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Abstract

Fibroblast-like synoviocytes (FLSs) play a central role in RA pathogenesis and are the main cellular component

in the inflamed synovium of patients with rheumatoid arthritis (RA). FLSs are emerging as promising new therapeutic
targets in RA. However, fibroblasts perform many essential functions that are required for sustaining tissue homeo-
stasis. Direct targeting of general fibroblast markers on FLSs is challenging because fibroblasts in other tissues might
be altered and side effects such as reduced wound healing or fibrosis can occur. To date, no FLS-specific targeted
therapies have been applied in the clinical management of RA. With the help of high-throughput technologies such
as scCRNA-seq in recent years, several specific pathogenic FLS subsets in RA have been identified. Understanding

the characteristics of these pathogenic FLS clusters and the mechanisms that drive their differentiation can provide
new insights into the development of novel FLS-targeting strategies for RA. Here, we discuss the pathogenic FLS sub-
sets in RA that have been elucidated in recent years and potential strategies for targeting pathogenic FLSs.
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Introduction

Rheumatoid arthritis (RA) is one of the most common
rheumatic diseases characterized by persistent synovial
inflammation in multiple joints along with bone damage
[1] and affects approximately 0.5~ 1% of the population
worldwide [2]. Current drugs for treating RA including
conventional synthetic disease-modifying anti-rheumatic
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drugs (csDMARD) and biological or targeted DMARDs
(b/tsDMARDSs) mainly target immune cells and inflam-
matory cytokines. Although b/tsDMARDs have greatly
improved outcomes in patients with RA, approximately
40% of patients with RA do not respond to individual
biologic therapies [3], and a significant proportion of
patients with RA still have active disease and are consid-
ered as “difficult-to-treat RA” [4]. Additionally, general
immune suppression by traditional immunosuppressive
cell therapies can significantly increase the risk of infec-
tion, which remains a major challenge for RA manage-
ment. A previous study showed molecular signature of
synovium was different in patients who responded to
IL-6 or CD20 respectively. Moreover, fibroblasts encod-
ing gene signature was substantially increased in patients
who showed no response to both IL-6 and CD20 targeted
therapies [5]. Patients who do not respond to two biolog-
ics presented with a pauci-immune phenotype in the syn-
ovium [6]. These findings suggest that stromal cells are an
emerging attractive new therapeutic target in RA.
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Fibroblast-like synoviocytes (FLSs) are the main cell
component in the inflamed synovium of patients with RA
[7]. The synovium is composed of two layers: the intimal
lining layer and the sublining layer [6]. In homeostatic
states, the synovial lining is comprised of FLSs and mac-
rophages (2-3 cell layers in total). In RA, the lining layer
expands, and immune cells such as lymphocytes, mac-
rophages and dendritic cells accumulate in the sublining
layer [8]. Instead of sustaining homeostasis in the physi-
ological state, FLSs in RA exhibit a “proinflammatory” or
“aggressive/tissue damage” phenotype and increase the
expression of inflammatory cytokines, chemokines and
matrix metalloproteinases, leading to inflammation per-
sistence and bone damage [8]. FLSs have been proven to
play a central role in the pathogenesis of RA [9], and ther-
apeutic strategies targeting FLSs might avoid systemic
immunosuppressive consequences, in contrast with the
immunosuppressive therapies. Thus, FLSs have long been
considered as promising new therapeutic targets for RA
[10]. Recent published reviews have summarized where
do we stand in the era of FLS-targeted therapy [11, 12].
To date, no effective FLS-targeting therapies have been
approved for use in the clinical treatment of RA, as fibro-
blasts are enriched in a wide array of tissues with mul-
tiple functions that are important for sustaining tissue
homeostasis, and FLSs in the synovium cannot be easily
distinguished from fibroblasts in other tissues by spe-
cific markers; thus, direct targeting of general fibroblasts
markers in FLSs is a challenge for RA treatment.

With the help of high-throughput technologies such
as scRNA-seq and CyTOF in recent years, our under-
standing of functionally distinct subsets of fibroblasts
has been largely explored. Several pathological FLS phe-
notypes were found to be specifically expanded in RA.
These novel RA-specific pathogenic FLS clusters might
provide new promising therapeutic targets that could sig-
nificantly decrease the side effects of general fibroblast-
targeted therapies. Here, we review recent findings on
pathogenic FLS subsets in RA and potential targeting
strategies with the aim of providing a better understand-
ing of the heterogeneity of FLSs in RA and new insights
into FLS-targeted therapy.

Pathogenic effects of FLSs in RA

In the physiological state, FLSs directly impact the
synovial fluid composition by producing hyaluronic
acid and other joint lubricants, such as lubricin (also
known as proteoglycan 4). FLSs play an important role
in helping shape and maintain the synovial extracellular
matrix (ECM) by producing matrix components (such
as fibronectin, type I and III collagens, vimentin, tenas-
cin, proteoglycans and laminin) and ECM-degrading
enzymes (such as proteases, matrix metalloproteinases,
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hyaluronan synthase, and cathepsins) [6, 13]. Addition-
ally, FLSs under physiological conditions may have an
anti-inflammatory/pro-resolving ability that helps sus-
tain immune homeostasis in the local immune environ-
ment [14]. In RA, FLSs lose their homeostatic phenotype
and acquire “proinflammatory” and “aggressive/tissue-
damaging” phenotypes that mediate the persistence of
inflammation and cartilage/bone damage. The pathologi-
cal effects mediated by RA-FLSs include the following:
(1) enhanced migration and proliferation with reduced
apoptosis, which results in hyperplastic rheumatoid pan-
nus formation and leads to direct cartilage and bone
damage; (2) overproduction of matrix metalloproteinases
(MMPs) (such as MMP1, MMP3 and MMP13), aggre-
canases (ADAMTS4 and ADAMTSS5) [9], and RANKL
[15], which damage the collagen-rich structures of joint
tissues and promote osteoclast differentiation; (3) over-
production of proinflammatory cytokines (such as type
1 interferons [16], IL6 [17]) and chemokines (such as
CCL5, CCL8, CXCL5 and CXCL10 [18]) that direct the
recruitment of immune cells into joints; (4) promotion of
T-cell [19-21] and B-cell [22—-24] activation and differen-
tiation. The various physiological and pathogenic effects
of FLSs suggest their functional heterogeneity.

Pathogenic FLS subsets in RA

The FLS subsets in RA reported in recent studies are
summarized in Table 1 [14, 25-34], and the pheno-
typic characteristics of the pathogenic FLS subsets are
described. Among those markers, cadherin-11 (CDH-
11), fibroblast activation protein a (FAPa) and podo-
planin (PDPN/GP38) are considered as general markers
that associated with the pathogenic FLS phenotype in
RA [14, 35]; however, FLSs in the physiological state may
also express these markers but at relatively low levels.
CDH-11 was reported to be a relatively specific marker of
FLSs compared with fibroblasts in other tissues [36, 37].
CDH-11 regulates the production of several proinflam-
matory cytokines, such as IL-6 [38]. CDH-11 knockout
mice were resistant to joint inflammation and cartilage
erosion, suggesting the vital role of CDH-11" FLSs in the
pathogenesis of RA [36]. PDPN is expressed predomi-
nantly on the lining layer, and studies have shown that a
small number of FLSs in the sublinling layer also express
PDPN [25, 29]. PDPN™ FLSs were found to be expanded
in RA but not in OA or healthy synovial tissue [14, 39].
PDPN™* FLSs could migrate and invade cartilage in a
mouse model of cartilage destruction, suggesting that
PDPD* FLSs are pathogenic and capable of invasion and
destruction [25]. Previous research has demonstrated
that PDPN*TCD45 CD31" cells, termed PRIME cells, can
be found in peripheral blood and are similar to PDPN*
FLSs. The proportion of PRIME cells increased before
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RA flare-up, thus verifying the important role of PDPN*
FLSs in RA pathogenesis [40]. FAP« is considered as a
marker of fibroblast activation. In RA, FAPa colocalized
with PDPN in the synovium. Moreover, FAPa plays an
important role in remodeling the immune environment
by mediating the interaction of FLSs with immune cells,
regulating cytokine secretion and initiating the immune
response [41], and deletion of FAPat FLSs ameliorated
both inflammation and bone erosion in a mouse model
of arthritis [29].

Pathogenic PDPN* or FAPa® FLSs can be further
divided into functionally distinct pathogenetic subsets.
In 2019, Adam P Croft et al. [29] classified FAPaPDPN™*
FLSs into proinflammatory (CD90"FAPa*PDPNT, sub-
lining) and bone damage (CD90 FAPa*PDPN™, lining)
subsets based on the expression of CD90. Injection of
CD90*FAPa*PDPN™ FLS into the inflamed ankle joint
of mice led to more severe and persistent joint swelling,
with greater leukocyte infiltration. In contrast, injection
of CD90"FAP*PDPN* FLSs led to increased osteoclast
activity and joint damage but did not affect the sever-
ity of joint inflammation. Similarly, several other studies
also revealed expanded CD90" FLSs with proinflamma-
tory features in the sublining area in RA patients [26—
28]. Thus, expression of CD90 can be used to designate
proinflammatory FLS subsets. Furthermore, Fan Zhang
et al. [28] classified CD90" FLSs into three subsets,
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namely, CD90*CD34* FLSs, CD90"HLA-DRAMSE" FLSs,
and CD90"DKK3* FLSs. Among these subsets,
CD90"HLA-DRAM" FLSs were substantially expanded
and correlated with cytokine and chemokine expression
in RA. The pathogenic FLS subsets in RA and their char-
acteristic markers are summarized in Fig. 1.

Resolving FLS subsets in RA

FLSs play various physiological functions in the homeo-
static state but transform from a friend to a foe in patients
with RA [42], indicating that different FLS subsets are
involved in active RA and remission/homeostatic states.
In 2020, Stefano Alivernini et al. [31]. analyzed FLSs from
patients with active RA and those in remission. FLSs
expressing MMPs can be classified into a lining-layer FLS
cluster and those expressing collagens and immune medi-
ators can be classified into four sublining-layer clusters.
Although the relative proportions of these clusters were
similar in patients with active RA and those in remission,
their transcriptomes differed. FLS clusters in RA patients
in remission expressed more mediators related to tissue
repair and the resolution of inflammation. Among these
subsets, CD90"CXCL14™" cells in RA patients in remis-
sion expressed high levels of GAS6, which may contrib-
ute to the regulatory functions of lining-layer MerTKP®
macrophages to promote the resolution of inflammation.
To explore the profiles of normal FLSs and molecular

O ® 9o O 0 & ®
PDPN*CD45CD31
{ Sublining Layer J[ Lining Layer J
FAPG,PDPN,CDH-11
CD90, CD248 CD55, PRG4
,,"l Endothelium ’ ¢ Immune interacting
_/ .. « Highly expanded in RA
‘ ' Vi R VHLINAGE o IL-6, CXCL12, CXCL9
‘ R 4 NOTCH3
\ )\ \\’\) Ciw ” PRG4'FLS
o CD90* FLS 3 ?
\ CD90* HLA-DR'FLS
® :  CD55'FLS
i& o
3 Bone effector
CD90* DKK3*FLS CD90* CD34*FLS  : * MMPs, RANKL

Fig. 1 Pathogenic FLS subsets in RA. FLSs in the inflamed synovium can be anatomically distinguished into lining FLSs and sublining FLSs. FAPq,
PDPN, and CDH-11 are expressed mainly on lining FLSs and also on sublining FLSs. The expression of FAPa, PDPN, and CDH-11 may resemble

the pathogenic FLS phenotype, as targeting these markers can ameliorate arthritis in animal models of RA. Pathogenic FLSs in RA can be further
subclassified into immune-interacting FLSs and bone-effector FLSs based on the expression of CD90 and CD55/PRG4, respectively. CD90

is expressed on sublining FLSs and can be used to designate proinflammatory FLS subsets that mediate inflammation persistence. Among CD90*
FLSs, a subset with high HLA-DRA expression that can secrete several proinflammatory cytokines and chemokines is substantially expanded in RA

patients
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networks controlling the transition from homeostatic to
arthritic FLSs, in 2022, Marietta Armaka et al. [14]. per-
formed a combined analysis of single-cell transcriptomes
and epigenomes of FLSs derived from naive and hTNFtg
mice (mice that overexpress human TNF, a murine model
for RA). FLSs play roles in chondrogenesis and osteogen-
esis, tissue repair, and immune surveillance in healthy
synovium. The presence of arthritis was accompanied
by reduction of homeostatic FLSs and the emergence
of pathogenic FLS profiles marked by Dkk3 and Lrrcl5
expression [14, 33]; these FLSs promote the inflamma-
tory response and matrix catabolic processes. Moreover,
a recent study demonstrated for the first time that FLSs
have the ability to transform from proinflammatory to
pro-resolving phenotypes (CD2007"), which can reduce
inflammation via interactions with ILC2 in patients
with inflammatory arthritis [33]. These studies indicated
the presence of resolving FLS subsets in the remission/
homeostatic state that function in inflammation resolu-
tion instead of promotion; these subsets might be a new
therapeutic tool to promote the resolution of inflamma-
tion and restore tissue homeostasis in patients with RA.

Strategies for targeting pathogenic FLS subsets
inRA

Targeting cell surface markers on pathogenic FLSs

Direct depletion of pathogenic FLS subsets by targeting
cell surface markers with antibodies, chimeric antigen
receptor (CAR)-T cells or vaccines might be the most
effective way to target pathogenic FLSs in RA. Among
these FLS cell surface markers, CDH-11 first attracted
attention as a promising target for RA treatment. How-
ever, a phase II trial of monoclonal antibodies targeting
CDH-11 (RG6125) in RA patients was discontinued in
2018 due to a lack of efficacy [43]. Other markers, espe-
cially FAPa, are promising potential therapeutic targets
for RA.

FAPa is a type II cell surface serine protease with
dipeptidylpeptidase and endopeptidase activity [44] that
is overexpressed in activated fibroblasts, such as those
involved in cancer and fibrosis; the expression of FAPa in
healthy tissues is scarce, making FAP« an attractive ther-
apeutic target in disease [45]. Although a study in mice
demonstrated that depletion of FAPa™ cells can result
in cachexia and anemia and FAPa™ cells were found to
reside in most tissues, including muscle and bone mar-
row [46], studies investigating the potential use of FAP«a
as a therapeutic target in diseases are ongoing. Deple-
tion of FAPa-expressing cells by antibodies, FAP CAR-T
cells and various FAP vaccines has been widely inves-
tigated in the treatment of cancer [45] and fibrosis [47,
48] and has shown safety and tolerability in phase I tri-
als [49, 50]. Moreover, small-molecule inhibitors of FAP«a
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(FAPIs) with high affinity and selectivity for FAPa pro-
vide new strategies to image FAPa-expressing tissues
[51], as well as new treatment strategies based on link-
ing traditional drugs with FAPa-targeted molecules [52—
54]. In RA, FAPI labeled with gallium 68 (®Ga-FAPI)
or aluminum-(18-F)-labeled 1,4,7-triazacyclononane-N,
N)N”-triacetic acid (**F-AIF-NOTA-FAPI) can be used
to clearly reveal inflammatory joints and assess disease
activity [55, 56], indicating that FAP«a is an excellent can-
didate for RA therapy. Daphne N. Dorst [57] developed a
treatment strategy for the selective destruction of FAPa*
cells by coupling an anti-FAP antibody with the photo-
sensitizer IRDye700DX. This compound can accumulate
in inflamed joints and induce local FAPa™ cell death,
which moderately delayed the development of arthritis
in CIA mice. A vaccine with the consensus FAPa mRNA
encapsulated in a lipid nanoparticle (CFAP mRNA-LNP)
prevented disease onset and arthritis development in a
mouse model of RA [58]. Zinc ferrite nanoparticles (ZF-
NPs) engineered to target FAPa* FLSs significantly sup-
pressed synovitis and protected against bone damage in
a mouse model of RA [59]. These studies in mice further
suggest that FAPa is a promising therapeutic target in
RA. FAPa™ cell targeting studies in cancer may help us
exploring new strategies for targeting FAPa* FLSs in RA.

The potential use of other pathogenic FLS surface
markers as therapeutic targets in RA has also been inves-
tigated in animal studies. PDPN is a mucin type-1 glyco-
protein with a molecular weight of 40-43 kDa. Besides
on FLS, PDPN is expressed in many tumors and normal
cells, especially lymphatic epithelial cells and follicular
DCs [60]. PDPN has been studied in cancer as a thera-
peutic target by using antibodies or antagonistic peptides
[61, 62]. In RA, Christopher D Buckley et al. reported
in 2018 that anti-PDPN antibodies efficiently protected
mice with CIA from arthritis [63]. THY-1 (CD90) is
a highly N-glycosylated, glycosylphosphatidylinosi-
tol (GPI)-anchored cell surface protein, first identified
for the recognition of thymoma cells, and was found to
be expressed on various types of cells, such as mesen-
chymal stem cells (MSCs) [64]. CD90 is associated with
the proinflammatory phenotype of FLSs. An anti-CD90
antibody alleviated disease progression in CIA mice by
inhibiting FLS proliferation, proinflammatory cytokine
release, osteoclast differentiation and angiogenesis [65],
suggesting that CD90 is a potential therapeutic target
for RA. CD248 is a transmembrane glycoprotein that is
expressed on FLSs in the sublining area in RA. A study
in CD248-deficient mice demonstrated that CD248 con-
tributes to leukocyte accumulation and synovial hyper-
plasia in inflammatory arthritis, indicating that CD248
is a potential therapeutic target in RA [66]. However, the
function of CD248 as a therapeutic target in RA needs to
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be further investigated. Potential strategies for targeting
pathogenic FLS cell surface markers in RA are summa-
rized in Fig. 2.

Targeting signaling pathways that drive pathogenic FLS
subsets differentiation

FLSs exhibit high phenotypic plasticity, and cytokines
are important factors that can drive the differentiation
of FLSs toward specific pathogenic RA-FLS subsets [25];
thus, cytokines can be used to modulate the FLS phe-
notype. TNF-a and IL-1p have been shown to stimulate
fibroblasts to produce proteolytic enzymes that destroy
bone and cartilage [67], and TGF-B1 can inhibit the syn-
thesis of metalloproteinases and thereby reduce joint
damage [68]. TNF-a or IL-1p can stimulate RA-FLSs to
upregulate PDPN expression [25], suggesting that block-
ade of TNF-a or IL-1f in RA patients can inhibit the dif-
ferentiation of PDPN™ FLSs. By using paired single-cell
RNA and ATAC sequencing, multiplexed imaging, and
spatial transcriptomics, along with in vitro modeling of
cell-extrinsic factor signaling, a recent study revealed
that myeloid and T-cell-derived TNE-«, IFN-y, and IL-1B
were important drivers of pathogenic FLS subset het-
erogeneity in RA [69]. Shuyang Zhao et al. [70]. showed
that NK-derived IFN-y could induce the differentiation
of the inflammatory HLA-DR*CD90" FLS phenotype,
which can induce CD69 expression on CD4* T cells. JAK
inhibition by upadacitinib can prevent HLA-DR induc-
tion. These data indicated that JAK1 inhibition could
reduce the generation of HLA-DRTCD90* FLSs. These
results may provide new insights into the mechanisms
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underlying the effects of cytokines and JAK inhibitors in
RA.

In 2020, Kevin Wei et al. [30]. investigated the upstream
signaling pathway that drives the expansion of the proin-
flammatory CD90" FLS subset. They identified the cen-
tral role of endothelium-derived Notch ligands (DLL4/
JAG?2) in driving the expansion of CD90* sublining FLS
through inductive Notch3 signaling in RA. The Notch
activation signature was more enriched in CD90Me" FLSs
than in CD90™" FLSs, and the Notch inhibitor DAPT
blocked CD90Me" FLS differentiation. Genetic deletion or
blockade of Notch3 signaling in mice relieved inflamma-
tion and protected joints in an arthritis model. LY411575
(which inhibits NOTCH-1 and the NOTCH-3 intracel-
lular domain) suppressed inflammation and bone dam-
age in CIA [71]. These results indicated that Notch3 is a
potential therapeutic target for inhibiting the differentia-
tion of proinflammatory FLSs in RA. Potential strategies
for targeting pathogenic FLS subsets differentiation are
summarized in Fig. 3.

Restoring FLS homeostasis by promoting subsets

with resolving phenotypes

Fibroblasts are complex, functional, heterogeneous cells
with a wide range of effects ranging from immunosup-
pressive to proinflammatory effects as well as tissue
repair and tissue damage effects. Thus, a delicate balance
between these contradictory functions of fibroblasts may
be essential for sustaining tissue homeostasis. Instead
of the pathogenic phenotype of FLSs in active RA,
resolving FLS clusters in RA patients in remission and

; \m/// ) ”% 2& E
| ﬁﬁ’% ,
! Antibodies CAR-T cell Vaccine Nanoparticle Inhibitors !
-------- Targeting Molecules f---""""" ”
| i |
CDH-11 FAPa PDPN CD90 CD248
[ Fa"eﬁ mzlhase ] [ Pre-clinical

Fig.2 CDH-11, FAPq, PDPN, CD90 and CD248 are relatively specific synovial FLS markers. Targeting pathogenic FLS surface markers with specific
antibodies, inhibitors, vaccines or CART cell might be potential strategies for the treatment of RA
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Fig. 3 Targeting signaling pathways that drive pathogenic FLS differentiation might be a potential strategy for the treatment of RA. FLSs exhibit
high phenotypic plasticity, and different cytokines or cells can stimulate the differentiation of different FLS subsets. Targeting NOTCH3 signaling
at FLSs might affect CD90 expression in FLSs. IFN-y-mediated stimulation of JAK-STAT1 signaling might also block HLA-DR expression in CD90*FLSs,

which has proinflammatory effects during RA pathogenesis

immunosuppressive clusters in a homeostatic state have
been demonstrated. Thus, restoring FLS homeostasis by
promoting the immunosuppressive/pro-resolving and
tissue repair phenotypes or switching expanded patho-
genic subsets into protective subsets may be an ideal
therapeutic strategy for the treatment of RA.

Consistent with the role of resolving CD200" FLSs in
mediating RA remission, a previous study also demon-
strated that CD200-Fc, which can target proinflamma-
tory cytokine expression in the joint without any obvious
systemic immunosuppressive effects, is an effective
therapeutic agent for CIA [72]. Umbilical cord-derived
MSCs were reported to decrease CDH-11 expression in
RA-FLSs, mainly by producing the anti-inflammatory
cytokine IL-10 [73]. In several clinical trials of RA, such
as a phase 1/2 trial (NCT03618784), promising results
have been demonstrated following the treatment of
joint inflammation with MSCs. Although the expanded
CD34°CD90" FLS subset in RA is considered to con-
stitute a pathogenic phenotype, one study showed that
the CD34*CD90" FLS subset has high osteoblastic and
chondrogenic potential in vitro [74]. Research on the
functions of the CD34*CD90" subgroup may lead to
new treatment strategies for regenerating damaged bone/
cartilage in arthritic joints. Skin fibroblasts in a homeo-
static state can inhibit the proliferation of T lympho-
cytes. An intravenous injection of normal skin fibroblasts

efficiently suppressed the severity of CIA-related inflam-
matory arthritis and delayed disease onset [75]. Simi-
larly, our study showed that FLSs stimulated by IFN-y
can upregulate the expression of several inhibitory mol-
ecules, such as PD-L1 and galectin-9, on the cell mem-
brane, which might be negative feedback mechanisms of
inflammatory cytokines. FLS cell membranes with high
expression of inhibitory molecules ameliorated inflam-
mation and bone damage in CIA [76]. These data suggest
that the introduction of fibroblasts with immunosuppres-
sive/pro-resolving effects may help restore the balance
of FLS subsets. However, although the driving factors of
proinflammatory or tissue damaging FLS clusters in RA
are beginning to be understood, the factors that induce
resolving/immunosuppressive FLS subset differentiation
have not been identified. Potential strategies for restoring
FLS subset homeostasis are summarized in Fig. 4.

Potential FLS-targeting strategies implemented

in studies of cancer

In addition to the pathogenic effects of FLSs in RA, fibro-
blasts are well known for their functions in immune
suppression [77] and tissue repair and play important
roles in the induction of immune tolerance, inflamma-
tion resolution [78] and wound healing [79], indicating
that distinct fibroblast subsets can be found in different
microenvironments. Studying on fibroblast heterogeneity
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Fig. 4 Restoring FLS homeostasis might be a potential strategy for the treatment of RA. FLS subsets in active RA patients are different from those
in healthy individuals or patients in remission. Transforming proinflammatory and aggressive FLSs in RA patients into resolving or tissue repair FLSs
via normal fibroblasts or mesenchymal stem cells might restore FLS homeostasis and alleviate RA

in other microenvironments may help us understand the
mechanisms underlying FLS subset dysregulation in RA
and explore new treatment strategies.

In contrast to those in RA, fibroblasts in cancer (can-
cer-associated fibroblasts, CAFs) exert potent immune
suppression effects. CD36% CAFs were recently identified
as a new CAF subset with immunosuppressive effects.
CD36 mediates oxidized LDL uptake to promote MIF
expression, which promotes immunosuppressive MDSC
accumulation and accelerates cancer progression, and
CD36 inhibitors enhance the treatment efficacy of immu-
notherapies [80]. These findings suggest that strategies
for enhancing the effects of CD36 on FLSs might be a
potential therapeutic approach to reduce inflammation in
individuals with RA. Among the CAF subsets in cancer
[81], antigen-presenting fibroblasts, which are character-
ized by high expression of MHCII molecules and CD74
and can present antigens to T cells [82], were also found
to be expanded in RA (CD90THLA-DRAME" FLS) [70];
these results suggest potential new therapeutic strate-
gies based on targeting CD74 on fibroblasts [83]. How-
ever, whether this antigen-presenting fibroblast subset
can fully activate T cells or induce T-cell tolerance is still
debated [84, 85]. An in-depth study on the function of

antigen-presenting fibroblasts may help us better under-
stand peripheral tolerance in RA and design methods to
restore autoimmunity. Whether fibroblasts with similar
phenotypes across different disease microenvironments
share similar functional characteristics remains to be
determined.

Conclusions and future perspectives
FLSs play a central role in RA pathogenesis by acting as
both drivers and effectors. There has been increasing
interest in FLSs as important therapeutic targets in RA.
FLSs are quite heterogeneous and widely arranged in dif-
ferent microenvironments. The increase in our under-
standing of pathogenic FLS clusters specific to RA has
provided us with promising novel therapeutic targets.
The targeting of pathogenic FLSs subsets by specific cell
surface markers or upstream driving pathways may suc-
ceed in treating “non-responders” to immunosuppressive
therapies, and open new RA targeting treatment era with
less adverse effects associated with traditional systemic
immunosuppressive therapy including csDMARDs or b/
tsDMARDs.

Although high-throughput technologies have revealed
several RA-specific pathogenic FLS subsets, along with
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the newly identified resolving FLSs in RA patients in
remission, the mechanisms driving the differentiation
of pathogenic or resolving subsets have not been fully
elucidated. An ideal strategy for terminating persistent
inflammation in individuals with RA may be restoring
the homeostasis of FLS subsets by switching the patho-
genic FLS phenotype to a pro-resolving/immunosup-
pressive phenotype. Studies on the detailed mechanisms
that drive pathogenic FLS subset differentiation, includ-
ing local triggers and imprinting changes, as well as the
identification of factors that drive resolving/immunosup-
pressive fibroblast differentiation in other microenviron-
ments, such as cancer, may help us develop treatment
strategies that can restore FLS subset homeostasis.
Moreover, novel therapeutic strategies that target and
deliver drugs to FLSs can facilitate the development of
FLS-based treatments.
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RA Rheumatoid arthritis
FLS Fibroblast-like synoviocytes
DMARDs Disease-modifying anti-rheumatic drugs

csDMARDs Conventional synthetic disease-modifying anti-rheumatic
drugs

b/ts DMARDs  Biological/targeted disease-modifying anti-rheumatic drugs

ECM Extracellular matrix

MMP Matrix metalloproteinases

PDGFRa Platelet-derived growth factor receptor a

PDPN Podoplanin

aSMA a-smooth muscle actin

FAPa Fibroblast activation protein a

UDPGD Uridine diphosphoglucose dehydrogenase

PRG4 Proteoglycan 4

CIA Collagen induced arthritis

CAF Cancer associated fibroblast
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