showing the 
consensus frequencies of HLA allele types at HLA class I loci. (B) Bar 
plots showing the consensus frequencies of HLA allele types at HLA 
class II loci. The x- and y-axis indicate the names and frequencies of HLA 
allele types, respectively. The names of HLA types detected only in the 
JIA group are marked in red. The names of significantly different HLA 
types observed in the healthy control and JIA groups are represented in 
bold (P < 0.05). Supplementary Figure S9. Consensus frequencies of 
HLA allele types in healthy control subjects and JIA patients grouped by 
subtypes. (A) Bar plots showing the consensus frequencies of HLA allele 
types at HLA class I loci. (B) Bar plots showing the consensus frequen-
cies of HLA allele types at HLA class II loci. The x- and y-axis indicate the 
names and frequencies of HLA allele types, respectively. The names of 
significantly different HLA types observed in the healthy control and 3 
JIA subtype groups are represented in bold (P < 0.05). Supplementary 
Figure S10. Boxplots showing the locus-specific expression levels of 
HLA class II genes. Boxplots showing the expression levels of HLA class 
II genes, (A) DPA1,(B) DPB1, (C) DQB1, and (D) DRA, in healthy controls 
and JIA patients. Asterisks represent the significance levels of difference 
between the HLA gene expression levels in JIA patients and those in 
healthy controls. *, P < 0.05; **, P< 0.01. Supplementary Figure S11. 
The clonotypic diversities of TCRA and TCRB loci in healthy controls and 
patients of 3 JIA subtypes. Box plots showing the alpha diversities of (A) 
TCRA and (B) TCRB loci in the healthy controls and 3 JIA subtypes. The 
y-axis indicates alpha diversity representing the clonotypic diversity. 
Colored dots indicate samples of healthy controls and JIA patients of 
specific subtypes, respectively. Asterisks represent the significance 
levels of differences between the clonotypic diversities of TCRA and 
TCRB in healthy controls and those in patients of each JIA subtype. 
Supplementary Figure S12. Quantification of the cluster distribution. 

(A) Bar plot showing cluster distribution of the two different T cell types. 
(B) Bar plot showing cluster distribution of the seven different JIA patients. 
(C) Bar plot showing cluster distribution of the two tissue types. The y-axis 
of the bar graph denotes the normalized proportions. (D) Alluvial diagram 
showing the distribution of T cell types. Three categorical axes are vari-
ables (i.e., origin tissues, clusters, and T cell types) along which the data are 
grouped. Each horizontal spline (called alluvium) corresponds to a fixed 
value of each axis variable, indicated by T cell types’ of colors. The red and 
blue colors correspond to  CD8+ and  CD4+ T cells, respectively. Supple‑
mentary Figure S13. UMAP plot for T cell types and tissue types in dif-
ferent clusters. Each dot represents an individual T cell and color indicates 
cluster origin. Supplementary Figure S14. Expression levels of signature 
genes in each cluster. (A) UMAP plot showing the expression levels of four 
selected genes. Each hexagon represents summarizing points into binned 
hexagon cells (The number of bins partitioning the range = 50) using 
schex R package. The color bar denotes the proportion of observations in 
the bin greater than 0. (B) Dot plot representing the expression levels of 
six selected genes. The size of dots denotes the percentage of cells within 
a cluster and the color bar encodes the average expression level of the 
selected genes across all cells within a cluster. Supplementary Figure S15. 
Clonal expansion levels of the clusters. Clonal expansion levels of each 
cluster in (A)  CD4+ T cells and (B)  CD8+ T cells. STAR TRA C-expa quantified 
clonal expansion levels for each JIA patient (n = 7). *FDR < 0.05, **FDR 
< 0.01, two-sided Wilcoxon test. Supplementary Figure S16. Module 
enrichment analysis between expression levels of scRNA-seq CD4_C5 
cluster genes and co-expression gene sets derived from JIA case-control 
expression data. GSEA plots between expression levels of scRNA-seq 
CD4_C5 cluster and co-expression of (A) Tan and (B) Green modules 
derived from case-control expression data of GSE13501. The gene lists of 
modules are in Table S7.

Additional file 2: Table S1. The list of 12 reference eQTL panels used 
in the TWAS for JIA. Table S2. The list of the total TWAS associations for 
JIA from the connective tissues. Table S3. The list of 35 significant TWAS 
associations for JIA (PTWAS < 7.55 × 10−07). Table S4. The list of the total 
PWAS associations for JIA. Asterisks represent significant PWAS associa-
tions after Bonferroni correction (PPWAS < 2.16 × 10−05). Table S5. 
The result of fine-mapping of TWAS/PWAS signals by using the FOCUS. 
Table S6. Biological pathways significantly involved in JIA, identified by 
the MAGMA (FDR < 0.05). Table S7. The list of Entrez IDs of genes in 11 co-
expression modules identified by WGCNA. Table S8. The result of gene set 
enrichment analysis with TWAS associations using co-expression modules 
as reference gene sets. Table S9. Functional annotation of the 11 modules 
with GO terms using DAVID, respectively. Table S10. HLA allele types hav-
ing significantly imbalanced distribution between healthy controls and JIA 
patients (P < 0.05). Table S11. HLA allele types having significantly imbal-
anced distribution between healthy controls, oligo-JIA, poly-JIA, and sJIA 
patients (P < 0.05). Table S12. HLA allele types having significantly imbal-
anced distribution between healthy controls, African JIA, and European 
JIA patients (P < 0.05). Table S13. The P-values calculated by comparing 
the alpha diversity of TCRs. Table S14. Expression profiles of gene markers 
in each T cell cluster.
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