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Abstract
Background  Patients with rheumatoid arthritis (RA) have an increased risk of developing serious infections (SIs) vs. 
individuals without RA; efforts to predict SIs in this patient group are ongoing. We assessed the ability of different 
machine learning modeling approaches to predict SIs using baseline data from the tofacitinib RA clinical trials 
program.

Methods  This analysis included data from 19 clinical trials (phase 2, n = 10; phase 3, n = 6; phase 3b/4, n = 3). Patients 
with RA receiving tofacitinib 5 or 10 mg twice daily (BID) were included in the analysis; patients receiving tofacitinib 
11 mg once daily were considered as tofacitinib 5 mg BID. All available patient-level baseline variables were extracted. 
Statistical and machine learning methods (logistic regression, support vector machines with linear kernel, random 
forest, extreme gradient boosting trees, and boosted trees) were implemented to assess the association of baseline 
variables with SI (logistic regression only), and to predict SI using selected baseline variables using 5-fold cross-
validation. Missing values were handled individually per prediction model.

Results  A total of 8404 patients with RA treated with tofacitinib were eligible for inclusion (15,310 patient-years 
of total follow-up) of which 473 patients reported SIs. Amongst other baseline factors, age, previous infection, and 
corticosteroid use were significantly associated with SI. When applying prediction modeling for SI across data from 
all studies, the area under the receiver operating characteristic (AUROC) curve ranged from 0.656 to 0.739. AUROC 
values ranged from 0.599 to 0.730 in data from phase 3 and 3b/4 studies, and from 0.563 to 0.643 in data from ORAL 
Surveillance only.

Conclusions  Baseline factors associated with SIs in the tofacitinib RA clinical trial program were similar to established 
SI risk factors associated with advanced treatments for RA. Furthermore, while model performance in predicting 
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Background
Risk stratification and assessing causality in disease 
are founded on two different concepts, i.e., predic-
tion vs. explanation, and thus require different research 
approaches to address [1]. Finding factors that best pre-
dict a current diagnosis or future event is the focus of 
predictive research, which uses predictive models to 
identify individuals or populations at risk of disease 
to allow appropriate interventions [1, 2]. Explanatory 
research uses models to identify causal factors of an out-
come (e.g., risk or protective factors), and thus assesses 
whether such factors are valid targets of intervention 
across populations to prevent disease [1, 2]. However, 
the concepts of prediction and explanation are often 
conflated in studies attempting to identify “risk factors” 
in disease [1]. For example, in a systematic review of epi-
demiological diabetes publications that included “pre-
diction” in their titles, only 745 articles (39%) reported 
metrics of predictive statistics, while 1165 articles (61%) 
did not include such metrics [3]. The top reported met-
rics of actual prediction were area under the receiver 
operating characteristic (AUROC) curve, sensitivity, and 
specificity [3]. Furthermore, using simulated data, it was 
observed that biomarkers with strong statistical asso-
ciation with diabetes can still demonstrate poor predic-
tive validity [3]. Thus, these observations highlight that 
association is not prediction, though the two are often 
interchanged.

Like diabetes, rheumatoid arthritis (RA) is a multifac-
torial, immunological-driven disease with many param-
eters associated with the disease and treatment outcome 
[4–7]. In both cases, the development of prediction mod-
els based on patient data could improve individualized 
clinical decision-making so that the right treatment is 
given to the right patient at the right time [3]. However, 
it is likely that such models would require a combination 
of demographic, clinical, biological, and imaging data for 
accurate patient-level prediction [3, 8].

Patients with RA are at an increased risk of developing 
serious infections vs. individuals without RA [9]. Addi-
tionally, the risk of serious infection in patients with RA 

has been observed to vary between some treatments [10, 
11]. Tofacitinib is an oral Janus kinase inhibitor for the 
treatment of RA. Previous studies have explored factors 
associated with the risk of serious infection in patients 
receiving advanced treatments for RA, including tofaci-
tinib, which include older age, male gender, previous his-
tory of infection, diabetes, and baseline corticosteroid use 
[11–15]. Furthermore, previous studies have attempted 
to develop and validate prediction models for a variety 
of adverse health outcomes in patients with RA from 
real-world clinical practice data, such as serious infec-
tion, myocardial infarction, stroke, and cancer [16–18]. 
Such prediction models would prove useful in identifying 
patients at high risk of adverse outcomes and allow for 
appropriate management of these patients, e.g., increased 
monitoring throughout treatment. Of the few prediction 
models that have been developed for RA, most have gen-
erally reported moderate to good discriminative power in 
predicting serious infections [16–18].

The aims of the current post hoc analysis were to apply 
advanced statistical methodologies and machine learning 
to confirm generally established association factors for 
serious infections with advanced treatments for RA, and 
primarily to generate a predictive model capable of iden-
tifying future occurrence of serious infection in patients 
with RA treated with tofacitinib based on patient-level 
baseline clinical trial data.

Methods
Patients and study design
This analysis included data from 10 phase 2, six phase 3, 
and three phase 3b/4 studies (including the ORAL Sur-
veillance study). All studies were randomized clinical tri-
als of tofacitinib in patients with RA and are summarized 
in Table 1.

Only patients randomized to receive tofacitinib 5  mg 
twice daily (BID), 10 mg BID, or 11 mg once daily (QD) as 
monotherapy or in combination with background metho-
trexate or other conventional synthetic disease-modify-
ing antirheumatic drugs (csDMARDs) were included in 
the current analysis.

SI was similar to other published models, this did not meet the threshold for accurate prediction (AUROC > 0.85). 
Thus, predicting the occurrence of SIs at baseline remains challenging and may be complicated by the changing 
disease course of RA over time. Inclusion of other patient-associated and healthcare delivery-related factors and 
harmonization of the duration of studies included in the models may be required to improve prediction.

Trial registration  ClinicalTrials.gov: NCT00147498; NCT00413660; NCT00550446; NCT00603512; NCT00687193; 
NCT01164579; NCT00976599; NCT01059864; NCT01359150; NCT02147587; NCT00960440; NCT00847613; 
NCT00814307; NCT00856544; NCT00853385; NCT01039688; NCT02187055; NCT02831855; NCT02092467.

Keywords  Machine learning, Prediction models, Rheumatic diseases, Infectious diseases, Janus kinase inhibitor, 
Treatment safety, Risk stratification, Support vector machines with linear kernel, Random forest, Extreme gradient 
boosted trees
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Given the diversity of the patients included in the dif-
ferent studies, analyses were performed on eligible data 
in three groups: (1) all studies; (2) phase 3 and 3b/4 stud-
ies only (i.e., excluding phase 2 studies); and (3) ORAL 
Surveillance (NCT02092467) only.

All studies were conducted in accordance with the 
International Council for Harmonisation Good Clinical 
Practice guidelines, local regulatory requirements, and 
the ethical principles of the Declaration of Helsinki. Pro-
tocols were approved by an Institutional Review Board 

or Independent Ethics Committee at each study site. 
Patients provided written informed consent.

Outcomes
Serious infections were the outcome of interest and were 
identified from each study data set. A serious infection 
was defined as any infection (viral, bacterial, and fun-
gal) that required hospitalization for treatment, or par-
enteral antimicrobial therapy, or resulted in death, was 
life-threatening (immediate risk of death), resulted in 
persistent or significant disability/incapacity (substantial 

Table 1  Summary of randomized clinical trials included in the analysis
Phase ClinicalTrials.gov 

identifier
Protocol 
number/
trial name

Patients 
included 
in current 
analysis, n

Patient population Tofacitinib dose included 
in analysis

Study 
duration

2 NCT00147498 [19] A3921019 61 Active RA with inadequate 
response to, or discontinued 
therapy due to unacceptable 
toxicity from, MTX, etanercept, 
infliximab, or adalimumab

5 mg BID (monotherapy) 6 weeks

NCT00413660 [20] A3921025 145 Active RA with inadequate 
response to stably dosed MTX

5 and 10 mg BID (with back-
ground MTX)

24 weeks

NCT00550446 [21] A3921035 110 Active RA with inadequate 
response to ≥ 1 DMARD

5 and 10 mg BID 
(monotherapy)

24 weeks

NCT00603512 [22] A3921039 53 Active RA with inadequate 
response to stably dosed MTX

5 and 10 mg BID (with back-
ground MTX)

12 weeks

NCT00687193 [23] A3921040 105 Active RA with inadequate 
response to ≥ 1 DMARD

5 and 10 mg BID 
(monotherapy)

12 weeks

NCT01164579 [24] A3921068 72 Early, active RA and MTX- and 
bDMARD-naïve

10 mg BID (with or without 
background MTX)

12 months

NCT00976599 [25] A3921073 15 Active RA with inadequate 
response to stably dosed MTX

10 mg BID (with background 
MTX)

4 weeks

NCT01059864 [26] A3921109 111 Active RA 10 mg BID (monotherapy) 12 weeks
NCT01359150 [27] A3921129 112 Active RA 10 mg BID (with or without 

background MTX)
9 weeks

NCT02147587 [28] A3921237 55 Active RA with inadequate 
response to stably dosed MTX

5 mg BID (with background 
MTX)

14 weeks

3 NCT00960440 [29] A3921032/
ORAL Step

267 Active RA with inadequate 
response to TNFi

5 and 10 mg BID (with back-
ground MTX)

6 months

NCT00847613 [30] A3921044/
ORAL Scan

637 Active RA with inadequate 
response to stably dosed MTX

5 and 10 mg BID (with back-
ground MTX)

24 months

NCT00814307 [31] A3921045/
ORAL Solo

488 Active RA with inadequate 
response to ≥ 1 DMARD

5 and 10 mg BID 
(monotherapy)

6 months

NCT00856544 [32] A3921046/
ORAL Sync

633 Active RA with inadequate 
response to ≥ 1 DMARD

5 and 10 mg BID (with back-
ground DMARD)

12 months

NCT00853385 [33] A3921064/
ORAL Standard

405 Active RA with inadequate 
response to stably dosed MTX

5 and 10 mg BID (with back-
ground MTX)

12 months

NCT01039688 [34] A3921069/
ORAL Start

770 Active RA and MTX-naïve 5 and 10 mg BID 
(monotherapy)

24 months

3b/4 NCT02187055 [35] A3921187/
ORAL Strategy

760 Active RA with inadequate 
response to stably dosed MTX

5 mg BID (with or without 
background MTX)

12 months

NCT02831855 [36] A3921192/
ORAL Shift

694 Active RA with inadequate 
response to stably dosed MTX

11 mg QD (with or without 
background MTX)

12 months

NCT02092467 [37] A3921133/
ORAL Surveillance

2911 Active RA with inadequate 
response to stably dosed MTX

5 and 10 mg BID (with back-
ground MTX)

Up to 72 months

bDMARD biologic disease-modifying antirheumatic drug, BID twice daily, DMARD disease-modifying antirheumatic drug, MTX methotrexate, QD once daily, 
RA rheumatoid arthritis, TNFi tumor necrosis factor inhibitor
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disruption of the ability to conduct normal life func-
tions), or resulted in congenital anomaly/birth defect. A 
patient who experienced a serious infection was discon-
tinued from the study (no recurrent serious infections 
were observed), except for ORAL Surveillance in which 
patients that permanently discontinued study treatment 
were asked to continue to participate in the trial. All seri-
ous infections occurring in a patient from the ORAL 
Surveillance study were considered. Appropriate labora-
tory investigations including, but not limited to, cultures 
were performed to establish the etiology of any serious 
infection.

Baseline variables
Patient-level, mutual baseline variables were extracted 
from each of the randomized clinical trials. In total, 129 
baseline variables were extracted, which included vari-
ables related to demographics, medical history, medica-
tion use, disease activity assessments, and laboratory 
assessments.

The treatment variable included within the current 
analysis had two possible values: tofacitinib 5 mg BID or 
tofacitinib 10  mg BID. Therefore, patients randomized 
to receive either tofacitinib 10 mg BID plus atorvastatin 
or tofacitinib 10 mg BID plus placebo in NCT01059864 
during the double-blind phase were considered as tofaci-
tinib 10  mg BID. For NCT02831855, patients random-
ized to receive tofacitinib 11 mg QD were considered as 
tofacitinib 5 mg BID.

Data pre-processing
To handle missing values, the total number of missing 
values per baseline variable was calculated and a thresh-
old of 70% was applied to retain only those variables 
where data were available for ≥ 70% of the total number 
of patients included in the analysis (Additional file 1: 
Fig. S1). To handle lack of variability, variables where the 
range of possible values was reduced to a single value (i.e., 
those for which all patients have the same value) were 
excluded, for example, “biologic DMARD use at base-
line” and “Others combined use at baseline”. Addition-
ally, variables related to the EuroQol-Five Dimensions 
Health Questionnaire were excluded because they were 
not measured in six of the 19 clinical studies considered.

For the remaining baseline variables, the handling 
of missing values for each prediction model varied. For 
those models incapable of handling missing values, only 
complete observations were included (i.e., patients with 
≥ 1 missing value were excluded). For some of these mod-
els, the analysis was also run using maximum likelihood 
(single or multiple) imputation. For models capable of 
handling missing values either natively or using the miss-
ing incorporated in attribute approach, analysis was run 
using whole population data (i.e., all patients are included 

regardless of missing values). Details on how missing val-
ues were handled in each analysis are listed in Table 2.

For each continuous variable, min-max normalization 
was applied (i.e., the variable was rescaled to 0–1 range) 
to eliminate any influence of differences in the magni-
tudes across variables on the final results.

The variables included in the final analysis, following 
data pre-processing, are summarized in Additional file 1: 
Table S1.

Multivariate logistic regression analysis
Prior to running any model prediction, logistic regression 
was applied on the whole patient data set (i.e., without 
any data splits for cross-validation) to assess the associa-
tions of baseline variables with the outcome of interest in 
a multivariable context. Model performance was assessed 
based on the Akaike’s information criterion method, a 
statistical measure for comparative evaluation of models 
as a trade-off between goodness-of-fit and complexity, in 
which the smallest value reflects the best model. Step-
wise variable selection was performed; this process starts 
with the null model and at each iteration, variables can be 
added to or excluded from the model. The process stops 
when no further improvement in Akaike’s information 
criterion would be achieved with addition or removal of 
variables to or from the model, respectively. Regression 
coefficients and odds ratios (OR) with 95% confidence 
intervals (CIs) were calculated. Associations were consid-
ered significant where the 95% CIs did not include 1.0.

Prediction models
Various machine learning methods (classification mod-
els) were implemented to explore how results change by 
model; these included logistic regression, support vec-
tor machines with linear kernel, random forest, extreme 
gradient boosting trees, and boosted trees. These models 
are reviewed in detail elsewhere [38]. For each model, the 
baseline variables were defined as independent variables, 
while the presence of serious infection was defined as the 
dependent variable. Continuous variables were included 
as predictors in the support vector machines algorithm; 
both continuous and categorical variables were included 
in all other algorithms.

Statistical analysis methods
Multiple classification algorithms were applied to the 
data using a repeated k-fold cross-validation (CV) 
approach [39]. First, the whole data set was randomly 
split into “k” different partitions, where “k” = 5 in this 
analysis. Then, in an iterative procedure, the k partitions 
were removed one at a time, leaving the other partitions 
(“k-1 partition”) to be considered together. Patients in the 
removed k partition served as the testing data set, while 
patients in the k-1 partitions were used as the training 
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data set. For each partition, a model is chosen and fitted 
based on the patients in the training data set and pre-
dictions are then made for patients in the test data set. 
This sequence was iterated for each k partition, enabling 
predictions for each patient because each patient was in 
1 partition and each partition was used once as the test 
data set. It is important to note that the predictions were 
provided by k different models (i.e., 1 model for each iter-
ation of the CV). The k-fold CV was repeated multiple 
times with the random partition changing each time. The 
values of the hyperparameters for each algorithm were 
also varied to assess how the results changed. Given that 
three repetitions of the CV approach were performed in 
this analysis, the performance metrics of each model are 
an average of these repetitions. Synthetic Minority Over-
sampling Technique (SMOTE) [40] was applied to adjust 

for class imbalance between the number of patients with 
vs. without serious infection.

For evaluating the accuracy of the models to pre-
dict serious infection, receiver operating characteris-
tic curves were derived. The AUROC curve was then 
determined to assess how well each model distinguished 
between classes (i.e., patients with vs. patients without 
serious infections); an AUROC value ≤ 0.5 was consid-
ered as lacking predictive ability, while a value equal to 
1 indicated prediction was always accurate [38]. For the 
purposes of this analysis, an AUROC value of 0.85 was 
considered as the threshold for an accurate model.

Results
Patient selection
Demographic and baseline characteristics of the patients 
included in this analysis are summarized in Table  3. A 

Table 2  Estimated performance metrics
Algorithm Missing values handling AUROC Accura-

cya, %
Sensitiv-
itya, %

Specific-
itya, %

PPVa, % NPVa, %

A) All studies (group 1; N = 8404)b

Logistic regression Only complete observations 0.705 82.5 37.4 85.5 14.7 95.3
SVM with linear kernel Only complete observations 0.686–0.691 75.1–75.7 51.0–52.9 76.6–77.2 12.9–13.3 95.9–96.1
Random forest Only complete observations 0.682–0.733 93.0–93.7 0.0–6.2 98.8–100.0 0.0–30.9 93.7–94.0
Extreme gradient boosting treesc Whole population (no missing 

value imputation)
0.656–0.739 83.7–93.6 3.8–27.1 87.2–98.9 9.9–20.0 94.5–95.5

Boosted treesc MIA 0.703–0.726 89.6–91.5 11.3–18.4 93.9–96.3 14.6–17.0 94.8–95.1
Logistic regressionc ML single imputation 0.693 80.1 40.9 82.5 12.2 95.9
Logistic regressionc ML multiple imputation 0.694–0.697 79.8–80.2 40.0–41.5 82.1–82.5 11.9–12.4 95.8–95.9
B) Phase 3 and 3b/4 studies (group 2; N = 7565)b

Logistic regression Only complete observations 0.696 81.9 36.3 85.0 14.3 95.1
SVM with linear kernel Only complete observations 0.680–0.686 74.8–75.5 48.9–51.3 76.6–77.2 12.6–13.4 95.6–95.8
Random forest Only complete observations 0.673–0.723 92.5–93.5 0.0–5.1 98.6–100.0 0.0–41.7 93.5–93.8
Extreme gradient boosting treesc Whole population (no missing 

value imputation)
0.599–0.730 87.9–92.9 4.6–22.6 92.2–98.6 11.8–19.9 94.1–94.9

Boosted treesc MIA 0.702–0.720 88.8–90.9 13.1–18.8 93.4–96.0 14.9–17.9 94.4–94.7
Logistic regressionc ML single imputation 0.702 82.4 35.7 85.4 13.8 95.3
Logistic regressionc ML multiple imputation 0.701–0.704 82.4–82.6 36.4–37.6 85.4–85.6 14.1–14.5 95.4–95.5
C) ORAL Surveillance only (group 3; N = 2911)b

Logistic regression Only complete observations 0.611 75.3 32.5 80.9 18.3 90.1
SVM with linear kernel Only complete observations 0.607–0.610 73.1–73.7 34.7–36.3 78.0–78.8 17.3–17.9 90.1–90.3
Random forest Only complete observations 0.589–0.635 87.7–88.4 0.0–3.4 98.9–100.0 0.0–63.9 88.3–88.6
Extreme gradient boosting treesc Whole population (no missing 

value imputation)
0.563–0.643 74.0–87.4 3.9–24.1 80.5–98.3 14.1–27.6 88.6–89.3

Boosted treesc MIA 0.603–0.630 86.3–87.5 3.3–8.0 96.6–98.6 20.1–26.6 88.5–88.8
Logistic regressionc ML single imputation 0.624 76.1 35.3 81.5 20.1 90.5
Logistic regressionc ML multiple imputation 0.621–0.629 75.9–76.4 34.8–36.3 81.3–81.8 19.8–20.7 90.5–90.7
The AUROC considers the estimated probabilities provided by the models, regardless of any cut-off value, while all other performance measures (i.e., accuracy, 
sensitivity, specificity, PPV, and NPV) are obtained by applying a cut-off value of 0.5 to the predicted probability obtained (i.e., a patient is classified as having serious 
infections if their predicted probability is ≥ 0.5)

AUROC area under receiver operating characteristic, MIA missing incorporated in attribute, ML maximum likelihood, N total number of patients included in each 
group, NPV negative predictive value, PPV positive predictive value, SVM support vector machines
a Cut-off = 0.5
b The total number of patients assessed in each model differed according to how missing values were handled by the model
c Complete patient set. No patients excluded based on missing variables
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total of 8404 patients with RA treated with tofacitinib 
(5  mg BID, n = 4813; 10  mg BID, n = 3591) were eligible 
for inclusion in the study. The total follow-up time for 
patients was 15,310.13 patient-years. Patients were 
mostly female (81%) with a mean (standard deviation) 
age of 55.5 (11.4) years and body mass index of 28.2 (6.5). 
Of these, serious infections were reported in 473 patients 
with RA receiving tofacitinib (5 mg BID, n = 236; 10 mg 
BID, n = 237; group 1). The number of patients included 
in the individual phase 2 studies was generally low (range 
15–145).

Across phase 3 and 3b/4 studies, a total of 7565 patients 
with RA were eligible for inclusion, of which, seri-
ous infections were reported in 462 patients (group 2). 
Data from 2911 patients were analyzed from the ORAL 
Surveillance study (NCT02092467), with 339 patients 
reporting serious infections (group 3).

Association analysis
Stepwise logistic regression showed that the largest 
baseline variable association with serious infection was 
ethnicity, in which Asian patients were more likely to 
experience serious infections vs. White patients (OR 2.85; 
95% CI 2.09, 3.87; Fig. 1). Other significant associations 
with serious infections included older age, male gender, 
and prior and/or current comorbidities (infection, renal 
and urinary disorders, and chronic obstructive pulmo-
nary disease), as well as concomitant treatments received 
at baseline (csDMARDs, corticosteroids, psycholeptics, 
antidepressants, and lipid-lowering agents). The absence 
of vascular disorders was significantly associated with 
serious infections. Other significant associations were 
also observed for some laboratory assessments and dis-
ease activity indices, which are shown in Fig. 1.

Prediction of serious infections at baseline performance 
metrics
An overview of the estimated performance metrics for 
each of the seven prediction models across all studies 
(group 1), phase 3 and 3b/4 studies (group 2), and ORAL 
Surveillance (NCT02092467; group 3), including the var-
ious methods for imputation of missing values, is shown 
in Table  2. When data from all studies were included 
in the analysis, AUROC ranged from 0.656 to 0.739 
(Table 2). Assessment of data from only phase 3 and 3b/4 
studies resulted in AUROC ranging from 0.599 to 0.730 
(Table  2), while an AUROC between 0.563 and 0.643 
was observed when the models were assessed using only 
ORAL Surveillance study data (Table 2). The sensitivity/
specificity and the positive/negative predictive values 
were generally consistent across all groups and ranged 
from 0.0–52.9%/76.6–100% and 0.0–63.9%/88.3–96.1%, 
respectively. Figures S2, S3, and S4 in Additional file 1 
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Fig. 1  Baseline variables associated with serious infection (stepwise multivariate logistic regressiona)
a Stepwise multivariate logistic regression was performed in all patients (N = 8404); ORs shown are those for patients with serious infection (n = 473). For 
continuous variables, ORs > 1 indicate a higher risk of serious infection with higher values. ALT, alanine aminotransferase; CDAI, Clinical Disease Activ-
ity Index; CGA, Clinician Global Assessment; CI, confidence interval; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; csDMARD, 
conventional synthetic disease-modifying antirheumatic drug; DAS28-4(CRP), Disease Activity Score in 28 joints, C-reactive protein-4; OR, odds ratio; 
SDAI, Simplified Disease Activity Index; VAS, visual analog scale
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show the variable importance for the Extreme Gradient 
Boosted prediction models.

Discussion
In the current study, we combined baseline patient-level 
data from 19 randomized clinical trials of patients with 
RA receiving tofacitinib 5 mg BID (including 11 mg QD) 
or 10 mg BID and assessed (1) the association of variables 
with outcomes in a multivariable context and (2) the abil-
ity to accurately predict serious infection in individual 
patients by applying seven independent prediction mod-
eling approaches. Consistent with previously published 
analyses on the tofacitinib RA clinical development pro-
gram and those receiving tumor necrosis factor inhibi-
tors (TNFi) or non-TNFi DMARDs [11–15], multivariate 
logistic regression of the entire data set showed that, 
amongst other factors, older age, male gender, previous 
history of infections, and corticosteroid use at baseline 
are associated with a higher risk of serious infections in 
patients receiving tofacitinib. These results suggest that 
the patient composition selected for this analysis seems 
representative of the previously analyzed cohorts.

By applying seven independent prediction models, we 
observed that in the selected overall data set (group 1), 
the threshold for definitive prediction (AUROC ≥ 0.85) 
was not achieved; this was consistent when the analysis 
was focused on data from phase 3 and 3b/4 studies only 
(group 2) or ORAL Surveillance (group 3). It should be 
noted that model performance, using data from clini-
cal trial data sets, was generally comparable to that seen 
in other published models predicting serious infec-
tion in RA, using data from clinical practice cohorts, 
where moderate discriminative power has been reported 
(AUROC = 0.68–0.74) [16–18]. Thus, our findings high-
light the continuing challenge to accurately predict seri-
ous infections at baseline in patients with RA, which may, 
in part, arise due to a patient’s risk of serious infection 
varying over time.

By combining data from 19 different clinical trials, 129 
different baseline variables could be identified. However, 
some were excluded from the analysis due to missing 
values (< 70% patient data available) or lack of variabil-
ity. Variables included in the models still covered a wide 
range of baseline characteristics, medical history, and 
concomitant treatments. Nonetheless, many other fac-
tors highly associated with infections have been reported 
from other studies which were not available in the cur-
rent data set, such as socio-economic and environmen-
tal factors [41, 42]. Thus, it is possible that variables not 
available in the included studies may provide more pre-
dictive value.

There were several strengths to the current study; this 
was a large, well-characterized data set of patients with 
RA (N = 8404; >15,000 patient-years of follow-up) from 

multiple randomized clinical trials. All patients included 
in the analysis had a defined starting point (start of treat-
ment with tofacitinib) and data were collected following a 
standardized protocol. Furthermore, all serious infections 
were adjudicated events, the seven independent predic-
tion models assessed are well-established approaches, 
and model performance was generally consistent across 
the various groups for predictive modeling. Conversely, 
there were a number of limitations that should be taken 
into consideration. The prediction model was limited to 
the available variables within the included clinical trials, 
and these were further restricted to only those variables 
assessed at baseline. The included studies also had dif-
ferent durations, ranging from 6 weeks up to 72 months, 
which may have affected the number of observed serious 
infection events in some studies and thereby limited pre-
diction of such events based on baseline variables. Fur-
thermore, clinical trials are highly selective and therefore, 
the validity of any prediction model based on clinical trial 
data may be limited in real-world patients. Addition-
ally, there was a large imbalance between the number of 
patients with serious infections (n = 473) vs. those with-
out infection (n = 7931), and despite partial correction 
for this using the SMOTE technique, this imbalance may 
still have impacted the positive predictive value. As Janus 
kinase inhibitors, such as tofacitinib, are associated with 
an increased incidence of herpes zoster [43, 44], predic-
tion of specific bacterial, viral, or fungal infections could 
be interesting but was not possible in the current study 
due to the small number of cases of each. It should also 
be noted that the prediction models were not validated 
using any internal comparator (e.g., placebo or csD-
MARD-treated patients without tofacitinib exposure), 
or any external data source other than the clinical trial 
data; however, these analyses established a foundation for 
future research on this topic.

In addition to factors previously suggested, such as 
patient demographic factors, specific biomarkers, and 
lifestyle factors [45], collecting information associated 
with patient-related social, environmental/healthcare 
delivery-related, and personal demographics may pro-
vide further insight. Sample sizes could also be enlarged 
by including non-serious infections, which may allow 
broader prediction of infection events and subsequently 
allow classification by infection subtypes and causative 
agents, though it should be considered that inclusion 
of such may introduce larger variability within the data. 
Although not directly compared, findings from ORAL 
Surveillance demonstrated that different factors were 
associated with serious and non-serious infections in 
patients receiving tofacitinib or TNFi [13], suggesting 
that factors that increase the risk of serious infections are 
not similar to those for non-serious infections.
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As the disease course of RA varies over time, and can 
be unique to each individual patient [46], predicting 
events (e.g., serious infections) with purely baseline-
derived variables may not be accurate, particularly with 
long observation periods, as the patients risk of such 
events may change over time [15]. Therefore, time-vary-
ing variables that consider changes to the patient over 
time (e.g., for disease activity, glucocorticoid dosage, 
functional status, and changes in white blood cell com-
position) may enable more accurate prediction. However, 
the aim of the current study was to assess the ability to 
predict the occurrence of serious infections based only 
on variables at the start of tofacitinib treatment.

Conclusion
Our findings are consistent with previously reported 
analyses on advanced therapies in RA, including tofaci-
tinib; we observed that older age, male gender, previous 
history of infections, and corticosteroid use at baseline 
are associated with a higher risk for serious infections. 
Furthermore, use of baseline data from a large tofaci-
tinib RA clinical trial program data set with seven inde-
pendent prediction modeling approaches resulted in a 
similar model performance to that observed previously. 
However, this did not meet the threshold for definitive 
prediction in clinical practice. Thus, prediction of seri-
ous infections at baseline using clinical trial data from 
the tofacitinib RA program is currently challenging, and 
other patient-associated data, harmonization of study 
duration, or including time-varying variables may be 
required to increase the ability to accurately predict seri-
ous infection with only baseline characteristics.
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