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ACR = American College of Rheumatology; CIA = collagen-induced arthritis; CII = collagen type II; HLA = human leucocyte antigen; RA = rheuma-
toid arthritis; SE = shared epitope; SNP = single-nucleotide polymorphism; TCR = T cell receptor; TNF-α = tumour necrosis factor-α.
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Introduction
Rheumatoid arthritis (RA) affects up to 1% of the world
population. It is a disease with a clear gender bias: women
are affected 2.5-fold as often as men [1]. RA encompasses
a number of disease subtypes such as Felty’s syndrome,
seronegative RA, ‘classical’ RA, progressive and/or relaps-
ing RA, and RA with vasculitis. These subtypes have a pro-
nounced variation in clinical symptoms, such as age of
onset, disease course and outcome. Owing to this large
variability in disease, diagnosis is made by the fulfilment of
four criteria out of seven, as defined by the American
College of Rheumatology (ACR) [2].

Most of these criteria are clinically defined signs and
symptoms that could be the outcome of many different
pathogenic pathways [3]; RA can therefore even be con-
sidered to be a syndrome composed of several distinct
diseases. This makes frequency estimates and disease
characteristics rather variable.

One of the first known appropriate clinical descriptions
of RA appears in written records from 1782 in an educa-
tional textbook written by the Icelandic physician Jon
Petursson [4]. However, there is evidence from skele-
tons from a human population living in the Mississippi
valley about 5000 years ago that RA might have
occurred before modern time [5]. It was not until 1978
that the first genetic association was reported [6], when
a linkage to B cell allotypes [later known to be encoded
by the MHC human leucocyte antigen (HLA)-D locus]
was observed. It is now clear that the genetic predispo-
sition to RA is polygenic and complex, and new tech-
niques have to be employed to identify the underlying
genetic factors.

In the 1990s, techniques became widely available that
gave us the possibility of locating unknown genetic factors
without the constraints of presumptions. In general, to use
linkage analysis to study the genetics of a disorder, one
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ultimately investigates a skewing in the frequencies of
alleles between healthy and affected subjects, and corre-
lates that with a disease phenotype. At present a large
effort is being made by the scientific community to deter-
mine the genetic influence on diseases; many techniques
are being employed today.

Genes and environment
An individual develops RA as the result of a combination
of genetic factors and factors in the environment. In addi-
tion, variation in the environment might affect not only the
overall frequency of disease but also its phenotypic
appearance. The difficulties in obtaining fully informative
pedigrees in such a common disease as RA might reflect
a very complex genetic influence, with many contributing
genes of low penetrance. A poor definition of disease sub-
types, and the influence of environment on the disease,
also complicate finding the most important genes associ-
ated with the pathogenic events leading to RA [7].
However, the concordance of monozygotic twins (the fre-
quency of monozygotic twin pairs in which both twins are
affected) of 12–15% in comparison with the concordance
of dizygotic twins of 2–4% [7–9] provides evidence of a
genetic contribution. In a similar way, there is well estab-
lished genetic influence on the development of other
autoimmune diseases [10]. Presumably, none of the
genes involved are either necessary or sufficient for the
expression of the diseases, but contribute to the disease
liability. The features of RA described (summarized in
Table 1) are shared with several of the multifactorial disor-
ders common in the human population, such as cancers,
cardiovascular, psychiatric and autoimmune disorders.

Relative risk
The possibility of identifying susceptibility genes for a
disease is greatly dependent on the degree of genetic

contribution to the disease over other influences. A com-
monly used method for sampling the strength of the
genetic factors involved is to estimate the relative risk of a
sibling to a proband (λs). Put simply, this is calculated as
the risk for a person with an affected sibling divided by the
risk in the general population [11]. However, it has proved
to be problematic to perform these calculations for RA,
and also for most multifactorial diseases, because this
estimate depends on the accuracy of the sibling risk and
the population prevalence. These frequencies are depen-
dent on the clinical definition of the disease.

As mentioned previously, RA is most probably not one dis-
tinct disease but a clinical syndrome including several dis-
eases with heterogeneous etiologies. It is important to
take into account the fact that the clinical description of
RA has differed historically and geographically. Assessing
the true frequency in families might also be difficult
because family members are at different phases in their
disease, with some in a very active state and some in com-
plete remission. In addition, the differing ages of onset of
the disease tend to complicate estimations of sibling risk;
assessing the population prevalence has also been diffi-
cult because of inconsistencies in the time allowed for sat-
isfying the ACR criteria. A study in the UK, in which
patients satisfying a few of the four required ACR criteria
were allowed 5 years to fulfil the criteria, showed that a
much shorter period increased the risk of underestimating
the population prevalence [9]. The λs value therefore
varies markedly between different studies. These aspects
are not always taken into consideration when λs values are
reported and discussed; therefore, these λs values might
not be of much value when estimating the level of genetic
contribution to the disease or the contribution of separate
genetic risk factors.

Heritability
An alternative measurement of the relative genetic contri-
bution to development of the disease is its heritability. Her-
itability (in the narrow sense) is the proportion of the
variance in the disease liability that is explained by the
inherited genetic variance [12]. This estimate is not as
dependent as λs on disease prevalence. In a recent study,
the heritability of RA was estimated to be about 60%, indi-
cating that genetic factors account for a large proportion
of the population’s liability to the disease [13]. However,
the use of twins in this type of study, as done by MacGre-
gor et al, tends to overestimate heritability owing to the
common environment shared between both monozygotic
and dizygotic twin pairs [12]; this can be overcome by
investigating twins reared apart.

Study design
Analytical methods
In efforts to identify genes causing monogenic Mendelian
diseases and, more recently, the multifactorial common

Table 1

Characteristics of multifactorial disorders

Characteristics Description

Multifactorial influence Contribution of genetic as well as 
environmental factors to disease 
development

Phenotypic heterogeneity Large variety in clinical phenotypes 
within a syndrome

Polygenicity The effect of many genes that contribute 
to a disease

Genetic heterogeneity Different genes, or even different alleles 
of the same gene, may contribute to 
development of the same phenotype

Variable disease onset The onset of the disease may vary 
between individuals, onset often late in 
life
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diseases such as RA, two main analytical strategies are
used by investigators: association study with unrelated
cases and controls, and linkage analysis using families
with multiple affected members. The association study
approach has been used extensively for candidate genes
(genes suggested to be involved in disease development
on the basis of the disease mechanism). However, for
most diseases or syndromes like RA it is not an easy task
to pinpoint candidate genes because of the complexity of
the disease mechanism, and the candidate gene studies
that have been performed largely report weak and incon-
sistent results that are below significance from a genome-
wide perspective [8,14–16].

An alternative approach has been to perform genome-
wide linkage screens, searching for genes involved in the
disease development without any a priori assumptions
about their chromosomal location or function in the patho-
genesis of the disease. In a traditional linkage study, the
segregation of the disease phenotype and polymorphic
genetic markers are studied in families with several gener-
ations of affected individuals, to identify markers that seg-
regate with the disease by using a parametric, or
model-based, linkage analysis. Model-based methods
require the estimation of the mode of inheritance for the
disease, defined by disease allele frequency and pene-
trance for each genotype [17]. However, because most
multifactorial diseases do not segregate in families as
typical Mendelian diseases, the use of non-parametric, or
model-free, methods [18–20] is being preferred in many
studies. Most model-free methods estimate the degree of
sharing of marker alleles that are identical by descent
between affected sib-pairs. Although the model-free
methods do not explicitly specify any disease inheritance
model, the performance of the analysis is dependent on
the underlying assumptions of the test [21,22]. It has been
shown that the use of model-free methods is in most
cases associated with loss of power compared with
model-based methods, in spite of the lack of correct inher-
itance models [23,24].

The use of association studies has been proposed for
genome-wide gene mapping of multifactorial diseases
[25]. New technology permits the identification and large-
scale analysis of the next generation of genetic markers,
the single-nucleotide polymorphism (SNP) markers. SNPs
have lower heterozygosity than microsatellites and are
therefore less informative, but the abundance of SNPs in
the genome allow much denser maps [26] to be con-
structed. How dense the map needs to be for mapping
disease genes depends on the extent of linkage disequilib-
rium surrounding the genes, which depends on the age of
the disease alleles, the age of the SNP markers and the
rate of expansion of the population. The distribution of
linkage disequilibrium most probably has great stochastic
variation in the genome. In the continuing debate on this

issue, the number of SNPs to scan the genome have varied
from as few as 30,000 [27] through 500,000 [28] to as
many as 1,000,000 [29], which might still yield one or only
a few SNPs per gene. The debate continues [30,31].

It should be noted, when discussing the different strategies
of association and linkage studies, that association mapping
is most powerful when the affected individuals have inher-
ited the same disease allele that is identical by descent from
a common ancestor; this will be true if they are distantly
related. Consequently, the association analysis will be a
linkage analysis of a giant pedigree of unknown structure
[22]. In a family-based linkage analysis, the meiosis available
in the families will be investigated, whereas in an association
analysis the number of meioses separating two ‘unrelated’
individuals will depend on the number of generations since
they shared a common ancestor.

One of the great obstacles in the genetic analysis of
multifactorial diseases is extended genetic heterogeneity.
The locus heterogeneity will reduce the power of both
linkage studies and association studies. However, linkage
strategies will not be affected by allelic heterogeneity,
whereas this is a major determinant of success for the
association approach. Recently, investigations of the
extent of linkage disequilibrium in the lipoprotein lipase
gene [32] and the apolipoprotein E gene [33] showed
that in either of these cases the currently known risk
factors for cardiovascular disease and Alzheimer’s
disease, respectively, would have been identified in an
association approach with the marker density proposed
by the advocates of this approach [25,28,34].

Ascertainment
The crucial outcome of both association studies and
linkage studies, regardless of the statistical methods used,
is the clinical definition of the disease. The power of any
study design will be severely affected if the diseased indi-
viduals are ascertained on the basis of ambiguous pheno-
types. Our ability to map disease genes is largely a function
of the ability of the phenotype under study to predict the
underlying risk genotype [35]. The importance of study
design, including a careful ascertainment of the study
material and thorough clinical evaluations, is therefore likely
to be the key to success when mapping susceptibility
genes for multifactorial diseases [22]. The use of ethnically
isolated or recently founded human populations, which
could be more homogenous in disease associations, has
been suggested [36]. This strategy has been applied for
systemic lupus erythematosus in the Icelandic population
[37] and in the Finnish population for complex diseases
such as hypertension [38] and multiple sclerosis [39].

Because disease development is not due solely to genetic
factors, ascertainment of the study material is also impor-
tant from an environmental point of view. Great hetero-
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geneity in the environment among analysed patients might
also complicate the finding of genetic components. The
larger the environmental variance is, the more it will hide
the genetic effects of the disease, decreasing the power
to detect the genetic risk factors [22]. Therefore, control-
ling the environmental conditions, for example by ascer-
taining families or patients from the same geographical
area or with the same type of life style, might be one way
of increasing the possibilities of finding genetic risk
factors. In humans, disease-susceptibility genes for certain
multifactorial diseases might be so numerous, and their
interaction so varied, that there might be a unique profile
of disease alleles for each population. As a result, the
identification of disease genes in one population might be
difficult to replicate in another population, which is often
required for the linkage results to be accepted as true.

Animal models
A powerful approach to localizing susceptibility genes for
RA is to use inbred animal models. Most of the obstacles
discussed above (Table 1) can be overcome to a greater
or lesser degree, and the biological role of the genetic
control can be addressed experimentally. This approach
requires models in which the arthritis is caused by similar
pathogenic pathways to those in human RA.

To achieve the goal of defining causative genes, it is likely
that the joint use of model studies and patient materials will
provide the most effective solution, as proposed in Fig. 1.

Advantages and disadvantages
The advantage in all of the animal models is that the devel-
opment of disease can be monitored carefully, the genetic

content can be controlled and manipulated, and environ-
mental influences can be kept to a minimum. At present
there is a growing interest in well-defined animal models,
because this branch of RA research generates significant
information on linked genomic regions and also provides a
tool for the further mapping and eventual identification and
study of the underlying genes. However, there are two
possible drawbacks to animal models: first, the genetic
distance to humans, and second, the possibility that
humans might use pathogenic pathways that do not exist
in the experimental animals.

Animal models for RA
The first relevant antigen-specific animal model for RA to
be established was the collagen-induced arthritis (CIA)
model, in which collagen type II (CII) was injected into rats
and induced an RA-like disease [40]. Since then, several
other proteins have been shown to be able to induce
arthritis (in both rats and mice) such as collagen type XI
(CXI-induced arthritis, CXIIA) [41,42], proteoglycan (pro-
teoglycan-induced arthritis) [43] and cartilage oligomeric
matrix protein (COMP-induced arthritis) [44]. Other
studies have shown that it is not necessary in all systems
to administer a protein antigen; instead, a non-immuno-
genic adjuvant is enough to trigger the immune system to
allow an inflammatory attack on the joints [45–48]. These
models have been extensively studied to identify the
genetic causes (see below), and it is probable that several
models will have to be genetically dissected to allow us to
understand the pathogenic pathways leading to RA.

The factors investigated
Several genes have been implicated in RA but it has not
been easy to pinpoint the direct involvement of any partic-
ular candidate. Among the genes investigated are those
encoding immunoglobulins, T cell receptor (TCR), cyto-
kines and the MHC. A large fraction of the significant
information has been derived from animal models.

B cells
B cells are likely to be important in the pathogenesis of
RA. The occurrence of rheumatoid factors is one of the
ACR criteria, and antibodies against CII are produced in
the joints by a subset of RA-affected individuals [49–51].
In the CIA model, anti-CII antibodies are clearly patho-
genic and antibody-mediated pathways are important in
the process leading to arthritis [52–54]. Mice with
impaired B cell functions, or lacking B cells, do not
develop arthritis [55–57]. It is to be expected that many
gene regions associated with CIA, and possibly RA, will
control B-cell function and pathogenicity. In fact, the iden-
tified locus on chromosome 2 in the mouse is most proba-
bly caused by a deletion of the complement C5 gene [58].

A crucial role for the Fcγ receptors in triggering autoim-
mune arthritis has been suggested on the basis of the
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Figure 1

Strategy to find genes of importance for rheumatoid arthritis. 



observations that mice lacking the FcRγ chain are pro-
tected from CIA, in contrast to wild-type mice, although
both groups produced similar levels of IgG antibodies
against collagen [59]. In addition, mice lacking FcγRII
developed an augmented IgG anti-collagen response and
arthritis collagen [59]. In a TCR-transgenic mouse strain,
which spontaneously develops a joint disorder greatly
resembling human RA, Matsumoto et al showed that the
pathology was driven almost entirely by immunoglobulins
[60]. In this particular strain, the target of both the initiat-
ing T-cells and the pathogenic immunoglobulins was the
glycolytic enzyme glucose-6-phosphate isomerase [60].

T cells
A role for T cells in arthritis was implicated by the discov-
ery of activated T cells in the joints; however, their role has
since been debated. Circumstantial evidence strongly
favours a central role for T cells in RA on the basis of
MHC class II association, T-cell-dependent somatic muta-
tions found in rheumatoid factors and T-cell-dependent
antibody isotypes found in CII autoantibodies. T cells react
to peptides presented by MHC molecules on antigen-pre-
senting cells, and if proper signals are given they become
activated and pass through the lymphatic vessels into the
bloodstream. Here they perform their effector function
after recognition of their antigen. Because the B cell
needs help from a CD4-carrying αβ T cell to be able to
respond to an antigen, the T cells have long been investi-
gated for their regulatory ability in RA (reviewed in [61]).
Clearly, the activation of αβ T cells is crucial in all animal
models for RA studied so far.

T cells might have several roles in arthritis, such as activat-
ing B cells to produce pathogenic antibodies, activating
macrophages and fibroblasts to destroy the target tissue
and helping cytotoxic cells to kill tissue cells. It is uncertain
which mechanism is the most important in the various
animal models or whether there is a combined effect. It is
also likely that many genes that are yet to be found will
control the activation of T cells because this is a well con-
trolled step in the activation of the immune system and
also in the avoidance of reacting to self tissue.

It has been suggested that polymorphism of the TCR genes
could be of importance, because there are studies showing
a biased TCR gene usage, although this has been debated.
In 1995 suggestive evidence for linkage to the TCR Vb12.2
marker in a study of 28 RA families with 79 affected was
published [62]. Another study weakly linked TCR Va8 (odds
1.3) but not TCR Vb to RA in 766 RA patients [63]. In con-
trast, an investigation in the UK, where 184 RA families with
404 affected siblings were analysed, significantly ruled out
the TCRA and TCRB loci as germline-encoded RA suscep-
tibility loci [64]. In support of this negative finding, linkage
analyses in animals so far have not provided evidence of an
influence of a TCR gene (Fig. 2). The current data suggest

that any influence of certain TCR genes is small compared
with that of the MHC class II region. However, irrespective
of a possible direct association with TCR loci it is likely that
many of the genetic regions identified will contain genes
controlling T cell function, because T cells are important in
the pathogenesis of both CIA and RA.

The MHC region
An association between the MHC region and RA was
shown in 1978 [6]; since then there have been many pub-
lications confirming this. It was observed in 1987 that a
common amino acid sequence motif in the third hypervari-
able region of the HLA-DRβ1 protein was shared between
the RA-associated HLA-DRB1 alleles 0401, 0404, 0408,
0405 and 0101, and that all of the variant amino acids
were located in the peptide-binding pocket of the mole-
cule. This motif encoding the peptide-binding pocket was
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Figure 2

Chromosomal maps showing the location of the identified loci in
various rat (top) and mouse (bottom) models for RA. Chromosome
positions have been taken from the web sites of either the Mouse
Genome Database [119] for mouse markers or
http://www.nih.gov/niams/scientific/ratgbase/index.htm and
http://ratmap.gen.gu.se/default.html for rat markers. QTL, quantitative
trait locus.



termed the shared epitope (SE) [65]. It is believed that the
SE is responsible for the observed MHC association,
although more recent studies have shown associations
with DRB1 alleles that do not carry this motif.

Several studies have indicated that classical RA and a
more severe and chronic disease course are more
strongly associated with SE than cases including more
broadly diagnosed RA [66–68]. An alternative possibility
is that the HLA-DQ locus could be the actual RA suscepti-
bility factor, whereas HLA-DRB1 confers resistance [69].
It is difficult to discriminate between HLA-DR and
HLA-DQ because they are in strong linkage disequilib-
rium, but so far the evidence argues for HLA-DR rather
than HLA-DQ. The proposed associated serotypes DQ7
and DQ8 are strongly linked with the RA-associated DR4
allele DRB1*0401, but specifically designed studies do
not support an independent role for DQ7 or DQ8 [70,71].
In mice transgenic for human class II molecules it has
been possible to show that the development of CIA 
is associated not only with the SE-containing
DRB1*0401/DRA [72,73] and the DRB1*0101/DRA [74]
molecules but also with DQ8 [75].

It should be emphasized that a role for other MHC region
molecules in the genetic association to RA cannot be
excluded; for example, several studies show support for the
involvement of the MHC class III region [76,77]. A few can-
didates in this region are peptide transporters and chaper-
ones such as DM and tumour necrosis factor-α (TNF-α). A
polymorphism at amino acid 238 in the promoter region of
TNF-α has been implicated in RA; however, this has been
shown not to cause deviations in transcription in B cells, T
cells or monocytes but instead is in linkage disequilibrium
with an unknown genetic factor [78]. Nevertheless, other
polymorphisms might influence the predisposition to
certain sub-phenotypes of RA as exemplified by an over-
representation of certain polymorphisms in TNF-α in a
study of systemic juvenile arthritis in Japan [79]. Excluding
candidates conclusively in this region is difficult in humans
because genes are in extensive linkage disequilibrium and
alleles of different loci are often inherited together in haplo-
types. These problems might be overcome by stratification
in large cohorts of human families.

It has been possible in the mouse to identify the major
gene in the MHC region that is responsible for the associa-
tion with CIA. This was shown by modifying the CIA-resis-
tant H-2p haplotype antibody gene into the CIA-susceptible
antibody allele from the H-2q haplotype, an exchange of
only four amino acids, and expressing this in an H-2p

mouse. This transgenic mouse was as susceptible to CIA
as the normal H-2q-carrying strain [80]. Interestingly, the
peptide-binding pocket of the H-2q A molecule mimics that
of a human class II molecule containing the SE [72,81,82].
Accordingly the DR4*0401 and the DR1*0101 molecules

bind a collagen peptide that is shifted only slightly from the
peptide that the H-2qA molecules bind, and the TCR
contact amino acids seem to be shared in mouse and
human. Thus, the CIA model not only might use some of
the pathways of putative importance in RA but also might
mimic some of the molecular interactions.

Although more than 20 years have passed since the first
association of the MHC with RA, the genes responsible
for this effect, or their role in the disease pathogenesis,
are not known. The readiness with which the association
of the MHC with disease has been found indicates that
this represents a substantial part of the genetic contribu-
tion and, perhaps more importantly, is less heterogenic
than other contributing genes.

Cytokines
Cytokines are the messenger molecules of the immune
system. It is easy to envisage that an abnormal cytokine
gene would be able to affect tolerance to self, but
although this field has received great attention and many
data have been accumulated, the results are largely incon-
clusive. A vast effort has been put into studying cytokine
function in the context of knockout animals, but the results
have not always been easy to interpret. It seems that our
limited knowledge and our current techniques make it diffi-
cult to follow the skewing in the cytokine pattern when one
cytokine is eliminated, especially because this often takes
place in the microenvironment surrounding a few interact-
ing leucocytes. In studying RA, some investigators have
attacked the problem by using a candidate gene approach
and some cytokine genes have been suggested, although
results are below significance [83]. The most conclusive
data come from a study in which an interleukin-10 allele is
over-represented in RA patients [84].

Sex-linked factors
Gender is a well-known risk factor for RA, for which
females in general have a 2.5-fold higher risk [1].
However, a gender influence might rely on a bewildering
number of variables: genetic factors of sex chromosomes,
factors related to pregnancy and hormones, and also envi-
ronmental factors obviously differ between the two sexes.
Gender effects have also been observed in animal models
[85–88]. This gender effect is clearly influenced by sex
hormones and environmental factors such as behaviour,
but there are also direct and indirect genetic influences.
Genes on the Y chromosome can severely affect the
development of arthritis, such as the Yaa (Y-chromosome
linkage autoimmune accelerator) gene that protects from
arthritis but markedly enhances the development of lupus
[55]. The X chromosome has also been shown to harbour
genetic factors that influence the development of CIA.
This was shown in a study of male mice from reciprocal F1
crosses that had been castrated to exclude hormone
effects [56]. However, no gene has been identified apart
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from the Xid mutation in the Btk gene that renders animals
devoid of B-cells.

An important factor is that the phenotypic importance of
certain autosomal genes seems to vary depending on
whether they are expressed in a female or a male environ-
ment, which could be related to epistatic effects with sex
chromosome genes, hormonal effects, imprinting or other
environmental factors.

Several groups have investigated the effects of oestrogen
and other sex-related factors in RA (reviewed in [87,89]),
and both the oestrogen synthase locus and the oestrogen
receptor gene have been weakly associated [90,91]. In a
study of tandem CAG repeats in the androgen receptor
exon 1, it was suggested that male patients with an early
onset of RA had significantly fewer repeats than did age-
matched controls or late-onset male RA patients [92].

The unknown factors
Linkage studies in RA patients
Up to today, three genome-wide screens for susceptibility
loci for RA have been performed in cohorts of human fami-
lies with RA [93–95]. Hardwick et al [94] briefly reported
linkage to the HLA region. Shiozawa et al [93] identified,
in their limited material of 41 affected sib-pair families,
three potential susceptibility loci denoted RA1, RA2 and
RA3, of which the strongest locus was RA1 on chromo-
some 1p36; this was identified by a significant LOD score
to two adjacent microsatellite markers. No evidence for
linkage to the HLA region was detected in this study. In
the larger study by Cornélis et al the only significant
linkage was detected for markers in the HLA region.
However, 14 other chromosomal regions showed evi-
dence of linkage, four of which were overlapping with loci
implicated in insulin-dependent diabetes mellitus (IDDM6,
IDDM9, IDDM13 and DXS998) [95].

The Cornélis study was based on RA families collected
through The European Consortium on Rheumatoid Arthri-
tis Families (ECRAF). The families included in this collec-
tion originate from several countries in central and
southern Europe (France, Belgium, Spain, Greece, Italy,
The Netherlands and Portugal). Through such a consor-
tium, large numbers of families are available for genetic
studies, which is required to obtain statistical power in the
analysis. However, the drawback is the introduction of a
potentially increased genetic heterogeneity.

Linkage analysis of murine models for RA
Several genome-wide linkage studies identifying genetic
regions associated with the development of arthritis have
been conducted in both mouse and rat models of CIA
[58,96–101] as well as in the proteoglycan-induced arthri-
tis model induced with heterologous aggrecan in mice
[102]. Furthermore, several adjuvant-induced models have

also been used, such as Mycobacterium adjuvant-induced
arthritis (AIA) [103], oil-induced arthritis (OIA) [104] and
pristane-induced arthritis (PIA) [105]. In addition, arthritis
induced with live pathogens, such as Staphylococcus or
Borrelia, has been analysed genetically [106].

Today around 40 quantitative trait loci, significantly associ-
ated with disease, have been identified (Fig. 2). It is of partic-
ular interest that some regions have been detected in several
of the investigations, which emphasizes the chances of
sharing genetic factors between strains and even species.

Identification of susceptibility genes
The task of identifying the underlying genes is both diffi-
cult and cumbersome and it will take some years until the
picture becomes clear. In many of the linked regions there
are genes that can be postulated from our current knowl-
edge to have a role that could be worthwhile to investigate
more closely, although most of the regions are so large
that it would be exhausting to investigate all the candi-
dates. Working with animal models provides a more effi-
cient approach to minimizing the regions by producing
congenic animals, where a linked region from one strain is
bred onto a background strain, permitting a phenotype
analysis of each linked region separately. Combinations of
different congenic strains permit the elucidation of interac-
tions between susceptibility factors.

This approach can be rewarding, as exemplified by the
investigations of murine lupus models. Here, sub-pheno-
types of lupus have been found in congenic strains
[107–109]; by crossing two different congenic strains the
lupus disease was partly reconstructed, giving evidence
for gene interaction between the different susceptibility
loci [110]. The construction of congenic strains gives
important information on the function of the susceptibility
genes and new methods of selecting and further narrow-
ing the regions so that the genes can ultimately be cloned
(reviewed in [14]). Several approaches to the making of
congenic animals and other strain combinations to identify
quantitative trait loci have been compared and discussed
by Darvasi [111].

Future prospects
Altogether a tremendous effort is being undertaken today to
find the genes that cause RA; it is to be expected that
several of the genes associated with RA will also have
importance in other autoimmune diseases. The hope is to
find genes involved in critical pathways leading to pathology
in these diseases. It would certainly be exciting if several
disorders could be explained, at least in part, by proteins
involved in common pathways, while other genes controlled
the tissue specificity. It has been hypothesized that this is
true [112] and also it has been shown that several autoim-
mune disorders cluster in families [113–116] and even
occasionally in the same patient [117].
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Although the expectations of finding genes controlling RA
have possibly been exaggerated, the rapid uncovering of
genomic sequences and markers will in time be very
helpful in larger-scale projects. New techniques are
emerging to assist us. The microchip arrays will aid us in
more efficiently identifying genes that control pathogenic
pathways, as defined in mouse strains or tissue cells. In
addition, microchip arrays will provide more efficient ways
of genotyping and sequencing, which will be important in
direct analyses of the genetics of complex diseases. In
addition we shall see an explosion of sequence informa-
tion from the efforts of the human and mouse genome pro-
jects. This will lead to the possibility of making advanced
predictions of gene locations and protein structures.

The most efficient and fruitful way in which to understand
the genetic control of RA will be through the joint use of
animal models and human materials. This will be true for
most common diseases.

Owing to the complex inheritance of the common dis-
eases, there are so far few, if any, examples of positional
cloning of a complex disease gene. However, a recent
report describes the efforts of Horikawa et al [118] to
positionally clone a gene in humans affecting the suscepti-
bility to the complex disease type 2 diabetes. Neverthe-
less, the report illustrates the great challenge of deducing
the causative effect of a gene for a polygenic complex
disease. Although the authors present the genetic varia-
tion in the calpain-10 gene that is associated with type 2
diabetes, there is still the challenge to prove whether this
is genuinely causal. This problem, which has so far been
underestimated, will soon become obvious to many inves-
tigators. The development of genetic manipulative tech-
niques in animals, such as transgenic techniques based
on embryonic stem cells, will therefore be of crucial impor-
tance in understanding the biological role of the identified
genes and in proving their involvement in disease pathol-
ogy. By defining susceptibility genes in animal models, the
relevance to human disease can be tested directly in
human materials, and genetic targets can be defined for
therapeutic purposes, as suggested in Fig. 1. The future
therefore looks as intriguing as ever.
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