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Abstract
Background Gout is a prevalent manifestation of metabolic osteoarthritis induced by elevated blood uric acid levels. 
The purpose of this study was to investigate the mechanisms of gene expression regulation in gout disease and 
elucidate its pathogenesis.

Methods The study integrated gout genome-wide association study (GWAS) data, single-cell transcriptomics 
(scRNA-seq), expression quantitative trait loci (eQTL), and methylation quantitative trait loci (mQTL) data for analysis, 
and utilized two-sample Mendelian randomization study to comprehend the causal relationship between proteins 
and gout.

Results We identified 17 association signals for gout at unique genetic loci, including four genes related by 
protein-protein interaction network (PPI) analysis: TRIM46, THBS3, MTX1, and KRTCAP2. Additionally, we discerned 
22 methylation sites in relation to gout. The study also found that genes such as TRIM46, MAP3K11, KRTCAP2, and 
TM7SF2 could potentially elevate the risk of gout. Through a Mendelian randomization (MR) analysis, we identified 
three proteins causally associated with gout: ADH1B, BMP1, and HIST1H3A.

Conclusion According to our findings, gout is linked with the expression and function of particular genes and 
proteins. These genes and proteins have the potential to function as novel diagnostic and therapeutic targets for 
gout. These discoveries shed new light on the pathological mechanisms of gout and clear the way for future research 
on this condition.

Keypoint
 • This study integrated gout genome-wide association study (GWAS) data, single-cell transcriptomics (scRNA-

seq), expression quantitative trait loci (eQTL), and methylation quantitative trait loci (mQTL) data for analysis, 
and explored the gene expression regulation mechanisms of gout.

 • This study used two-sample Mendelian randomization method to understand the causal relationship between 
proteins and gout.
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Introduction
Gout is a prevalent type of metabolic osteoarthritis 
induced by elevated blood uric acid levels. Uric acid 
results from the breakdown of purines, which occurs in 
numerous substances and cells [1–3]. Hyperuricemia 
occurs when uric acid production increases due to diet 
and lifestyle, or when uric acid excretion decreases due to 
kidney dysfunction [4]. At a certain level of uric acid sat-
uration in the blood, needle-like urate crystals form and 
deposit in the joints, cartilages, tendons, etc., triggering 
an immune response and inflammation [5].

A high level of is prevalent in mainland China at a rate 
of 13.3%, affecting approximately 177  million people; 
gout is prevalent at a rate of 1.1%, affecting approximately 
14.66 million people [6]. In China, the prevalence rate is 
marginally lower than in Europe and the United States, 
but it has been rising over the past decade. There are also 
regional variations; the prevalence is generally higher in 
economically developed, coastal, and urban regions than 
in economically less developed, inland, and rural regions. 
This could be due to living conditions, dietary practices, 
environmental factors, etc [7].

Some investigations indicate that gout has a genetic 
component. 10–25% of gout patients’ close relatives have 
hyperuricemia; if one parent has gout, 40–50% of the 
child’s children will have gout; if parents have gout, up to 
75% of the child’s children will have gout [8, 9]. Genome-
wide association studies (GWAS) is the main approach 
for identifying genetic causes of disease, but the major-
ity of GWAS loci are in noncoding regions, making 
functional annotation and mechanistic explanations chal-
lenging [10]. In recent years, single-cell transcriptomics 
(scRNA-seq) has become an essential instrument for 
researching diseases in order to obtain insight into their 
pathogenesis. Unlike traditional aggregate methodolo-
gies, scRNA-seq technology can provide gene expression 
information from individual cells, thereby overcoming 
the problem of cellular heterogeneity and providing a 
more precise and comprehensive perspective for study-
ing diseases [11].

Owing to single-cell transcriptomics, eQTL analy-
sis has emerged as a significant instrument for delving 
deeper into the mechanisms behind gout. The combi-
nation of single-cell transcriptomics and eQTL analysis 
can shed light on the cell-specificity of gene expression 

regulation by correlating data from single-cell transcrip-
tomics with genetic variations in individuals and pin-
pointing locations that regulate gene expression.

The present research aims to combine gout GWAS 
data, scRNA-seq data, and eQTL and mQTL data to 
investigate the genetic regulation mechanism of gout 
disease and further our understanding of its pathogen-
esis. To investigate the dynamic regulatory network in 
the pathogenesis of gout disease, we will conduct a com-
prehensive analysis of the expression regulation of gout-
related genes in individual cells. And we will comprehend 
the causal connection between proteins and gout by 
pQTL and a Mendelian randomization investigation with 
two samples. Through this study, we expect to elucidate 
the pathological mechanisms of gout disease and provide 
new hints and research strategies for gout(Fig. 1).

Materials and methods
Gout GWAS data sources
We sourced gout GWAS data from the Finnish data-
base (https://www.finngen.fi/en), encompassing 4607 
instances and 335,038 control subjects of European 
descent. For an in-depth look at the collection of sam-
ples, methods of analysis, and findings, kindly refer to the 
original publication.

Quantitative trait locus data sources
Using data from the eQTLGen consortium, we retrieved 
cis-eQTLs located within a 1000 kb range of genetic vari-
ants exhibiting a robust correlation with gene expression 
in relation to blood tissue eQTL data. The eQTLGen con-
sortium includes information on 10,317 SNPs associated 
with the characterization of 31,684 individuals. eQTL-
Gen does not include variants associated with X and Y 
chromosome and mitochondrial DNA gene expression 
levels, however [12].

For mQTL data pertaining to blood tissue, we collected 
peripheral blood samples from two European cohorts: 
the BSGS (n = 614) and the LBC (n = 1366). Using the Illu-
mina HumanMethylation450 microarray, the methyla-
tion status of the samples was evaluated. To compile the 
mQTL summary data, we performed a meta-analysis of 
BSGS and LBC data. Only DNA methylation probes con-
taining at least one cis-mQTL (P < 5 × 10− 8) and restricted 

 • This study identified 17 genetic loci associated with gout, including four genes related by protein-protein 
interaction network (PPI) analysis: TRIM46, THBS3, MTX1 and KRTCAP2.

 • This study also identified 22 methylation sites related to gout, and genes that may increase the risk of gout, 
such as TRIM46, MAP3K11, KRTCAP2 and TM7SF2.

 • This study determined three proteins causally associated with gout by Mendelian randomization (MR) analysis: 
ADH1B, BMP1 and HIST1H3A.
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to SNPs within 2  Mb of each probe were included 
[13–16].

For pQTL data related to blood tissue, we employed 
the MR cis-pQTL tool to choose SNPs demonstrating 
a strong correlation with protein expression from five 
proteomic databases. We included solely SNPs with a 
p-value of at least 5 × 10− 8 for their association with pro-
tein expression. In addition, we integrated the plasma 
pQTL data of Ferkingstad et al., who conducted measure-
ments of 4907 plasma proteins in a group of 35,559 par-
ticipants from Iceland [17, 18].

Sources of single-cell sequencing data for gouty blood 
peripheral mononuclear cells
We employed the GSE211783 dataset from the GEO 
database, containing single-cell RNA-sequencing data of 
peripheral blood from three patients with gout during 
acute flare and three during remission. Yu H and his team 
carried out scRNA-seq on PBMC from these patients 
using 10x Genomics technology, and their results were 
validated via flow cytometry and LC-MS/MS [19].

Mendelian randomization analysis based on summary data
We utilized the SMR software application to imple-
ment the SMR & HEIDI method, which combines data 
from GWAS and eQTL studies to assess for multifaceted 
correlations among levels of gene expression and com-
plex characteristics of interest [20]. For LD calculations, 
we utilized 1000 Genomes European Reference Data 
[21]. To gain a deeper understanding of the relationship 
between eQTLs and mQTLs in terms of disease risk, we 

conducted a three-step SMR analysis. First, we employed 
SNPs as instrumental variables, significantly correlated 
expression of genes as exposure variables, and GWAS as 
outcome variables. In the second stage, DNAm was used 
as the exposure variable and GWAS was used as the out-
come variable. In the third stage, DNAm was added as 
the exposure variable, and gene expression was added as 
the outcome variable. Only significant signals from stages 
one and two were included in step three [22]. The Ben-
jamini-Hochberg (BH) method was used to compute the 
FDR of the p-value of the SMR, and FDR SMR 0.05 and 
heterogeneity HEIDI > 0.01 were used as inclusion crite-
ria for the outcome.

Two-sample Mendelian randomization analysis
We conducted a two-sample randomization Mendelian 
analysis utilising “TwoSampleMR” with plasma proteins 
as the exposure and gout as the outcome. We used the 
Bonferroni correction to account for multiple testing and 
a p-value threshold of (P < 1.126 × 10 − 5, 0.05/4441) to 
evaluate the results for telomere length-related proteins.

Bayesian colocalization analysis
Conventionally, the five postulates of colocalization anal-
ysis (Supplementary Methods) are defined as follows: 
Both the exposure and outcome phenotypes are not asso-
ciated with the SNP. H1: While the primary phenotype 
(exposure) correlates with the SNP, the secondary pheno-
type (outcome) does not. H2: The secondary phenotype 
(result) correlates with the SNP, whereas the primary 
phenotype (exposure) does not. Both phenotypes are 

Fig. 1 Flowchart of the analyses performed
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associated with the SNP, but these associations are dis-
tinct. H4: Both phenotypes correlate with the SNP, and 
the causal SNP is shared by both associations.

Bayesian colocalization analysis utilizing the ‘coloc’ 
package with default parameters (https://github.com/
chr1swallace/coloc) is employed to determine the prob-
ability that two characteristics share the same causative 
variation. As pointed out previously, Bayesian colocal-
ization presents posterior probabilities for the five pos-
sibilities regarding whether two characteristics share a 
single variant. In the present investigation, we calculated 
the likelihood of the posterior for Hypotheses 3 (PPH3), 
i.e., both the protein and gout have a relationship with 
the SNP, but these relationships are independent, and 
4 (PPH4), i.e., both the protein and MS have a relation-
ship with the SNP, and these relationships share the same 
causal SNP. We designated a gene as having colocaliza-
tion evidence if its gene-based PPH4 was greater than 
80%.

Integrating multi-omics data using summary-data-based 
Mendelian randomization (SMR) analysis
We utilized the SMR tool (http://cnsgenomics.com/soft-
ware/smr/) to discover consistent Summary-data-based 
Mendelian Randomization (SMR) associations across 
multiple omics. This instrument combines GWAS sum-
mary statistics with eQTL or mQTL summary statistics 
to determine whether particular mutations influence the 
risk of disease by influencing gene expression or methyla-
tion of DNA.

The summary GWAS data for gout were entered 
as’mygwas. ma’. The methylation quantitative trait loci 
(mQTL) and expression quantitative trait loci (eQTL) 
data were respectively entered as’mymqtl’ and’myeqtl’. 

The SMR instrument processed the input data using the 
following command:

smr --bfile mydata --gwas-summary mygwas.ma 
--beqtl-summary mymqtl --beqtl-summary myeqtl --out 
myplot --plot --probe ENSG00000163462 --probe-wind 
500 --gene-list glist-hg19.

The created diagrams provide an overview of the 
GWAS results displaying the p-values of each SNP, the 
eQTL results illustrating the effect of each SNP on the 
expression of genes, and the mQTL results illustrating 
the effect of each SNP on DNA methylation. This helps to 
comprehend how variations in gene expression or DNA 
methylation may affect disease risk.

We intended to identify and validate putative genetic 
regulatory mechanisms by integrating these results and 
employing additional statistical analyses (such as the 
HEIDI test). Such knowledge is essential for compre-
hending the pathophysiology of diseases and identifying 
new therapeutic targets.

Results
Genome-wide cis-eQTL and SMR analysis of gout outcomes
We performed SMR analysis on 15,324 SNPs in the blood 
that represent pertinent gene expression and gout out-
comes in blood. To compensate for the genome-wide 
kind I errors, we performed FDR correction (P < 0.05), 
which revealed strong evidence of association, followed 
by HEIDI testing (P > 0.01) incorporated in the SMR pro-
gramme to determine if the associations were caused 
by sharing causes of variation as opposed to pleiotropy. 
We discovered 17 gout relationship signatures at dis-
tinct genetic loci(Fig. 2, Additional file 1: Table S1). Four 
genes, TRIM46, THBS3, MTX1, and KRTCAP2, were 
found to be interconnected via protein-protein interac-
tion network (PPI) analysis(Additional file 2: Figure S1) 

Fig. 2 The outcomes of Mendelian randomization, showcasing the relationship between expression quantitative trait loci and the risk of gout, are pre-
sented. b_SMR is a marker for the magnitude of effect (β) of the gene variant on the expression of genes. A positive relationship is indicated when β is 
greater than zero, whereas β less than zero implies a negative relationship. OR, representing odd ratios, is determined from the projection of the causal 
estimate (β coefficient). The confidence interval, represented by 95%CI, is calculated utilizing β and standard error (SE)
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[23]. A review article, for instance, described the com-
plicated connection between uric acid, gout, and brain 
disease, and mentioned the THBS3 gene as a gene asso-
ciated with uric acid metabolism and gout, with variants 
affecting uric acid excretion and deposition [24]. This is 
consistent with our finding that a reduction in the stan-
dard deviation of THBS3 expression was associated with 
an 18% risk reduction (beta=-0.18, FDR = 4.12 × 10− 5).

Bayesian co-localization analysis
The SMR analysis has identified 17 genes as gout-caus-
ing genes. The posterior probabilities of Hypothesis 4 for 
THBS3, GBAP1, MTX1, THBS3-AS1, FUT8, UNC13D, 
LYPD2, and GNGT2 are greater than 0.80, per the Bayes-
ian colocalization analysis (Additional file 3: Figure S2). 
This suggests that there is a high probability that these 
genes are associated with gout and that they are likely 
caused by shared variants. For TM7SF2, CDC42EP2, and 
TIGD3, however, the posterior probabilities of Hypoth-
esis 3 exceed 0.80. This suggests that these genes are 
associated with gout, but are most likely controlled by 
distinct variants.(Table 1).

The results of the Bayesian colocalization analysis can 
assist us in evaluating the veracity of these hypotheses, 
thereby providing crucial hints for future investigation. 
In particular, the posterior probability represents an esti-
mate of the posterior probability distribution, given the 
data and prior assumptions. It reflects the likelihood of 
various hypotheses being supported by the data. There-
fore, a greater posterior probability suggests that the 
hypothesis is more credible given the data.

Genome-wide cis-mQTL SMR analysis and gene endings
To further elucidate the pathogenesis of gout, an SMR 
analysis, FDR correction, and HEIDI test were con-
ducted between blood mQTL and gout. We identi-
fied 22 methylation sites associated with gout, in which 
multiple methylation sites on SLC2A9 and SIPA1 were 
regulated, thereby influencing gout disease (Fig. 3, Addi-
tional file 4: Table S2). For instance, elevated DNAm at 
cg25361844 increased disease risk (beta = 0.37), whereas 
decreased DNAm at cg17480646 increased disease risk 
(beta = 0.13). Intriguingly, a study of European and Poly-
nesian populations discovered that a prevalent variant in 
the ABCG2 (rs2231142) was positively associated with 
hyperuricemia and gout, meaning that populations car-
rying alleles with this variant had increased uric acid lev-
els and a higher likelihood of gout [25]. However, in the 
present research, the most significant SNP in this locus, 
ABCG2, rs10011796, was associated negatively with gout 
risk. This is an intriguing discovery that warrants further 
study. In addition, since it is already known that methyla-
tion of genes affects gene expression, we mapped gene 
methyl to expression via sharing variation in genetics 
and performed an SMR study of the causative connection 
among methyl and translation of relevant genes.

Analysis of blood eQTL and mQTL with SMR of gout disease
In accordance to the three-step SMR study described in 
the methodology part, we filtered out key disease-related 
signals. We discovered that TRIM46 had a positive cor-
relation with gout (beta = 1.34); therefore, upregula-
tion of DNAm on the cg15699386 locus would result in 
an increase in TRIM46 expression (beta = 0.24), which 
would increase the risk of gout development (beta = 0.43). 
High DNAm expression at two other loci on the TRIM46 

Table 1 Results of eQTL-GWAS co-localization
Exposure nsnps PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf
THBS3 4641 0 4.60E-06 0 0.011 0.989
GBAP1 4381 0 1.09E-05 0 0.028 0.972
MTX1 4343 2.56E-64 3.66E-05 6.69E-61 0.095 0.905
MAP3K11 4510 0 2.18E-04 0 0.414 0.586
THBS3-AS1 4520 1.56E-18 3.54E-06 4.09E-15 0.008 0.992
PCNX3 4456 4.59E-63 2.21E-04 8.72E-60 0.419 0.581
TRIM46 4623 5.78E-19 1.19E-05 1.51E-15 0.03 0.97
TM7SF2 4651 6.02E-105 4.65E-04 1.14E-101 0.881 0.118
FUT8 7007 0 0.012 0 0.149 0.839
UNC13D 6469 7.85E-130 0.022 2.41E-129 0.066 0.913
KAT5 4419 8.46E-11 1.42E-04 1.61E-07 0.269 0.73
LYPD2 8220 0 0.025 0 0.04 0.935
CDC42EP2 4557 2.49E-60 5.09E-04 4.71E-57 0.966 0.033
KRTCAP2 4623 2.97E-14 2.91E-04 7.77E-11 0.76 0.24
SIGLEC11 6722 0 1.74E-29 0 1 0
GNGT2 5757 0 0.044 0 0.094 0.861
TIGD3 4570 6.50E-35 5.09E-04 1.23E-31 0.966 0.033
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gene (cg05778494, cg00577578) exhibits a negative corre-
lation with this gene’s expression (beta=-0.20, beta=-0.08) 
(Fig. 4, Additional file 5: Table S3).

Five DNAm sites within the open reading frame (ORF) 
are substantially linked to TRIM46 and Gout, two of 
which are in the promoter area region and three in the 
enhancer region.

Using SMR on our omics data, we demonstrate that 
TRIM46 is a key gene for Gout and may uncover its plau-
sible molecular pathogenesis mechanisms (Fig.  5, Addi-
tional file 6: Figure S3).

Single-cell sequencing analysis
Eight alleles have been identified that increase the risk 
of gout, a disease that results from an excess of uric acid 
in the blood. These genes are predominantly expressed 
in the monocytes/macrophages, plasma cells, mast cells, 
and myeloid dendritic cells (MDCs) of the immune sys-
tem. The genes MAP3K11, KRTCAP2, and PCNX3 
influence the function of macrophages, plasma cells, 
and MDCs, respectively, to increase gout risk. We also 
discovered a significant correlation between mast cell 
TM7SF2 expression and gout risk (beta = 1.34) (Fig.  6, 
Additional file 7: Figure S4).

Screening the proteome for gout cure-related proteins
We performed a Mendelian randomization analysis 
to find proteins that are causally linked to gout to find 
potential therapeutic targets. ADH1B (OR = 0.15, 95% 
CI = 0.07–0.35), BMP1 (OR = 7.04, 95% CI = 3.35–14.78), 
and HIST1H3A (OR = 205.85,95%CI = 78.35–540.8) were 
found to be significantly associated with gout at the 
Bonferroni-corrected threshold (P 1.719 10 − 6) (Fig.  6, 
Additional file 8: Table S4). Five SNPs that affect the 
expression or function of these proteins were correlated 

with them. However, no protein-protein interaction (PPI) 
was identified between these three proteins, suggesting 
that they may act independently in the pathogenesis of 
gout.

Discussion
Using GWAS data, scRNA-seq, eQTL, mQTL data, and 
pQTL with a two-sample Mendelian randomization 
study, the purpose of this study was to investigate the 
mechanisms of gene expression regulation in gout dis-
ease and improve our understanding of its pathogenesis.

The results demonstrated that mast cells play a crucial 
role in gout, as they contain the maximum number of 
disease-associated risk alleles. Prior research has dem-
onstrated a correlation between an increase in mast cells 
in the synovium of gouty joints and tissue injury [26]. 
TRIM46 was identified as the most prevalent suscepti-
bility gene with a promotion factor for gout among these 
mast cells (beta = 1.34). It is noteworthy that a variant site 
on the TRIM46 gene could potentially affect the activity 
or expression level of the TRIM46 protein, thereby alter-
ing its function in microtubule organization and neuro-
nal polarity maintenance. Such alterations might impair 
the kidney’s or intestine’s ability to excrete uric acid, 
leading to increased uric acid levels and a heightened 
risk of gout [27, 28]. Additionally, TRIM46, by regulat-
ing microtubule dynamics, could indirectly affect macro-
phages’ ability to phagocytose and process monosodium 
urate crystals (MSUc), which is crucial for modulating 
the inflammatory response in gout. We have also delved 
into the role of TRIM46 in the JNK signaling pathway, 
which has been proven to play a key role in the meta-
bolic and inflammatory response of macrophages trig-
gered by MSUc. TRIM46’s involvement in this pathway 
could have a comprehensive impact on the production 

Fig. 3 The findings of Mendelian randomization, establishing a connection between methylation quantitative trait loci and the danger of gout, are 
illustrated. b_SMR symbolizes the impact magnitude (β) of the variant location on DNA methylation. When β is greater than zero, it signifies a positive 
association, and conversely, β less than zero signifies a negative association. OR, signifying odd ratios, is derived from the forecasted causal estimate (β 
coefficients). The term 95%CI represents confidence boundaries, ascertained using β and standard error (SE)
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of inflammatory cytokines by macrophages, microtu-
bule dynamics regulation, and cell polarization, thereby 
regulating the pathological process of gout in terms of 
uric acid metabolism and inflammatory response [29]. 
By comparing the unique regulatory role of TRIM46 
with existing theories on the pathogenesis of gout, we 
discovered that TRIM46 might provide new insights into 
understanding gout inflammation, particularly in analyz-
ing the molecular mechanisms of macrophage responses 
induced by MSU crystals. This finding not only enriches 
our understanding of the complex pathological processes 
of gout but also highlights future research directions, 
including exploring TRIM46 as a potential target for the 
treatment of gout and other inflammatory diseases.

In addition, the variant locus on the TRIM46 gene may 
interact with a history of smoking, thereby increasing the 
risk of developing gout. By disrupting the equilibrium of 
uric acid metabolism and inflammatory response, smok-
ing can influence the formation and deposition of urate 
crystals. Moreover, distinct alleles of the TRIM46 gene 
may modify the effects of smoking on uric acid levels 
or inflammatory response, thereby increasing the risk 

of gout [30]. We speculate that specific variants of the 
TRIM46 gene might weaken the cell’s ability to resist 
external oxidative stress, and smoking, as an external 
source of oxidative stress, could amplify this effect by 
increasing the level of oxidative stress and disrupting the 
normal excretion mechanism of uric acid. Additionally, 
these genetic variants might make cells more sensitive 
to inflammatory signals in the inflammatory environ-
ment caused by smoking, thereby increasing the risk of 
developing gout. In delving into the interaction between 
TRIM46 gene variants and smoking history and its role 
in increasing the risk of gout, we also paid attention to 
the impacts of other lifestyle and environmental factors, 
such as dietary habits, alcohol consumption, weight man-
agement, and exposure to specific environmental pollut-
ants. These factors could interact with specific variants 
of the TRIM46 gene to jointly regulate the risk of gout 
by altering the level of inflammation within the body, the 
metabolic pathway of uric acid, or the sensitivity of cells 
to oxidative stress. For instance, unhealthy dietary pat-
terns and high alcohol consumption could exacerbate 
the overproduction and accumulation of uric acid, while 

Fig. 4 The outcomes from Mendelian randomization, illustrating the correlation between methylation quantitative trait loci and expression quantitative 
trait loci, are reported. The influence magnitude (β) of a DNA methylation variant location on gene expression is indicated by SMR. A positive association 
is suggested when β is greater than zero, while a negative association is implied when β is less than zero. OR, the acronym for odd ratios, is computed 
based on the projected causal estimate (β coefficients). The term 95%CI signifies confidence ranges, which are derived using β and standard error (SE)
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metabolic disorders in overweight or obese conditions 
could further increase inflammation levels, collectively 
promoting the development of gout. Simultaneously, 
long-term exposure to environmental factors like air 

pollution could increase oxidative stress and inflamma-
tion, interacting with TRIM46 variants in regulating the 
cellular capacity to handle urate crystals, thereby jointly 
increasing the risk of gout. By integrating the impacts 

Fig. 5 Multifaceted connections between DNA Methylation and gene expression
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of these lifestyle and environmental factors, we gained 
a more comprehensive understanding of how TRIM46 
gene variants regulate the risk of gout under the com-
bined effects of multiple external factors, emphasizing 
the importance of considering the complex interactions 
between genes and the environment in the study of gout 
pathogenesis. This integrated perspective not only pro-
vides new approaches for the prevention and treatment 
of gout, particularly in terms of lifestyle adjustments and 
environmental risk management but also directs future 
research.

In addition, THBS3 and MTX1, both of which are 
highly expressed in mast cells, share a promoter region. 
This discovery indicates their potential through interac-
tion to influence the pathogenesis of gout. Specifically, 
we examined a series of transcription factors, such as 
STAT3 and NF-κB, which play pivotal roles in regulating 
inflammation and immune responses and may be directly 
involved in the expression control of THBS3 and MTX1 
[31–33]. These transcription factors might recognize and 
bind to specific sequences within the shared promoter 
region of THBS3 and MTX1, thereby modulating their 
expression. For example, the activation of STAT3 could 
enhance the expression of THBS3, while the activation 
of NF-κB could lead to increased expression of MTX1. 
Such changes in the expression pattern could be crucial 
for the role of mast cells in the inflammatory process of 
gout. The interrelationship between these two genes and 
their combined effect on the development of gout will be 
investigated in the future.

In addition, we found that the gene KRTCAP2 may 
function via plasma cells, pDC, and mDC cells to confer 
gouty disease risk. KRTCAP2 has been linked to auto-
immune plasmatic dysplasia, Alzheimer’s disease, and 
numerous tumor types [34–36]. Additionally, the KRT-
CAP2 gene may influence the production and clearance 
of uric acid by modifying the expression as well as the 
function of the enzyme xanthine oxidoreductase (XOR), 
thereby impacting uric acid production and clearance 

[37]. KRTCAP2 may regulate the expression of the xan-
thine oxidoreductase (XOR) gene by modulating key 
transcription factors, such as Sp1 or PPARγ [38, 39]. 
For instance, Sp1 could enhance the activity of the XOR 
promoter, thereby increasing XOR expression, while 
changes in KRTCAP2 expression could influence Sp1 
activity, thereby indirectly regulating uric acid produc-
tion. Similarly, by affecting the activity of these transcrip-
tion factors, KRTCAP2 may not only influence uric acid 
production but also its clearance in the liver and kidneys. 
Through this mechanism, the role of KRTCAP2 in the 
development of gout may be more complex and multidi-
mensional than currently understood.

Moreover, our findings indicate that MAP2K11 has 
been linked with an elevated risk of gout. Prior study has 
revealed this MAP3K11 protein is extensively expressed 
in a variety of tissues, including the nervous system, kid-
ney, liver, pancreas, and lungs [40]. This indicates that the 
MAP3K11 protein may participate in a variety of physi-
ological processes and signaling pathways. MAP2K11 
was identified as a critical component of the p38 signal-
ing path, which has a close connection with uric acid 
excretion, synoviocyte apoptosis, and autophagy [41, 
42]. Inhibition of MAP2K11 expression or activity pro-
tects renal function and uric acid excretion by prevent-
ing hyperuricemia-induced apoptosis and autophagy in 
renal tubular epithelial cells [43]. Inhibiting the expres-
sion or activity of MAP2K11 in a mouse model study 
decreased the severity of gouty arthritis by inhibiting 
the apoptosis and autophagy of synoviocytes and chon-
drocytes [44]. Involved in the beginning and develop-
ment of arthritis with gout, MAP2K11 is highlighted as a 
potential therapeutic target by these findings. Despite the 
potential efficacy of inhibiting MAP2K11 expression or 
activity in the treatment of gout, developing such thera-
pies faces a series of challenges and obstacles. First and 
foremost, identifying safe and effective MAP2K11 inhibi-
tors is a significant challenge, requiring precise control 
of MAP2K11 activity without affecting other crucial 

Fig. 6 Single-cell sequencing analysis
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physiological processes. Additionally, evaluating the 
potential impacts of long-term inhibition of MAP2K11 
on other physiological processes, as well as solving drug 
delivery issues, are challenges that need to be overcome 
in developing this type of treatment strategy. Future 
research directions should include further validation of 
the role of MAP2K11 in gout, especially its specific func-
tions in regulating gout inflammation and renal function. 
Moreover, the development and testing of small molecule 
inhibitors targeting MAP2K11, as well as assessing the 
prospects of these inhibitors in clinical gout treatment, 
will be important directions for future research.

In addition, a double-sample MR study on protein con-
nections and gout disease revealed associations between 
three proteins and gout. The strongest correlation was 
observed with the BMP-1 protein, a metalloproteinase 
that cleaves numerous matrix proteins, such as collagen, 
bone morphogenetic proteins, and transforming growth 
factor (TGF-β) [45]. BMPs as well as TGF- are essential 
cytokines that control the differentiation and function of 
numerous immune cells, such as NK cells, T cells, and 
macrophages [46]. These cells played an important role 
in the immune system’s reaction to gout as well as can 
exert proinflammatory or anti-inflammatory effects [47]. 
BMPs and TGF- also affect uric acid metabolism and 
excretion, and this, in turn, affects blood levels of uric 
acid and MSU crystal formation [48]. BMPs, for instance, 
can inhibit the expression of the uric acid synthesiz-
ing enzyme xanthine oxidase (XO) in the liver, thereby 
reducing uric acid production, whereas TGF- promotes 
tubular reabsorption of uric acid, resulting in elevated 
serum uric acid levels [49, 50]. Consequently, the BMP-1 
protein emerges as a promising protein target for fur-
ther research. The BMP-1 protein, through its regula-
tory effects on uric acid metabolism and immune cell 
function, offers new opportunities for intervention in the 
treatment of gout. Compared to current treatments for 
gout, such as nonsteroidal anti-inflammatory drugs and 
colchicine, therapeutic strategies targeting BMP-1 could 
provide more precise treatment options by directly regu-
lating key pathways in uric acid metabolism and inflam-
matory response, potentially leading to more effective 
outcomes. Additionally, by modulating BMP-1 activity, 
the immune system’s response to gout inflammation can 
be optimized, achieving a balance between pro-inflam-
matory and anti-inflammatory effects, thus offering 
comprehensive treatment benefits to patients with gout.
However, the development of therapeutic strategies tar-
geting BMP-1 also faces challenges. Identifying BMP-1 
inhibitors that are both highly selective and safe, avoid-
ing interference with BMP-1’s role in other physiological 
processes, presents a significant technical challenge. The 
long-term efficacy and safety of inhibiting BMP-1 and its 
signaling pathways remain uncertain, requiring further 

research to explore the comprehensive role of BMP-1 
in the human body. Moreover, ensuring that drugs can 
effectively reach their target and have good bioavailability 
is another hurdle that must be overcome in the develop-
ment process.

Finally, we found by single-cell analysis that MAP3K11, 
KRTCAP2, PCNX3, and TM7SF2 demonstrate poten-
tial significant roles in the pathogenesis of gout. Specifi-
cally, MAP3K11, as a serine/threonine kinase, may play 
a crucial role in the core inflammatory response of gout. 
Through activating the JNK and p38 MAPK signaling 
pathways, it not only participates in regulating the acti-
vation of immune cells and the production of inflamma-
tory mediators but may also affect gout-specific cellular 
stress responses, such as the immune response to urate 
crystals [51, 52]. This process is key to the pathogenesis 
of gout as it directly involves the initiation and mainte-
nance of the inflammatory response in gout. Although 
the precise roles of KRTCAP2 and PCNX3 in gout are 
not fully clear, their biological functions suggest they may 
indirectly participate in the pathological process of gout 
through affecting cellular skeletal stability, cell signaling, 
and stress responses. Specifically, KRTCAP2, as a kera-
tin-associated protein, may play a key role in maintaining 
the structure and function of immune cells such as mac-
rophages and neutrophils, while PCNX3 may influence 
the progression of gout inflammation by regulating cel-
lular responses to inflammatory signals [35]. The role of 
TM7SF2 is more directly associated with the metabolic 
characteristics of gout. As a factor influencing cholesterol 
synthesis, TM7SF2 could regulate the levels of choles-
terol in cells and tissues, impacting the functionality of 
inflammatory cells and the production of inflammatory 
mediators, thereby playing a role in the pathology of gout 
[53, 54].

To further explore the functions of these genes in the 
unique inflammatory environment of gout, future experi-
mental designs can focus on the following directions: 
Firstly, utilizing CRISPR/Cas9 technology to specifi-
cally knock out or overexpress these genes in gout mod-
els to assess their concrete impact on the inflammatory 
response of gout. Additionally, in vitro experiments, such 
as culturing immune cells and exposing them to urate 
crystals, can be conducted to observe the effects of these 
genetic modifications on cellular responses. These stud-
ies will provide us with an in-depth understanding of the 
roles these genes play in the pathogenesis of gout, espe-
cially how they influence the inflammatory and metabolic 
processes of gout.

Despite these noteworthy results, the study has some 
limitations. As only GWAS samples of European prove-
nance were included, the use of existing gout GWAS data 
may introduce some bias. Consequently, the generaliz-
ability of the results to patients with gout of other racial 
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or geographical groups requires further investigation. In 
our study, we utilized blood-derived samples for single-
cell RNA sequencing. While this choice was consistent 
with other databases we used, ensuring consistency and 
comparability of data sources, we acknowledge that it 
may limit the generalizability of our findings, especially 
considering that other tissues and cell types affected by 
gout may also be crucial. To address this limitation, we 
suggest that future research should further broaden 
the source of samples at the single-cell level, including 
patients from different ethnicities and geographical back-
grounds, and consider using non-blood tissue samples. 
This approach would not only enhance the universality 
of our findings but also facilitate our understanding of 
the specificity of cell types and complexity of intercellu-
lar communication in the pathophysiological process of 
gout. Furthermore, we recommend that future studies 
adopt multi-time-point sample collection and analysis 
methods, particularly in single-cell RNA sequencing, to 
better capture the dynamic changes during the progres-
sion of gout. Time-series analysis could provide valuable 
insights into the evolution of cell states and regulatory 
networks throughout the development of gout, offering 
new targets for prevention and treatment. By replicat-
ing our single-cell RNA sequencing study across different 
populations and geographical locations, we can validate 
the robustness and universality of our findings. This step 
is crucial for deepening our understanding of the patho-
genic mechanisms of gout. In summary, by expanding 
sample sources, utilizing multi-time-point analysis, and 
conducting replication studies, we can overcome the 
limitations of the current research, providing a solid 
foundation for a deeper understanding of the pathogenic 
mechanisms of gout and the development of potential 
therapeutic strategies.

Conclusion
Our findings suggest that gout is associated with partic-
ular genes which are expressed in specific kinds of cells 
and plays crucial roles within the pathogenesis of the 
disease. Additionally, we discovered that DNA methyla-
tion may modulate the expression and function of these 
genes, thereby influencing the gout risk. In addition, we 
identified three proteins that are causally linked to gout 
and could act as novel targets for the disease’s treatment 
and detection. These results shed new light on the path-
ological mechanisms of gout and open up new research 
avenues. To clarify the relationship between genes, pro-
teins, and gout and their potential therapeutic strategies, 
additional research is required.
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