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Abstract 

Fibroblast-like synoviocytes (FLSs) play a central role in RA pathogenesis and are the main cellular component 
in the inflamed synovium of patients with rheumatoid arthritis (RA). FLSs are emerging as promising new therapeutic 
targets in RA. However, fibroblasts perform many essential functions that are required for sustaining tissue homeo-
stasis. Direct targeting of general fibroblast markers on FLSs is challenging because fibroblasts in other tissues might 
be altered and side effects such as reduced wound healing or fibrosis can occur. To date, no FLS-specific targeted 
therapies have been applied in the clinical management of RA. With the help of high-throughput technologies such 
as scRNA-seq in recent years, several specific pathogenic FLS subsets in RA have been identified. Understanding 
the characteristics of these pathogenic FLS clusters and the mechanisms that drive their differentiation can provide 
new insights into the development of novel FLS-targeting strategies for RA. Here, we discuss the pathogenic FLS sub-
sets in RA that have been elucidated in recent years and potential strategies for targeting pathogenic FLSs.
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Introduction
Rheumatoid arthritis (RA) is one of the most common 
rheumatic diseases characterized by persistent synovial 
inflammation in multiple joints along with bone damage 
[1] and affects approximately 0.5 ~ 1% of the population 
worldwide [2]. Current drugs for treating RA including 
conventional synthetic disease-modifying anti-rheumatic 

drugs (csDMARD) and biological or targeted DMARDs 
(b/tsDMARDs) mainly target immune cells and inflam-
matory cytokines. Although b/tsDMARDs have greatly 
improved outcomes in patients with RA, approximately 
40% of patients with RA do not respond to individual 
biologic therapies [3], and a significant proportion of 
patients with RA still have active disease and are consid-
ered as “difficult-to-treat RA” [4]. Additionally, general 
immune suppression by traditional immunosuppressive 
cell therapies can significantly increase the risk of infec-
tion, which remains a major challenge for RA manage-
ment. A previous study showed molecular signature of 
synovium was different in patients who responded to 
IL-6 or CD20 respectively. Moreover, fibroblasts encod-
ing gene signature was substantially increased in patients 
who showed no response to both IL-6 and CD20 targeted 
therapies [5]. Patients who do not respond to two biolog-
ics presented with a pauci-immune phenotype in the syn-
ovium [6]. These findings suggest that stromal cells are an 
emerging attractive new therapeutic target in RA.
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Fibroblast-like synoviocytes (FLSs) are the main cell 
component in the inflamed synovium of patients with RA 
[7]. The synovium is composed of two layers: the intimal 
lining layer and the sublining layer [6]. In homeostatic 
states, the synovial lining is comprised of FLSs and mac-
rophages (2–3 cell layers in total). In RA, the lining layer 
expands, and immune cells such as lymphocytes, mac-
rophages and dendritic cells accumulate in the sublining 
layer [8]. Instead of sustaining homeostasis in the physi-
ological state, FLSs in RA exhibit a “proinflammatory” or 
“aggressive/tissue damage” phenotype and increase the 
expression of inflammatory cytokines, chemokines and 
matrix metalloproteinases, leading to inflammation per-
sistence and bone damage [8]. FLSs have been proven to 
play a central role in the pathogenesis of RA [9], and ther-
apeutic strategies targeting FLSs might avoid systemic 
immunosuppressive consequences, in contrast with the 
immunosuppressive therapies. Thus, FLSs have long been 
considered as promising new therapeutic targets for RA 
[10]. Recent published reviews have summarized where 
do we stand in the era of FLS-targeted therapy [11, 12]. 
To date, no effective FLS-targeting therapies have been 
approved for use in the clinical treatment of RA, as fibro-
blasts are enriched in a wide array of tissues with mul-
tiple functions that are important for sustaining tissue 
homeostasis, and FLSs in the synovium cannot be easily 
distinguished from fibroblasts in other tissues by spe-
cific markers; thus, direct targeting of general fibroblasts 
markers in FLSs is a challenge for RA treatment.

With the help of high-throughput technologies such 
as scRNA-seq and CyTOF in recent years, our under-
standing of functionally distinct subsets of fibroblasts 
has been largely explored. Several pathological FLS phe-
notypes were found to be specifically expanded in RA. 
These novel RA-specific pathogenic FLS clusters might 
provide new promising therapeutic targets that could sig-
nificantly decrease the side effects of general fibroblast-
targeted therapies. Here, we review recent findings on 
pathogenic FLS subsets in RA and potential targeting 
strategies with the aim of providing a better understand-
ing of the heterogeneity of FLSs in RA and new insights 
into FLS-targeted therapy.

Pathogenic effects of FLSs in RA
In the physiological state, FLSs directly impact the 
synovial fluid composition by producing hyaluronic 
acid and other joint lubricants, such as lubricin (also 
known as proteoglycan 4). FLSs play an important role 
in helping shape and maintain the synovial extracellular 
matrix (ECM) by producing matrix components (such 
as fibronectin, type I and III collagens, vimentin, tenas-
cin, proteoglycans and laminin) and ECM-degrading 
enzymes (such as proteases, matrix metalloproteinases, 

hyaluronan synthase, and cathepsins) [6, 13]. Addition-
ally, FLSs under physiological conditions may have an 
anti-inflammatory/pro-resolving ability that helps sus-
tain immune homeostasis in the local immune environ-
ment [14]. In RA, FLSs lose their homeostatic phenotype 
and acquire “proinflammatory” and “aggressive/tissue-
damaging” phenotypes that mediate the persistence of 
inflammation and cartilage/bone damage. The pathologi-
cal effects mediated by RA-FLSs include the following: 
(1) enhanced migration and proliferation with reduced 
apoptosis, which results in hyperplastic rheumatoid pan-
nus formation and leads to direct cartilage and bone 
damage; (2) overproduction of matrix metalloproteinases 
(MMPs) (such as MMP1, MMP3 and MMP13), aggre-
canases (ADAMTS4 and ADAMTS5) [9], and RANKL 
[15], which damage the collagen-rich structures of joint 
tissues and promote osteoclast differentiation; (3) over-
production of proinflammatory cytokines (such as type 
1 interferons [16], IL6 [17]) and chemokines (such as 
CCL5, CCL8, CXCL5 and CXCL10 [18]) that direct the 
recruitment of immune cells into joints; (4) promotion of 
T-cell [19–21] and B-cell [22–24] activation and differen-
tiation. The various physiological and pathogenic effects 
of FLSs suggest their functional heterogeneity.

Pathogenic FLS subsets in RA
The FLS subsets in RA reported in recent studies are 
summarized in Table  1 [14, 25–34], and the pheno-
typic characteristics of the pathogenic FLS subsets are 
described. Among those markers, cadherin-11 (CDH-
11), fibroblast activation protein α (FAPα) and podo-
planin (PDPN/GP38) are considered as general markers 
that associated with the pathogenic FLS phenotype in 
RA [14, 35]; however, FLSs in the physiological state may 
also express these markers but at relatively low levels. 
CDH-11 was reported to be a relatively specific marker of 
FLSs compared with fibroblasts in other tissues [36, 37]. 
CDH-11 regulates the production of several proinflam-
matory cytokines, such as IL-6 [38]. CDH-11 knockout 
mice were resistant to joint inflammation and cartilage 
erosion, suggesting the vital role of CDH-11+ FLSs in the 
pathogenesis of RA [36]. PDPN is expressed predomi-
nantly on the lining layer, and studies have shown that a 
small number of FLSs in the sublinling layer also express 
PDPN [25, 29]. PDPN+ FLSs were found to be expanded 
in RA but not in OA or healthy synovial tissue [14, 39]. 
PDPN+ FLSs could migrate and invade cartilage in a 
mouse model of cartilage destruction, suggesting that 
PDPD+ FLSs are pathogenic and capable of invasion and 
destruction [25]. Previous research has demonstrated 
that PDPN+CD45−CD31− cells, termed PRIME cells, can 
be found in peripheral blood and are similar to PDPN+ 
FLSs. The proportion of PRIME cells increased before 
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RA flare-up, thus verifying the important role of PDPN+ 
FLSs in RA pathogenesis [40]. FAPα is considered as a 
marker of fibroblast activation. In RA, FAPα colocalized 
with PDPN in the synovium. Moreover, FAPα plays an 
important role in remodeling the immune environment 
by mediating the interaction of FLSs with immune cells, 
regulating cytokine secretion and initiating the immune 
response [41], and deletion of FAPα+ FLSs ameliorated 
both inflammation and bone erosion in a mouse model 
of arthritis [29].

Pathogenic PDPN+ or FAPα+ FLSs can be further 
divided into functionally distinct pathogenetic subsets. 
In 2019, Adam P Croft et al. [29] classified FAPα+PDPN+ 
FLSs into proinflammatory (CD90+FAPα+PDPN+, sub-
lining) and bone damage (CD90−FAPα+PDPN+, lining) 
subsets based on the expression of CD90. Injection of 
CD90+FAPα+PDPN+ FLS into the inflamed ankle joint 
of mice led to more severe and persistent joint swelling, 
with greater leukocyte infiltration. In contrast, injection 
of CD90−FAP+PDPN+ FLSs led to increased osteoclast 
activity and joint damage but did not affect the sever-
ity of joint inflammation. Similarly, several other studies 
also revealed expanded CD90+ FLSs with proinflamma-
tory features in the sublining area in RA patients [26–
28]. Thus, expression of CD90 can be used to designate 
proinflammatory FLS subsets. Furthermore, Fan Zhang 
et  al. [28] classified CD90+ FLSs into three subsets, 

namely, CD90+CD34+ FLSs, CD90+HLA-DRAhigh FLSs,  
and CD90+DKK3+ FLSs. Among these subsets, 
CD90+HLA-DRAhigh FLSs were substantially expanded 
and correlated with cytokine and chemokine expression 
in RA. The pathogenic FLS subsets in RA and their char-
acteristic markers are summarized in Fig. 1.

Resolving FLS subsets in RA
FLSs play various physiological functions in the homeo-
static state but transform from a friend to a foe in patients 
with RA [42], indicating that different FLS subsets are 
involved in active RA and remission/homeostatic states. 
In 2020, Stefano Alivernini et al. [31]. analyzed FLSs from 
patients with active RA and those in remission. FLSs 
expressing MMPs can be classified into a lining-layer FLS 
cluster and those expressing collagens and immune medi-
ators can be classified into four sublining-layer clusters. 
Although the relative proportions of these clusters were 
similar in patients with active RA and those in remission, 
their transcriptomes differed. FLS clusters in RA patients 
in remission expressed more mediators related to tissue 
repair and the resolution of inflammation. Among these 
subsets, CD90+CXCL14+ cells in RA patients in remis-
sion expressed high levels of GAS6, which may contrib-
ute to the regulatory functions of lining-layer MerTKpos 
macrophages to promote the resolution of inflammation. 
To explore the profiles of normal FLSs and molecular 

Fig. 1  Pathogenic FLS subsets in RA. FLSs in the inflamed synovium can be anatomically distinguished into lining FLSs and sublining FLSs. FAPα, 
PDPN, and CDH-11 are expressed mainly on lining FLSs and also on sublining FLSs. The expression of FAPα, PDPN, and CDH-11 may resemble 
the pathogenic FLS phenotype, as targeting these markers can ameliorate arthritis in animal models of RA. Pathogenic FLSs in RA can be further 
subclassified into immune-interacting FLSs and bone-effector FLSs based on the expression of CD90 and CD55/PRG4, respectively. CD90 
is expressed on sublining FLSs and can be used to designate proinflammatory FLS subsets that mediate inflammation persistence. Among CD90+ 
FLSs, a subset with high HLA-DRA expression that can secrete several proinflammatory cytokines and chemokines is substantially expanded in RA 
patients
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networks controlling the transition from homeostatic to 
arthritic FLSs, in 2022, Marietta Armaka et al. [14]. per-
formed a combined analysis of single-cell transcriptomes 
and epigenomes of FLSs derived from naïve and hTNFtg 
mice (mice that overexpress human TNF, a murine model 
for RA). FLSs play roles in chondrogenesis and osteogen-
esis, tissue repair, and immune surveillance in healthy 
synovium. The presence of arthritis was accompanied 
by reduction of homeostatic FLSs and the emergence 
of pathogenic FLS profiles marked by Dkk3 and Lrrc15 
expression [14, 33]; these FLSs promote the inflamma-
tory response and matrix catabolic processes. Moreover, 
a recent study demonstrated for the first time that FLSs 
have the ability to transform from proinflammatory to 
pro-resolving phenotypes (CD200+), which can reduce 
inflammation via interactions with ILC2 in patients 
with inflammatory arthritis [33]. These studies indicated 
the presence of resolving FLS subsets in the remission/
homeostatic state that function in inflammation resolu-
tion instead of promotion; these subsets might be a new 
therapeutic tool to promote the resolution of inflamma-
tion and restore tissue homeostasis in patients with RA.

Strategies for targeting pathogenic FLS subsets 
in RA
Targeting cell surface markers on pathogenic FLSs
Direct depletion of pathogenic FLS subsets by targeting 
cell surface markers with antibodies, chimeric antigen 
receptor (CAR)-T cells or vaccines might be the most 
effective way to target pathogenic FLSs in RA. Among 
these FLS cell surface markers, CDH-11 first attracted 
attention as a promising target for RA treatment. How-
ever, a phase II trial of monoclonal antibodies targeting 
CDH-11 (RG6125) in RA patients was discontinued in 
2018 due to a lack of efficacy [43]. Other markers, espe-
cially FAPα, are promising potential therapeutic targets 
for RA.

FAPα is a type II cell surface serine protease with 
dipeptidylpeptidase and endopeptidase activity [44] that 
is overexpressed in activated fibroblasts, such as those 
involved in cancer and fibrosis; the expression of FAPα in 
healthy tissues is scarce, making FAPα an attractive ther-
apeutic target in disease [45]. Although a study in mice 
demonstrated that depletion of FAPα+ cells can result 
in cachexia and anemia and FAPα+ cells were found to 
reside in most tissues, including muscle and bone mar-
row [46], studies investigating the potential use of FAPα 
as a therapeutic target in diseases are ongoing. Deple-
tion of FAPα-expressing cells by antibodies, FAP CAR-T 
cells and various FAP vaccines has been widely inves-
tigated in the treatment of cancer [45] and fibrosis [47, 
48] and has shown safety and tolerability in phase I tri-
als [49, 50]. Moreover, small-molecule inhibitors of FAPα 

(FAPIs) with high affinity and selectivity for FAPα pro-
vide new strategies to image FAPα-expressing tissues 
[51], as well as new treatment strategies based on link-
ing traditional drugs with FAPα-targeted molecules [52–
54]. In RA, FAPI labeled with gallium 68 (68Ga-FAPI)  
or aluminum-(18-F)-labeled 1,4,7-triazacyclononane-N, 
N’,N″-triacetic acid (18F-AIF-NOTA-FAPI) can be used 
to clearly reveal inflammatory joints and assess disease 
activity [55, 56], indicating that FAPα is an excellent can-
didate for RA therapy. Daphne N. Dorst [57] developed a 
treatment strategy for the selective destruction of FAPα+ 
cells by coupling an anti-FAP antibody with the photo-
sensitizer IRDye700DX. This compound can accumulate 
in inflamed joints and induce local FAPα+ cell death, 
which moderately delayed the development of arthritis 
in CIA mice. A vaccine with the consensus FAPα mRNA 
encapsulated in a lipid nanoparticle (cFAP mRNA-LNP) 
prevented disease onset and arthritis development in a 
mouse model of RA [58]. Zinc ferrite nanoparticles (ZF-
NPs) engineered to target FAPα+ FLSs significantly sup-
pressed synovitis and protected against bone damage in 
a mouse model of RA [59]. These studies in mice further 
suggest that FAPα is a promising therapeutic target in 
RA. FAPα+ cell targeting studies in cancer may help us 
exploring new strategies for targeting FAPα+ FLSs in RA.

The potential use of other pathogenic FLS surface 
markers as therapeutic targets in RA has also been inves-
tigated in animal studies. PDPN is a mucin type-1 glyco-
protein with a molecular weight of 40–43 kDa. Besides 
on FLS, PDPN is expressed in many tumors and normal 
cells, especially lymphatic epithelial cells and follicular 
DCs [60]. PDPN has been studied in cancer as a thera-
peutic target by using antibodies or antagonistic peptides 
[61, 62]. In RA, Christopher D Buckley et  al. reported 
in 2018 that anti-PDPN antibodies efficiently protected 
mice with CIA from arthritis [63]. THY-1 (CD90) is 
a highly N-glycosylated, glycosylphosphatidylinosi-
tol (GPI)-anchored cell surface protein, first identified 
for the recognition of thymoma cells, and was found to 
be expressed on various types of cells, such as mesen-
chymal stem cells (MSCs) [64]. CD90 is associated with 
the proinflammatory phenotype of FLSs. An anti-CD90 
antibody alleviated disease progression in CIA mice by 
inhibiting FLS proliferation, proinflammatory cytokine 
release, osteoclast differentiation and angiogenesis [65], 
suggesting that CD90 is a potential therapeutic target 
for RA. CD248 is a transmembrane glycoprotein that is 
expressed on FLSs in the sublining area in RA. A study 
in CD248-deficient mice demonstrated that CD248 con-
tributes to leukocyte accumulation and synovial hyper-
plasia in inflammatory arthritis, indicating that CD248 
is a potential therapeutic target in RA [66]. However, the 
function of CD248 as a therapeutic target in RA needs to 
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be further investigated. Potential strategies for targeting 
pathogenic FLS cell surface markers in RA are summa-
rized in Fig. 2.

Targeting signaling pathways that drive pathogenic FLS 
subsets differentiation
FLSs exhibit high phenotypic plasticity, and cytokines 
are important factors that can drive the differentiation 
of FLSs toward specific pathogenic RA-FLS subsets [25]; 
thus, cytokines can be used to modulate the FLS phe-
notype. TNF-α and IL-1β have been shown to stimulate 
fibroblasts to produce proteolytic enzymes that destroy 
bone and cartilage [67], and TGF-β1 can inhibit the syn-
thesis of metalloproteinases and thereby reduce joint 
damage [68]. TNF-α or IL-1β can stimulate RA-FLSs to 
upregulate PDPN expression [25], suggesting that block-
ade of TNF-α or IL-1β in RA patients can inhibit the dif-
ferentiation of PDPN+ FLSs. By using paired single-cell 
RNA and ATAC sequencing, multiplexed imaging, and 
spatial transcriptomics, along with in  vitro modeling of 
cell-extrinsic factor signaling, a recent study revealed 
that myeloid and T-cell-derived TNF-α, IFN-γ, and IL-1β 
were important drivers of pathogenic FLS subset het-
erogeneity in RA [69]. Shuyang Zhao et al. [70]. showed 
that NK-derived IFN-γ could induce the differentiation 
of the inflammatory HLA-DR+CD90+ FLS phenotype, 
which can induce CD69 expression on CD4+ T cells. JAK 
inhibition by upadacitinib can prevent HLA-DR induc-
tion. These data indicated that JAK1 inhibition could 
reduce the generation of HLA-DR+CD90+ FLSs. These 
results may provide new insights into the mechanisms 

underlying the effects of cytokines and JAK inhibitors in 
RA.

In 2020, Kevin Wei et al. [30]. investigated the upstream 
signaling pathway that drives the expansion of the proin-
flammatory CD90+ FLS subset. They identified the cen-
tral role of endothelium-derived Notch ligands (DLL4/
JAG2) in driving the expansion of CD90+ sublining FLS 
through inductive Notch3 signaling in RA. The Notch 
activation signature was more enriched in CD90high FLSs 
than in CD90low FLSs, and the Notch inhibitor DAPT 
blocked CD90high FLS differentiation. Genetic deletion or 
blockade of Notch3 signaling in mice relieved inflamma-
tion and protected joints in an arthritis model. LY411575 
(which inhibits NOTCH-1 and the NOTCH-3 intracel-
lular domain) suppressed inflammation and bone dam-
age in CIA [71]. These results indicated that Notch3 is a 
potential therapeutic target for inhibiting the differentia-
tion of proinflammatory FLSs in RA. Potential strategies 
for targeting pathogenic FLS subsets differentiation are 
summarized in Fig. 3.

Restoring FLS homeostasis by promoting subsets 
with resolving phenotypes
Fibroblasts are complex, functional, heterogeneous cells 
with a wide range of effects ranging from immunosup-
pressive to proinflammatory effects as well as tissue 
repair and tissue damage effects. Thus, a delicate balance 
between these contradictory functions of fibroblasts may 
be essential for sustaining tissue homeostasis. Instead 
of the pathogenic phenotype of FLSs in active RA, 
resolving FLS clusters in RA patients in remission and 

Fig. 2  CDH-11, FAPα, PDPN, CD90 and CD248 are relatively specific synovial FLS markers. Targeting pathogenic FLS surface markers with specific 
antibodies, inhibitors, vaccines or CART cell might be potential strategies for the treatment of RA
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immunosuppressive clusters in a homeostatic state have 
been demonstrated. Thus, restoring FLS homeostasis by 
promoting the immunosuppressive/pro-resolving and 
tissue repair phenotypes or switching expanded patho-
genic subsets into protective subsets may be an ideal 
therapeutic strategy for the treatment of RA.

Consistent with the role of resolving CD200+ FLSs in 
mediating RA remission, a previous study also demon-
strated that CD200-Fc, which can target proinflamma-
tory cytokine expression in the joint without any obvious 
systemic immunosuppressive effects, is an effective 
therapeutic agent for CIA [72]. Umbilical cord-derived 
MSCs were reported to decrease CDH-11 expression in 
RA-FLSs, mainly by producing the anti-inflammatory 
cytokine IL-10 [73]. In several clinical trials of RA, such 
as a phase 1/2 trial (NCT03618784), promising results 
have been demonstrated following the treatment of 
joint inflammation with MSCs. Although the expanded 
CD34-CD90+ FLS subset in RA is considered to con-
stitute a pathogenic phenotype, one study showed that 
the CD34+CD90+ FLS subset has high osteoblastic and 
chondrogenic potential in  vitro [74]. Research on the 
functions of the CD34+CD90+ subgroup may lead to 
new treatment strategies for regenerating damaged bone/
cartilage in arthritic joints. Skin fibroblasts in a homeo-
static state can inhibit the proliferation of T lympho-
cytes. An intravenous injection of normal skin fibroblasts 

efficiently suppressed the severity of CIA-related inflam-
matory arthritis and delayed disease onset [75]. Simi-
larly, our study showed that FLSs stimulated by IFN-γ 
can upregulate the expression of several inhibitory mol-
ecules, such as PD-L1 and galectin-9, on the cell mem-
brane, which might be negative feedback mechanisms of 
inflammatory cytokines. FLS cell membranes with high 
expression of inhibitory molecules ameliorated inflam-
mation and bone damage in CIA [76]. These data suggest 
that the introduction of fibroblasts with immunosuppres-
sive/pro-resolving effects may help restore the balance 
of FLS subsets. However, although the driving factors of 
proinflammatory or tissue damaging FLS clusters in RA 
are beginning to be understood, the factors that induce 
resolving/immunosuppressive FLS subset differentiation 
have not been identified. Potential strategies for restoring 
FLS subset homeostasis are summarized in Fig. 4.

Potential FLS‑targeting strategies implemented 
in studies of cancer
In addition to the pathogenic effects of FLSs in RA, fibro-
blasts are well known for their functions in immune 
suppression [77] and tissue repair and play important 
roles in the induction of immune tolerance, inflamma-
tion resolution [78] and wound healing [79], indicating 
that distinct fibroblast subsets can be found in different 
microenvironments. Studying on fibroblast heterogeneity 

Fig. 3  Targeting signaling pathways that drive pathogenic FLS differentiation might be a potential strategy for the treatment of RA. FLSs exhibit 
high phenotypic plasticity, and different cytokines or cells can stimulate the differentiation of different FLS subsets. Targeting NOTCH3 signaling 
at FLSs might affect CD90 expression in FLSs. IFN-γ-mediated stimulation of JAK-STAT1 signaling might also block HLA-DR expression in CD90+FLSs, 
which has proinflammatory effects during RA pathogenesis
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in other microenvironments may help us understand the 
mechanisms underlying FLS subset dysregulation in RA 
and explore new treatment strategies.

In contrast to those in RA, fibroblasts in cancer (can-
cer-associated fibroblasts, CAFs) exert potent immune 
suppression effects. CD36+ CAFs were recently identified 
as a new CAF subset with immunosuppressive effects. 
CD36 mediates oxidized LDL uptake to promote MIF 
expression, which promotes immunosuppressive MDSC 
accumulation and accelerates cancer progression, and 
CD36 inhibitors enhance the treatment efficacy of immu-
notherapies [80]. These findings suggest that strategies 
for enhancing the effects of CD36 on FLSs might be a 
potential therapeutic approach to reduce inflammation in 
individuals with RA. Among the CAF subsets in cancer 
[81], antigen-presenting fibroblasts, which are character-
ized by high expression of MHCII molecules and CD74 
and can present antigens to T cells [82], were also found 
to be expanded in RA (CD90+HLA-DRAhigh FLS) [70]; 
these results suggest potential new therapeutic strate-
gies based on targeting CD74 on fibroblasts [83]. How-
ever, whether this antigen-presenting fibroblast subset 
can fully activate T cells or induce T-cell tolerance is still 
debated [84, 85]. An in-depth study on the function of 

antigen-presenting fibroblasts may help us better under-
stand peripheral tolerance in RA and design methods to 
restore autoimmunity. Whether fibroblasts with similar 
phenotypes across different disease microenvironments 
share similar functional characteristics remains to be 
determined.

Conclusions and future perspectives
FLSs play a central role in RA pathogenesis by acting as 
both drivers and effectors. There has been increasing 
interest in FLSs as important therapeutic targets in RA. 
FLSs are quite heterogeneous and widely arranged in dif-
ferent microenvironments. The increase in our under-
standing of pathogenic FLS clusters specific to RA has 
provided us with promising novel therapeutic targets. 
The targeting of pathogenic FLSs subsets by specific cell 
surface markers or upstream driving pathways may suc-
ceed in treating “non-responders” to immunosuppressive 
therapies, and open new RA targeting treatment era with 
less adverse effects associated with traditional systemic 
immunosuppressive therapy including csDMARDs or b/
tsDMARDs.

Although high-throughput technologies have revealed 
several RA-specific pathogenic FLS subsets, along with 

Fig. 4  Restoring FLS homeostasis might be a potential strategy for the treatment of RA. FLS subsets in active RA patients are different from those 
in healthy individuals or patients in remission. Transforming proinflammatory and aggressive FLSs in RA patients into resolving or tissue repair FLSs 
via normal fibroblasts or mesenchymal stem cells might restore FLS homeostasis and alleviate RA
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the newly identified resolving FLSs in RA patients in 
remission, the mechanisms driving the differentiation 
of pathogenic or resolving subsets have not been fully 
elucidated. An ideal strategy for terminating persistent 
inflammation in individuals with RA may be restoring 
the homeostasis of FLS subsets by switching the patho-
genic FLS phenotype to a pro-resolving/immunosup-
pressive phenotype. Studies on the detailed mechanisms 
that drive pathogenic FLS subset differentiation, includ-
ing local triggers and imprinting changes, as well as the 
identification of factors that drive resolving/immunosup-
pressive fibroblast differentiation in other microenviron-
ments, such as cancer, may help us develop treatment 
strategies that can restore FLS subset homeostasis. 
Moreover, novel therapeutic strategies that target and 
deliver drugs to FLSs can facilitate the development of 
FLS-based treatments.
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