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Abstract

Certain monoclonal antibodies (mAbs) to type Il collagen (ClI)
induce arthritis in vivo after passive transfer and have adverse
effects on chondrocyte cultures and inhibit self assembly of
collagen fibrils in vitro. We have examined whether such mAbs
have detrimental effects on pre-existing cartilage. Bovine
cartilage explants were cultured over 21 days in the presence of
two arthritogenic mAbs to CIl (CIIC1 or M2139), a non-
arthritogenic mAb to CIl (CIIF4) or a control mAb (GADS).
Penetration of cartlage by mAb was determined by
immunofluorescence on frozen sections and correlated with
changes to the extracellular matrix and chondrocytes by
morphometric analysis of sections stained with toluidine blue.
The effects of mAbs on matrix components were examined by
Fourier transform infrared microspectroscopy (FTIRM). A
possible role of Fc-binding was investigated using F(ab), from

CIIC1. All three mAbs to Cll penetrated the cartilage explants
and CIIC1 and M2139, but not ClIF4, had adverse effects that
included proteoglycan loss correlating with mAb penetration,
the later development in cultures of an abnormal superficial
cellular layer, and an increased proportion of empty chondrons.
FTIRM showed depletion and denaturation of Cll at the explant
surface in the presence of CIIC1 or M2139, which paralleled
proteoglycan loss. The effects of F(ab), were greater than those
of intact CIIC1. Our results indicate that mAbs to CllI can
adversely affect preformed cartilage, and that the specific
epitope on CIl recognised by the mAb determines both
arthritogenicity in vivo and adverse effects in vitro. We conclude
that antibodies to CIl can have pathogenic effects that are
independent of inflammatory mediators or Fc-binding.

Introduction

An experimental model of the human autoimmune disease
rheumatoid arthritis (RA) is provided by collagen-induced
arthritis (CIA), which is induced in animals after immunisation
with type Il collagen (ClI) [1,2], a major component of articular
cartilage. The ensuing autoimmune response includes the for-
mation of antibodies to CIlI that, on transfer to naive mice,
induce acute and destructive arthritis [3,4]. Antibodies to ClI
are present in the sera and synovial fluid of patients with RA
[5-7] and epitopes include those targeted by arthritogenic
antibodies from mice with CIA [8]. Debate continues, how-

ever, on whether autoantibodies to Cll in RA are actual contrib-
utors to the pathogenesis, or merely reflect a reaction to
cartilage degradation. Although antibody-induced CIA can be
transferred by combinations of mAbs [4,9], and also by certain
single mAbs [4,10], not all mAbs to ClI are arthritogenic, and
arthritogenicity appears to be epitope specific [8]. We postu-
late that there are certain species of anti-Cll autoantibodies
that do cause cartilage damage by binding specifically to crit-
ical structural regions on collagen fibrils that are sites of inter-
action between CIl and matrix components or chondrocytes.
Favouring this, arthritogenic mAbs to Cll both inhibit collagen
fibrillogenesis in vitro [11] and adversely affect the cartilage

BSA = bovine serum albumin; CIA = collagen induced arthritis; Cll = type Il collagen; DMEM = Dulbecco's modified Eagle's medium; FCS = fetal
calf serum; FITC = fluorescein isothiocyanate; FTIRM = Fourier transform infrared microspectroscopy; IR = infrared; mAB = monoclonal antibody;

PBS phosphate buffered saline; RA = rheumatoid arthritis.
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matrix and chondrocyte morphology in chondrocyte cultures
[12,13]. On the other hand, cartilage is an avascular tissue in
which there is minimal collagen synthesis in adults [14]; more-
over, antibodies penetrate cartilage so poorly [15] that they
may not be capable of disrupting a pre-existing cartilage
matrix.

Accordingly, we examined the effects of different mouse mAbs
to Cll on cultured cartilage explants and found that these not
only did penetrate and react with ClI, but also had disruptive
effects on a pre-established cartilage matrix. To help identify
changes in the cartilage matrix we used Fourier transform
infrared microspectroscopy (FTIRM), a technique by which
microscopic analysis is performed within the infrared (IR)
region of the spectrum. IR microspectroscopy has been pos-
sible ever since the introduction of interferometers using Fou-
rier transformation some 30 years ago increased the sensitivity
of IR spectroscopy by orders of magnitude. The spatial resolu-
tion of these instruments was limited to approximately 40 pm,
however, because the aperture of the microscope masked the
IR beam and essentially rejected a large proportion of the IR
radiation. Additionally, the time involved in gathering spectra
over a large area was prohibitive. With the introduction in the
late 1990s of focal plane array detectors, consisting of large
numbers of individual small detectors, both of these limitations
were overcome and multiple IR spectra over large areas can
now be taken close to the diffraction limit (10 um at 1000 cm-
1) [16]. With the instrument used in our studies, 4096 spectra
of a sample area 34 um?2 can be recorded simultaneously
within seconds. Samples need to be thin (<10 um) to allow
the IR beam to penetrate the whole section. Here we have
used the technique of absorption/reflection by mounting thin
sections of tissue on slides coated with a thin layer of silver
and tin oxide that reflects IR light but transmits visible light.
Accordingly, the reflected beam passes twice through the
sample, producing an array of IR spectra, and the visible light
transparency allows correlation of each IR spectrum with a
particular small area on the sample. At IR wavelengths, the
spectra obtained are derived from vibrations within particular
chemical bonds and provide information on the chemical com-
position of the tissue without need for specialized histochem-
ical staining. According to the method of analysis used,
images can be derived that represent the spectrum at a partic-
ular small region of the tissue, or chemical maps that represent
the relative concentration of a particular analyte in different
areas of the tissue. FTIRM is applicable to both paraffin-
embedded tissue and cryosections, and thus can be com-
bined with standard histological techniques. FTIRM has been
previously applied to studies of cartilage and the spectra of
collagens and proteoglycans are well defined [17-21].

Materials and methods
Monoclonal antibodies

CIIC1 [22] and M2139 [23] are arthritogenic mAbs that bind
to well defined conformational epitopes on the CB11 and

CB10 fragments of ClI, respectively [8,10], and CIIF4 [22] is
a nonarthritogenic mAb that binds to a conformational epitope
on the CB9 fragment [8]. CIIC1 and M2139 either individually,
or in combination, induce cartilage destruction after passive
transfer [4]. GAD6 was a control mAb that binds to an irrele-
vant antigen glutamic acid decarboxylase [24]. CIIC1, CIIF4
and GADG are IgG2a, and M2139 is IgG2b. The mAbs CIIC1,
M2139 and CIIF4 were derived from hybridomas derived from
Cll immunized mice and GAD6 was obtained from the Devel-
opmental Studies Hybridoma Bank maintained by the Univer-
sity of lowa (Department of Biological Science, lowa City, 1A,
USA). Hybridomas were cultured in miniPERM bioreactors
(Heraeus Instruments, Hanau, Germany) in DMEM containing
10% (v/v) FCS (Trace Biosciences, Noble Park, Australia), 50
IU/ml penicillin and 50 mg/ml streptomycin as described pre-
viously [12]. The mAb quality was assessed using SDS-PAGE
with 10% gels under reducing conditions, and the concentra-
tion of the mAbs was determined by densitometry against a
sample of known concentration.

F(ab), preparation

F(ab), was prepared from CIIC1 dialyzed against 0.2 M ace-
tate buffer, pH 3.5, and digested with porcine pepsin at 37°C
for 12 h. The digestion was terminated by dialyzing against
PBS, pH 7.4, overnight, and the digest was passed through a
protein A column to remove undigested mAb or Fc. The quality
of the digestion and the concentration of F(ab), was deter-
mined by SDS-PAGE.

Cultured bovine cartilage explants

Cartilage shavings from adult bovine metacarpal phalangeal
joints were sliced into approximately 1 X 5 mm pieces; 50 mg
of cartilage was used for each sample. The pieces were cul-
tured at 37°C in the presence of 5% CO, in 2 ml of DMEM
containing 20% (v/v) heat-inactivated FCS containing 25 ug/
ml ascorbic acid. The medium was changed every two days
and fresh ascorbic acid and mAb were added at each change.
Cartilage explants were cultured with mAbs (60 ug/ml) or
medium alone for periods up to 21 days. To determine
whether the effects were the result of Fc binding of the mAbs
to chondrocytes, the explants were cultured with 100 pg/ml of
F(ab), from CIIC1, an equivalent amount of intact CIIC1, or
medium alone for 7 or 14 days.

Immunofluorescence to detect antibody penetration

After 14 days in culture, cartilage explants were collected and
snap frozen in OCT compound (Tissue-Tek, Sakura Finetech-
nical Co. Ltd, Tokyo, Japan) using dry ice and isopentane.
Serial cryosections (5 um) were stained with 0.1% toluidine
blue in 30% ethanol, which stains the nuclei of the chondro-
cytes and the proteoglycans within the matrix to examine mor-
phology, or treated by immunofluorescence to detect antibody
penetration. For immunofluorescence, the sections were
treated with 50 Ll of type lll hyaluronidase (Sigma, St. Louis,
MO, USA) at 20 mg/ml in PBS for 30 minutes at room



temperature, washed with PBS and incubated with sheep anti-
mouse globulin conjugated with fluorescein isothiocyanate
(FITC) (Silenus, Hawthorn, Australia) diluted 1:150 in carbon-
ate buffer pH 8.6 containing 1% w/v BSA for 30 minutes at
room temperature. To detect penetration of F(ab),, the sec-
tions were incubated with a goat antibody to mouse F(ab),
(ICN Biomedicals Inc., Aurora, OH, USA) diluted 1:2000 in
PBS with 1% w/v BSA for 1 h, followed by incubation with rab-
bit anti-goat Ig, conjugated with Alexa 488 (Molecular Probes,
Eugene, OR, USA) diluted 1:400 in carbonate buffer, pH 8.6,
with 1% w/v BSA. The slides were then mounted with 90% v/
v glycerol in PBS and observed microscopically.

Histomorphometry

On selected days, cartilage explants were fixed in 4% parafor-
maldehyde, embedded in paraffin, and 5 um sections were cut
and stained with either toluidine blue or haemotoxylin and
eosin. Histomorphometry was performed on MCID software
(M4 3.0 Rev 1.1; Imaging Research Inc., St Catherines,
Ontario, Canada). Images were captured at 200 x magnifica-
tion from three to five separate pieces of tissue for each cul-
ture. At each timepoint, the mean loss of toluidine blue stain,
mean chondron size, number of cells per mm2and the percent-
age of empty chondrons was determined. To determine the
loss of toluidine blue staining from the section, the auto-select
tool was used to designate and create a line at the point that
the loss of staining ended; using the two-point straight-line
measurement tool, the distance of loss was measured from the
edge of the tissue, excluding any superficial layering, through
to the line created by the auto-select tool. The measurement
was performed six times on each image captured. MCID soft-
ware was likewise used to measure the penetration of mAbs in
the frozen sections. For chondron size, individual chondrons
were manually outlined using the MCID software, which then
calculated chondron area. An average of 24 chondrons (range
+ 13) that contained cells (usually only one cell per chondron)
were counted from each image, and empty chondrons were
counted separately to calculate the percentage of empty
chondrons. The number of cells per mm2 was calculated by
counting the number of cells within an area measured by the
MCID software.

Preparation of purified type Il collagen and crude extract
of proteoglycan for analysis by FTIRM

Bovine cartilage was treated with 4 M guanidine-HCI (Sigma).
The resultant crude proteoglycan mixture, which contained
predominantly aggrecan, was dialysed extensively against dis-
tilled water to remove guanidine-HCI and freeze dried. Cll was
prepared from the extracted cartilage by pepsin digestion and
differential salt precipitation as previously described [7]. Ultra
pure high molecular weight hyaluronan was provided by Garry
Brownlee (Department of Biochemistry and Molecular Biol-
ogy, Monash University, Clayton, Victoria, Australia).
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Measurement of changes in the composition of the
matrix by Fourier transform infrared microspectroscopy
For the present study, 5 um sections of paraffin embedded tis-
sue taken at day 14 were placed onto MirrlR low-e microscope
slides (Kevley Technologies, Chesterland, OH, USA), and
adjacent sections were collected for staining with toluidine
blue. Sections were dewaxed and allowed to air dry. To exam-
ine the spectra of Cll, a crude proteoglycan extract and
hyaluronan, 20 pl of each component was allowed to dry in air
on a MirrIR microscope slide. FTIRM images were recorded
with a 'Stingray' Digilab FTS 7000 series spectrometer (Digi-
lab, Varian, Mulgrave, Victoria, Australia) coupled to a UMA
600 microscope equipped with a 64 x 64 focal plane array
detector.

For each spectrum, 16 scans were co-added at a resolution of
6 cm'. The spectra were preprocessed using purpose-built
software compiled using Matlab (The Mathworks Inc., Natick,
MA, USA) [25]. This processing entailed a linear base line cor-
rection and vector normalization. This data matrix was then
exported into Cytospec Software for Infrared Spectral Imaging
(Cytospec, Inc, http://www.cytospec.com/, Berlin, Germany)
and a 'quality test' was performed to remove spectra with poor
signal-to-noise ratios and spectra containing obvious artifacts.
Chemical maps were generated from the integrated intensities
of specific functional groups identified in the spectra. Using
the same software, 10 spectra from the antibody-exposed
exterior of the explant, and from the interior of the explant, were
extracted from the chemical maps. The mean spectrum for
each was calculated to assess the effects of antibody
penetration.

In the present study, we examined peaks characteristic of col-
lagen and proteoglycans. An FTIRM spectrum of proteogly-
cans demonstrates peaks within the region of 1175-960 cm™!
derived from carbohydrate moieties, and at 1241 cm-! derived
from sulphate of the sulphated glycosaminoglycan side-chains
[17,18]. The collagen spectrum shows a characteristic triplet
of peaks at 1203, 1234 and 1280 cm but this region
includes the peak at 1240-1245 cm'! characteristic of sul-
phates [17,18]. Accordingly, we examined the amide 1 peak
that represents total protein, as a measure of the collagen con-
tent; the amide 1 peak for native collagen occurs at about
1666 cm', with a shift to a lower wave number (cm'!) on dena-
turation [21] or after collagenase treatment [26]. In the present
study, these spectral shifts were confirmed using purified pep-
sin-digested CIl prepared from bovine nasal cartilage [7],
before and after heat denaturation at 50°C, and using
explanted bovine cartilage treated with collagenase for 20
minutes before fixation and processing as described above.

Statistical analysis

Statistical analyses were performed using Statistica for Win-
dows, Version 4.5 (Statsoft Inc., Tulsa, OK, USA). ANOVA
was performed to determine whether there were significant
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Figure 1

Immunofluorescence showing the penetration of the three anti-Cll antibodies: (a) CIIF4, (b) CIIC1 and (c

) M2139. The area of colour indicates anti-

body binding. (d) The control mAb (GADS6) shows no binding to the cartilage.

Figure 2

A toluidine blue stained sections of cartilage. (a) Cartilage cultured for 7 days shows an evenly stained matrix with typical rounded chondrocytes.
Sections of cartilage incubated for (b) 7 days and (c) 14 days with M2139 show abnormal matrix morphology with the loss of toluidine blue, the
development of a cellular layer at the surface and the development of hypertrophic chondrocytes.

differences between groups, and Student's t-test, or the non-
parametric Mann Whitney U-test, were used to compare indi-
vidual differences. P < 0.05 was considered significant.

Results

Immunofluorescence to detect antibody penetration
Each of the mAbs to ClI, whether arthritogenic (CIIC1 and
M2139) or not (ClIF4), penetrated the extracellular matrix dur-
ing culture and remained bound to the tissue, as demonstrated
by the areas of fluorescence around the edge of the explant, in
contrast to the control mAb GAD6 (Fig. 1a—d). The distance
(mean % SD) of penetration at the surface of the cartilage was
48 £ 8 um for ClI-F4, 33 = 8 um for ClIC1 and 86 * 8 um for
M2.139. The F(ab), of ClIC1 completely penetrated the tissue.

Morphology of cartilage explants

As seen by light microscopy and toluidine blue staining,
explants cultured in medium alone, or in the presence of either
GADG or CIIF4, remained healthy even up to 21 days in cul-
ture (Fig. 2a), and stained strongly with toluidine blue. In con-
trast, the two arthritogenic mAbs, CIIC1 and M2139, caused
profound changes in the explant structure, progressively over
time. Both mAbs, and particularly M2139, had effects on the
matrix. These included loss of toluidine blue staining from the

surface of the tissue and, after 14 days in culture, development
of a layer of cells on the surface of the explant (Fig. 2b, c).
Chondrocytes developed changes resembling hypertrophy
and there was a measurable increase in the proportion of
empty chondrons. Notably, the non-arthritogenic mAb CIIF4
induced none of these changes.

To quantify changes in the explant structure, the loss of prote-
oglycans and percentages of empty chondrons were analyzed
using culture samples collected at days 3, 7, 10, 14, 17 and
21. There were no significant differences by ANOVA in any of
the measurements made between explants cultured individu-
ally with GAD®, CIlIF4 or no antibody. For explants cultured
with ClIC1, and particularly M2139, however, there was a sig-
nificant increase in the loss of toluidine blue staining from the
surface of the tissue over the period of culture that was not
seen in the control groups. The controls, exemplified by CIIF4,
a loss of staining similar to that for CIIC1 at day 4, but thereaf-
ter there was clear evidence of recovery (Fig. 3a). CIIC1, and
particularly M2139, exhibited an increase in percentage of
empty chondrons with increasing time in culture (Fig. 3b).
There were no significant differences between either of the
arthritogenic mAbs, CIlIF4 or other controls in the number of
cells per mm?2, or in the size of the cells.
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Differences in the loss of proteoglycan and chondrocyte between cul-
tures incubated with different mABs. (a) Loss of toluidine blue staining
between cultures incubated with CIIF4 (white) and cultures incubated
with ClIC1 (light grey) and M2139 (dark grey) over the course of 21
days. (b) The number of empty chondrons expressed as a percentage
of the total number of chondrons, indicating the loss of chondrocyte
from the extracellular matrix. The columns represent the mean of each
measurement and error bars indicate 1 standard deviation. The asterix
represents p < 0.05.

Effect of F(ab), from CIIC1 on cartilage explants

To determine whether the changes observed were the result
of direct antibody binding, or whether they resulted from bind-
ing of antibody complexes with Fc receptors on the surface of
chondrocytes, the effects of the F(ab), fragment of CIIC1 were
compared with those of intact CIIC1 after 7 or 14 days in cul-
ture. As seen by immunofluorescence, the F(ab), was able to
penetrate a greater distance into the tissue than intact CIIC1
(data not shown), and the F(ab), caused greater disruption of
architecture. Also there was greater loss of toluidine blue
staining than for CIIC1.

Fourier transform infrared spectra of cartilage
components

The IR spectrum of a pure chemical is derived from vibrations
within particular chemical bonds, and thus can provide a

FTIRM spectra of the major cartilage components ClI, proteoglycan and
hyaluronan. (a) Typical spectra for Cll, crude proteoglycan extract and
hyaluronan. (b) An artificial spectrum that resembles normal articular
cartilage generated by combining appropriate proportional amounts of
the spectra of Cll (55%), crude proteoglycan extract (40%) and
hyaluronan (5%). The amide 1 peak from 1600—1700 cm™! represents
the total protein content, the triplet of peaks from 1200-1300 cm' are
characteristic of the spectrum of collagen, and the peaks in the region
960-1175 cm result from sugars in the proteoglycans and
hyaluronan.

unique fingerprint for that chemical. In the case of complex bio-
logical systems, the spectrum derived is a composite of the
individual spectra of the components of that tissue, and analy-
sis of chemical changes depends on knowledge of the spectra
of individual components. To validate the use of FTIRM in the
present study, the spectra of the major cartilage components,
ClI, proteoglycan and hyaluronan were examined (Fig. 4a);
each component had its own unique spectrum, establishing
the ability of FTIRM to distinguish between these components.
A combination of the spectra according to proportions that
would represent those in articular cartilage, 55% collagen,
40% proteoglycan and 5% hyaluronan, generated a compos-
ite spectrum that resembled that of normal articular cartilage
(Fig. 4b).
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Distribution of proteoglycans in the cultured explants. (a) Toluidine blue stained sections cultured for 14 days with GADS. (b) Chemical map derived
using FTIRM showing the proteoglycan region (960-1175 cm"). The chemical maps show the distribution and relative concentrations of proteogly-
cans; the least concentrated areas are shown as blue and the most concentrated areas that are shown as red. (c) The spectra shown are the mean
of 10 measurements taken from either the central areas (red line) or near the surface of the tissue (blue line). The error bars represent 1 standard

deviation at those points in the spectra. The amide 1 region, which represents the total protein content of the tissue, is from 1600-1700 cm-'.

Chemical changes in cartilage matrix detected by Fourier
transform infrared microspectroscopy

The loss of proteoglycans observed from toluidine blue
stained sections was confirmed by FTIRM. Information on pro-
teoglycan distribution in the explants was generated by creat-
ing a chemical map made by integrating the area under the
peaks in the 1175-960 cm-! region. Comparisons were made
between serial sections of cartilage cultured in the presence
of the control GAD6 (Fig. 5), stained with toluidine blue to
show the distribution of proteoglycans (Fig. 5a), or processed
by FTIRM (Fig. 5b), in which the regions with the highest con-
centration of proteoglycans are shown as red, and the lowest
concentrations are shown as blue. In the section processed by
FTIRM, the distribution of proteoglycans across the section
was relatively even, with minimal loss of proteoglycans from
the surface of the explant. This was confirmed by comparing
mean spectra from the surface and middle of the section (Fig.
5c), although there was a slight reduction in proteoglycans at
the edge of the section as shown by a reduction in the peak
absorbance from the sugars (at 1072 cm') and a reduction in
a peak at 1241 cm-' that is representative of the sulphate in
the chondroitin and keratan sulphates of proteoglycans (Table
1). The distribution of proteoglycans and the spectra obtained
for GAD6 were characteristic of those obtained for cartilage
cultured without antibody.

In contrast, there were marked differences in the distribution
of proteoglycans across the tissue for explants cultured with
each of the mAb to CII. The mean spectra taken at the surface
of the section as well as those from the middle also differed
(Figs 6a—f and 7a—c; Table 1). The concentration of proteogly-
cans from the middle of the tissue, beyond the penetration of

the mAb, did not differ from the controls, as judged by the
height of the peaks at 1175-960 cm!, and peaks at 1203,
1234 and 1280 cm'1; therefore, spectra (n = 10) from the inte-
rior of the cartilage treated with the four mAbs were combined
(Table 1). There was, however, a reduction in the concentra-
tion of proteoglycans at the surface of the tissue based on the
decrease in the peak at 1072 cm, and a corresponding
decrease in the sulphate peak at 1241 cm™' that was much
greater for ClIC1 and M2139 than for CIIF4 (Table 1). In addi-
tion, at the surface of the tissue in each of the explants treated
with the mAbs to CII, but not with GADS6, there was a
decrease in absorbance and a spectral shift in amide 1, from
a peak at 1666 cm'! to below 1660 cm (Table 1). These
results are consistent with the spectral shifts in the amide 1
peak, obtained after heat denaturation of purified Cll (from
1666 to 1652 cm!) and with surface changes observed after
treatment of cartilage with collagenase (from 1668 to 1653
cm™)

The F(ab), treated cartilage showed a uniform and substantial
loss of proteoglycan across the toluidine blue-stained tissue
(Fig. 7d, e); this was confirmed by the mean spectra from the
surface and from the middle of the section (Fig. 7f). There was
almost complete loss of the proteoglycan peak between
1175-960 cm', a marked reduction in the sulphate peak at
1241 cm, and the peaks at 1203, 1234 and 1280 cm'!, and
a striking decrease and spectral shift to 1644 cm™ in the
amide 1 peak, indicative of denaturation and loss of Cll from
the matrix, across the whole tissue (Table 1).
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Distribution of proteoglycans in the explants cultured with CIIF4 or M2139. Toluidine blue stained sections cultured for 14 days with (a) ClIF4 or (d)
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near the surface of the tissue (blue line). The error bars represent 1 standard deviation at those points in the spectra.

Discussion

Human RA and its animal model CIA are complex diseases in
which both the immune response and subsequent inflamma-
tion are important determinants of cartilage destruction. The
effector phase of CIA, evident two to three days after passive
transfer of anti-Cll to healthy mice has been studied exten-
sively [3,4,9,10,27,28], and the development of collagen anti-
body-induced arthritis provides an informative in vivo model in
which inflammatory processes can be examined in the
absence of an inductive immune response [4]. Little is known,
however, about any direct effects of antibody on the target car-
tilage tissue and the contribution of this to the ensuing disease
process. Our study has investigated the effects of two such
arthritogenic mAbs to CIl, ClIC1 and M2139, on cultured
bovine cartilage explants and compared the results with a non-
arthritogenic mAb to CIl, CIIF4, and to an irrelevant mAb,
GADBG, in the absence of inflammatory mediators known to
dominate the effector phase of CIA. Both arthritogenic and

non-arthritogenic mouse mAbs to Cll were shown by immun-
ofluorescence to penetrate cartilage and bind strongly to the
matrix, but only the former had adverse effects. Such binding
caused loss and denaturation of collagen. Loss of proteogly-
cans was observed both by light microscopy as loss of toluid-
ine blue staining of the matrix, and changes in the chemical
map by FTIRM. Concomitantly, we observed the appearance
of 'empty' chondrons in the cartilage, and the development of
a superficial cell layer of morphologically non-descript cells
within a matrix that reacted strongly to immunofluorescence at
day 14 of culture. Such effects could explain the observation
that not all antibodies to ClI are arthritogenic, and pathogenic-
ity may depend on the particular epitope(s) recognized [8,29].

FTIRM has emerged over the last 10 years as a most effective
means of identifying and quantifying differences between
defined areas or single points of histological specimens, and
the present study illustrates its use for the examination of
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Distribution of proteoglycans in the explants cultured with ClI-C1 or F(ab), from ClI-C1. Toluidine blue stained sections cultured for 14 days with (a)
CII-C1 or (d) F(ab), are shown alongside (b, e) chemical maps showing proteoglycan distribution and (c, f) FTIRM spectra from the central areas
(red line) and near the surface of the tissue (blue line). Note that the proteoglycan levels are lower and the amide 1 peak has shifted across the
whole of the F(ab), treated tissue. The error bars represent 1 standard deviation at those points in the spectra.

changes in the collagen content of the cartilage that would
otherwise require complex quantitative biochemical analysis
[12,30] or multiple immunohistochemical studies [31]. The
shift in the amide 1 peak in the areas penetrated by antibody
in explants cultured with both the arthritogenic mAbs (CIIC1
and M2139) and the non-arthritogenic mAb CIIF4 is consist-
ent with changes that occur during denaturation of collagen
[21] or during collagenase treatment [26], and that are taken
to represent an unwinding of the triple helical conformation.
Notably, in the same areas, a reduction in the levels of collagen
was shown by a reduction in the collagen triplet between
1300-1200 cm . Finally, as seen by the reduction of peaks in
the range 1175-960 cm-!, FTIRM confirmed the reduction of
proteoglycans shown by toluidine blue staining that occurred
around the surface of the cartilage explants exposed to CIIC1
and M2139, and the complete loss of proteoglycan in explants

exposed to F(ab), of CIIC1. The changes seen in vitro are sim-
ilar to changes that occur in cartilage in vivo after passive
transfer of mAbs, although such changes in vivo are assumed
to be due to the effects of degradative enzymes produced by
the accompanying inflammation. It is of interest that loss of
proteoglycan is an early marker of the cartilage disruption that
occurs in both osteoarthritis [32] and RA [33], in which it is
attributed to matrix metalloproteinases and aggrecanases (the
ADAMTS or 'a disintegrin and metalloproteinase with throm-
bospondin motif' family of proteases) [31,32] that are released
following disruption of the molecular interactions between
matrix constituents. This loss of the proteoglycans, which pro-
vide 'cushioning' of the cartilage in the joint, in turn allows a
greater susceptibility to damage from compressive forces and
greater penetration of degradative molecules.



Table 1

Available online http://arthritis-research.com/content/7/5/R927

Absorbance data from FTIRM used to examine levels of proteoglycan and collagen from different cultures

Sample (no. of spectra) Proteoglycan absorbance

Amide 1 peake

1072 cm1a 1242 cm1b Absorbance Location (cm-1)
Interior (40)d 1.34£0.26 1.94+£0.17 5.01 £0.15 1666
GAD 6 edge (10) 1.14 £0.21 1.66 £ 0.20 4.76 £0.44 1666
ClIF4 edge (10) 0.85+0.14 151 £0.15 446 £0.19 1659
M2139 edge (10) 0.556+0.14 1.25+0.23 431 £0.19 1651
CIIC1 edge (10) 0.49+0.12 1.42+0.17 4.63 £ 0.41 1659
M2139 + CIIC1 edge 0.37 £ 0.11 0.99+0.19 444 +0.15 1639
M2139 + CIIC1 middle 0.50+0.14 1.06*+0.15 448 £0.10 1643
CIIC1 F(ab), edge (10) 0.40 £ 0.07 1.03£0.17 4.22+0.14 1648
CIIC1 F(ab), interior (10) 0.43+ 0.1 1.12+0.12 418 £0.14 1644

aAbsorbance from the proteoglycan peak at 1072 cm-! is representative of sugars. ®PAbsorbance from the proteoglycan peak at 1242 cm-' is
representative of sulphated glycosaminoglycans. °The amide 1 peak provides a measure of total protein, predominantly collagen. Note the change
in the location of the amide 1 peak in the presence of mAbs to ClI, consistent with the change from 1666-1668 cm'! to 1652—-1653 cm'!
observed after heat denaturation of the collagen helix, or collagenase treatment (see text). Results shown are mean + SD. 9Ten spectra from the

interior of the cartilage treated with the four antibodies were combined.

The changes in the matrix at the surface of the cartilage
observed in the explants cultured with the arthritogenic mAbs
ClIC1 and M2139 accompanied appearances of 'empty’
chondrons in the cartilage. Although apoptosis is a common
secondary effect of cartilage disruption, it is difficult to meas-
ure in cartilage. We therefore used loss of chondrocytes from
the matrix as a measure of cell death, as has been done before
[34]. Cultures with CIIC1, and particularly M2139, demon-
strated increasing numbers of empty chondrons over time and,
in many cases, the same sections showed chondrons contain-
ing several cells, which is suggestive of hyperplasia as a com-
pensatory response to mAb-mediated cartilage damage. By
day 14 of culture the surface of explants exposed to CIIC1 or
M2139 had a superficial layer of morphologically non-descript
cells within a scanty matrix. Presumably this cell layer, having
lost the proteoglycans, was composed of collapsed cartilage.
Strong staining by immunofluorescence, which demonstrated
the presence of ClI, provided further evidence that this layer
had a cartilaginous origin. lts appearance was suggestive of
the fibrous pannus characteristically described in rheumatoid
arthritis, which has also been shown to contain CII, and is also
possibly derived from chondrocytes [35,36].

The use of F(ab), demonstrated that the effects we observed
with cultured explants is not Fc mediated. Evidence that
chondrocytes express Fc receptors is limited, but non-specific
Fc-mediated binding of immune complexes to chondrocytes
has been reported to stimulate matrix metalloproteinase pro-
duction and production of interleukin 1 by chondrocytes [37].
While Fc receptors have been shown to be important in CIA
[38,39], particularly in inflammation induction and in the pas-
sive transfer of antibody-mediated disease [10], successful
treatment of inflammation can still leave an ongoing problem of

continuing joint destruction [40-42]. In the present study, the
effect of the F(ab), was much greater than that of a corre-
sponding molar concentration of intact CIIC1. This is because
the smaller size of the F(ab), would allow it to penetrate more
deeply into the tissue; indeed, in F(ab),-treated sections, there
was a correspondingly greater loss of proteoglycans and
decreased collagen content as seen by FTIRM. Alternatively, if
Fc-receptor binding were, in fact, a normal physiological
method of removing immune complexes [43], mAb bound to
collagen in the cultured tissue could persist, and the total
amount of mAb could increase with each change of medium.
If this is the case, then the greater effects caused by the F(ab),
would truly represent the effect of having higher amounts of
antibody.

We emphasize that all of the changes in this study have been
observed in vitro without the confounding influences of inflam-
mation, complement and other immunological mediators
present in a CIA or RA- affected joint, and that the use of a
F(ab), fragment of the arthritogenic mAb excludes the possi-
bility of these effects being due to Fc binding. Presently, the
assessment of cartilage damage in CIA relies on scoring joint
damage, histological abnormalities and measuring release of
cartilage breakdown products such as cartilage oligomeric
matrix protein [44]. This could mask the damaging effect of
antibody binding; denaturation of collagen in the matrix that
leads to disruption in the organization of the matrix. Our results
suggest that the effects of arthritogenic mABs on de novo syn-
thesis of cartilage matrix that we have previously reported from
studies on chondrocyte cultures [12] are paralleled by degra-
dative effects on preexisting cartilage. These include not only
the loss of matrix, but also loss of chondrocytes and denatur-
ation of collagen fibrils and would contribute to direct and on-
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going cartilage loss that is independent of any injurious effect
of inflammation. This is in accord with the likelihood that loss
of cartilage in RA, seen radiologically as joint space narrowing,
may be due to a different process than that responsible for
development of erosions [45].

Conclusion

This study has important connotations for our understanding
of the pathogenesis of RA. Autoantibodies to collagen occur
in RA [56-7], bind to cartilage and can be released from immune
complexes within the cartilage by treatment with collagenase
[46], and have specificity for epitopes that are arthritogenic in
mice [8]. Both CIA and RA are complex polygenic diseases in
which the gross pathology results from cell- and antibody-
mediated inflammation. We have also demonstrated that
arthritogenic mAbs to CIl can contribute directly to cartilage
destruction, which implies the involvement of non-inflamma-
tory as well as inflammatory components in the disease proc-
ess. It is even possible that injurious effects of antibody on
articular cartilage may precede and even initiate subsequent
inflammatory events that contribute to ultimate joint destruc-
tion, and provides a further rationale for the successful use of
combination therapies [47].

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

DEC carried out explant and hybridoma cultures, immunofluo-
rescence, performed MCID and FTIRM analysis and drafted
the manuscript. MT developed the explant culture system and
performed the initial experiments. BBZ prepared F(ab), and
tested its effects on cultures. BW and DMcN were responsi-
ble for the analysis and interpretation of the FTIRM results.
KSN and RH provided the monoclonal antibodies used in the
study, and have revised the manuscript critically for intellectual
content based on experience with the in vivo animal model.
MPVD provided expertise with chondrocyte and explant cul-
tures, participated in the design of the study, and helped draft
the manuscript. MJR conceived of the study, participated in its
design and coordination, performed statistical analysis and
helped draft the final manuscript. All authors read and
approved the final manuscript.

Acknowledgements

We thank lan Boundy for his expert histological assistance, Senga Whit-
tingham, Fatemah Aminrahmadi and lan Mackay for helpful discussions.
The work was supported by grants from the National Health and Medical
Research Council of Australia and the Arthritis Foundation of Australia.

References

1. Trentham DE, Townes AS, Kang AH: Autoimmunity to type Il col-
lagen an experimental model of arthritis. / Exp Med 1977,
146:857-868.

2. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B:
Immunisation against heterologous type Il collagen induces
arthritis in mice. Nature 1980, 283:666-668.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Stuart JM, Cremer MA, Townes AS, Kang AH: Type Il collagen-
induced arthritis in rats. Passive transfer with serum and evi-
dence that IgG anticollagen antibodies can cause arthritis. J
Exp Med 1982, 155:1-16.

Nandakumar KS, Svensson L, Holmdahl R: Collagen type ll-spe-
cific monoclonal antibody-induced arthritis in mice: descrip-
tion of the disease and the influence of age, sex, and genes.
Am J Pathol 2003, 163:1827-1837.

Ronnelid J, Lysholm J, Engstrom-Laurent A, Klareskog L, Heyman
B: Local anti-type Il collagen antibody production in rheuma-
toid arthritis synovial fluid. Evidence for an HLA-DR4-restricted
IgG response. Arthritis Rheum 1994, 37:1023-1029.

Cook AD, Rowley MJ, Stockman A, Muirden KD, Mackay IR: Spe-
cificity of antibodies to type Il collagen in early rheumatoid
arthritis. / Rheumatol 1994, 21:1186-1191.

Cook AD, Gray R, Ramshaw J, Mackay IR, Rowley MJ: Antibodies
against the CB10 fragment of type Il collagen in rheumatoid
arthritis. Arthritis Res Ther 2004, 6:R477-R483.

Burkhardt H, Koller T, Engstrom A, Nandakumar KS, Turnay J, Kra-
etsch HG, Kalden JR, Holmdahl R: Epitope-specific recognition
of type Il collagen by rheumatoid arthritis antibodies is shared
with recognition by antibodies that are arthritogenic in colla-
gen-induced arthritis in the mouse. Arthritis Rheum 2002,
46:2339-2348.

Terato K, Hasty KA, Reife RA, Cremer MA, Kang AH, Stuart JM:
Induction of arthritis with monoclonal antibodies to collagen. J
Immunol 1992, 148:2103-2108.

Nandakumar KS, Andren M, Martinsson P, Bajtner E, Hellstrom S,
Holmdahl R, Kleinau S: Induction of arthritis by single mono-
clonal IgG anti-collagen type Il antibodies and enhancement
of arthritis in mice lacking inhibitory FcgammaRIIB. Eur J
Immunol 2003, 33:2269-2277.

Gray RE, Seng N, Mackay IR, Rowley MJ: Measurement of anti-
bodies to collagen Il by inhibition of collagen fibril formation in
vitro. J Immunol Methods 2004, 285:55-61.

Amirahmadi SF, Pho MH, Gray RE, Crombie DE, Whittingham SF,
Zuasti BB, Van Damme M-P, Rowley MJ: An arthritogenic mono-
clonal antibody to type Il collagen, ClI-C1, impairs cartilage
formation by cultured chondrocytes. Immunol Cell Biol 2004,
82:427-434.

Amirahmadi SF, Whittingham SF, Nandakumar KS, Holmdahl R,
Mackay IR, Van Damme MP, Rowley MJ: Arthritogenic anti-type
Il collagen antibodies are pathogenic for cartilage-derived
chondrocytes independent of inflammatory cells. Arthritis
Rheum 2005 in press.

Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ,
Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM: Effect of col-
lagen turnover on the accumulation of advanced glycation end
products. J Bio/ Chem 2000, 275:39027-39031.

Holmdahl R, Mo JA, Jonsson R, Karlstrom K, Scheynius A: Multiple
epitopes on cartilage type Il collagen are accessible for anti-
body binding in vivo. Autoimmunity 1991, 10:27-34.

Bhargava R, Levin IW: Fourier transform infrared imaging: a
new spectroscopic tool for microscopic analyses of biological
tissue. Trends Appl Spectr 2001, 3:57-71.

Camacho NP, West P, Torzilli PA, Mendelsohn R: FTIR micro-
scopic imaging of collagen and proteoglycan in bovine
cartilage. Biopolymers 2001, 62:1-8.

Potter K, Kidder LH, Levin IW, Lewis EN, Spencer RG: Imaging of
collagen and proteoglycan in cartilage sections using Fourier
transform infrared spectral imaging. Arthritis Rheum 2001,
44:846-855.

George A, Veis A: FTIRS in H20 demonstrates that collagen
monomers undergo a conformational transition prior to ther-
mal self-assembly in vitro. Biochemistry 1991, 30:2372-2377.
Lazarev YA, Grishkovsky BA, Khromova TB: Amide | band of IR
spectrum and structure of collagen and related polypeptides.
Biopolymers 1985, 24:1449-1478.

Payne KJ, Veis A: Fourier transform IR spectroscopy of collagen
and gelatin solutions: deconvolution of the amide | band for
conformational studies. Biopolymers 1988, 27:1749-1760.
Holmdahl R, Rubin K, Klareskog L, Larsson E, Wigzell H: Charac-
terization of the antibody response in mice with type Il colla-
gen-induced arthritis, using monoclonal anti-type Il collagen
antibodies. Arthritis Rheum 1986, 29:400-410.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=894190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=894190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6153460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6153460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6153460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7054355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7054355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7054355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8024611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8024611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8024611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7525955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7525955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7525955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15380047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15380047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15380047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12355481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12355481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12355481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1545120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1545120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15283854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15283854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15283854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10976109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10976109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10976109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1720677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1720677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1720677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11135186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11135186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11135186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11315924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11315924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11315924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2001367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2001367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2001367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4041546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4041546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3233328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3233328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3233328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2421741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2421741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2421741

283.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Mo JA, Holmdahl R: The B cell response to autologous type II
collagen: biased V gene repertoire with V gene sharing and
epitope shift. / Immunol 1996, 157:2440-2448.

Chang YC, Gottlieb DI: Characterization of the proteins purified
with monoclonal antibodies to glutamic acid decarboxylase. J
Neurosci 1988, 8:2123-2130.

Romeo MJ, Wood BR, Quinn MA, McNaughton D: Removal of
blood components from cervical smears: implications for can-
cer diagnosis using FTIR spectroscopy. Biopolymers 2003,
72:69-76.

Federman S, Miller LM, Sagi I: Following matrix metalloprotein-
ases activity near the cell boundary by infrared micro-spec-
troscopy. Matrix Biol 2002, 21:567-577.

Terato K, Harper DS, Griffiths MM, Hasty DL, Ye XJ, Cremer MA,
Seyer JM: Collagen-induced arthritis in mice: synergistic effect
of E. coli lipopolysaccharide bypasses epitope specificity in
the induction of arthritis with monoclonal antibodies to type Il
collagen. Autoimmunity 1995, 22:137-147.

Watson WC, Brown PS, Pitcock JA, Townes AS: Passive trans-
fer studies with type Il collagen antibody in B10.D2/0ld and
new line and C57BI/6 normal and beige (Chediak-Higashi)
strains: evidence of important roles for C5 and multiple inflam-
matory cell types in the development of erosive arthritis. Arthri-
tis Rheum 1987, 30:460-465.

Myers LK, Rosloniec EF, Cremer MA, Kang AH: Collagen-
induced arthritis, an animal model of autoimmunity. Life Sci
1997,61:1861-1878.

Beesley JE, Jessup E, Pettipher R, Henderson B: Microbiochem-
ical analysis of changes in proteoglycan and collagen in joint
tissues during the development of antigen-induced arthritis in
the rabbit. Matrix 1992, 12:189-196.

Fosang AJ, Stanton H, Little CB, Atley LM: Neoepitopes as
biomarkers of cartilage catabolism. /nflamm Res 2003,
52:277-282.

Lin PM, Chen CT, Torzilli PA: Increased stromelysin-1 (MMP-3),
proteoglycan degradation (3B3- and 7D4) and collagen dam-
age in cyclically load-injured articular cartilage. Osteoarthritis
Cartilage 2004, 12:485-496.

Mitchell NS, Shepard N: Changes in proteoglycan and collagen
in cartilage in rheumatoid arthritis. J Bone Joint Surg Am 1978,
60:342-348.

Aigner T, Kim HA: Apoptosis and cellular vitality: issues in oste-
oarthritic cartilage degeneration. Arthritis Rheum 2002,
46:1986-1996.

Allard SA, Maini RN, Muirden KD: Cells and matrix expressing
cartilage components in fibroblastic tissue in rheumatoid
pannus. Scand J Rheumatol Supp/ 1988, 76:125-129.

Allard SA, Muirden KD, Camplejohn KL, Maini RN: Chondrocyte-
derived cells and matrix at the rheumatoid cartilage-pannus
junction identified with monoclonal antibodies. Rheumatol Int
1987, 7:1563-159.

Saura R, Uno K, Satsuma S, Kurz EU, Scudamore RA, Cooke TD:
Mechanisms of cartilage degradation in inflammatory arthritis:
interaction between chondrocytes and immunoglobulin G. J
Rheumatol 1993, 20:336-343.

Diaz de Stahl T, Andren M, Martinsson P, Verbeek JS, Kleinau S:
Expression of FcgammaRlll is required for development of
collagen-induced arthritis. Eur J Immunol 2002, 32:2915-2922.
Hogarth PM: Fc receptors are major mediators of antibody
based inflammation in autoimmunity. Curr Opin Immunol 2002,
14:798-802.

Joosten LA, Helsen MM, Saxne T, van De Loo FA, Heinegard D,
van Den Berg WB: IL-1 alpha beta blockade prevents cartilage
and bone destruction in murine type Il collagen-induced
arthritis, whereas TNF-alpha blockade only ameliorates joint
inflammation. J Immunol 1999, 163:5049-5055.

Mulherin D, Fitzgerald O, Bresnihan B: Clinical improvement and
radiological deterioration in rheumatoid arthritis: evidence
that the pathogenesis of synovial inflammation and articular
erosion may differ. Br J Rheumatol 1996, 35:1263-1268.
Landewe R, Geusens P, Boers M, van der Heijde D, Lems W, te
Koppele J, van der Linden S, Garnero P: Markers for type Il col-
lagen breakdown predict the effect of disease-modifying
treatment on long-term radiographic progression in patients
with rheumatoid arthritis. Arthritis Rheum 2004, 50:1390-1399.
van Lent P, Nabbe KC, Boross P, Blom AB, Roth J, Holthuysen A,
Sloetjes A, Verbeek S, van den Berg W: The inhibitory receptor

44,

45.

46.

47.

Available online http://arthritis-research.com/content/7/5/R927

FcgammaRIl reduces joint inflammation and destruction in
experimental immune complex-mediated arthritides not only
by inhibition of FcgammaRI/Ill but also by efficient clearance
and endocytosis of immune complexes. Am J Pathol 2003,
163:1839-1848.

Vingsbo-Lundberg C, Nordquist N, Olofsson P, Sundvall M, Saxne
T, Pettersson U, Holmdahl R: Genetic control of arthritis onset,
severity and chronicity in a model for rheumatoid arthritis in
rats. Nat Genet 1998, 20:401-404.

Kirwan J, Byron M, Watt I: The relationship between soft tissue
swelling, joint space narrowing and erosive damage in hand X-
rays of patients with rheumatoid arthritis. Rheumatology
(Oxford) 2001, 40:297-301.

Jasin HE: Autoantibody specificities of immune complexes
sequestered in articular cartilage of patients with rheumatoid
arthritis and osteoarthritis. Arthritis Rheum 1985, 28:241-248.
Klareskog L, van der Heijde D, de Jager JP, Gough A, Kalden J,
Malaise M, Martin Mola E, Pavelka K, Sany J, Settas L, et al.: Ther-
apeutic effect of the combination of etanercept and meth-
otrexate compared with each treatment alone in patients with
rheumatoid arthritis: double-blind randomised controlled trial.
Lancet 2004, 363:675-681.

R937


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8805643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8805643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8805643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3385490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3385490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12400093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12400093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12400093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8734568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8734568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8734568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3580014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3580014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3580014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9364191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9364191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1383680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1383680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1383680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12892070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12892070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15135145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15135145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15135145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=77275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=77275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3075070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3075070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3075070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8474073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8474073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8474073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12355445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12355445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12355445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10528210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10528210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10528210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9010054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9010054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9010054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15146408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15146408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15146408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11285377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11285377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11285377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2983739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2983739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2983739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001324

	Abstract
	Introduction
	Materials and methods
	Monoclonal antibodies
	F(ab)2 preparation
	Cultured bovine cartilage explants
	Immunofluorescence to detect antibody penetration
	Histomorphometry
	Preparation of purified type II collagen and crude extract of proteoglycan for analysis by FTIRM
	Measurement of changes in the composition of the matrix by Fourier transform infrared microspectroscopy
	Statistical analysis

	Results
	Immunofluorescence to detect antibody penetration
	Morphology of cartilage explants
	Effect of F(ab)2 from CIIC1 on cartilage explants
	Fourier transform infrared spectra of cartilage components
	Chemical changes in cartilage matrix detected by Fourier transform infrared microspectroscopy

	Discussion
	Table 1 

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

