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Abstract

Sex hormones seem to modulate the immune/inflammatory
responses by different mechanisms in female and male
rheumatoid arthritis patients. The effects of 17β-oestradiol and
of testosterone were tested on the cultured human monocytic/
macrophage cell line (THP-1) activated with IFN-γ in order to
investigate their role in cell proliferation and apoptosis. Activated
human THP-1 cells were cultured in the presence of 17β-
oestradiol and testosterone (final concentration, 10 nM). The
evaluation of markers of cell proliferation included the NF-κB
DNA-binding assay, the NF-κB inhibition complex, the
proliferating cell nuclear antigen expression and the methyl-
tetrazolium salt test. Apoptosis was detected by the annexin V-
propidium assay and by the cleaved poly-ADP ribose
polymerase expression. Specific methods included flow analysis
cytometry scatter analysis, immunocytochemistry and western

blot analysis. Cell growth inhibition and increased apoptosis
were observed in testosterone-treated THP-1 cells. Increased
poly-ADP ribose polymerase-cleaved expression and decreased
proliferating cell nuclear antigen expression, as well as an
increase of IκB-α and a decrease of the IκB-α phosphorylated
form (ser 32), were found in testosterone-treated THP-1 cells.
However, the NF-κB DNA binding was found increased in 17β-
oestradiol-treated THP-1 cells. The treatment with
staurosporine (enhancer of apoptosis) induced decreased NF-
κB DNA binding in all conditions, but particularly in
testosterone-treated THP-1 cells. Treatment of THP-1 by sex
hormones was found to influence cell proliferation and
apoptosis. Androgens were found to increase the apoptosis,
and oestrogens showed a protective trend on cell death – both
acting as modulators of the NF-κB complex.

Introduction
Experimental and clinical evidence indicates that immune
reactivity is greater in females than in males and suggests that
gonadal steroids may play an important role in the regulation
of the immune response [1-4]. Indeed, many cells of the
immune system have been found to possess functional sex
hormone receptors, such as CD8-positive T cells, B cells and,
notably, monocytes/macrophages [5,6].

Therefore, 17β-oestradiol (E2) was found to inhibit cellular
apoptosis, to increase antibody production by B cells and to
exert dose-related effects on T-cell functions [7]. Androgens
seem to exert effects opposite to those of E2 on immune
response [8]. Clinical epidemiology clearly confirms a higher

prevalence of autoimmune diseases in female subjects when
compared with male subjects [9].

The studies concerning the functional interaction between the
NF-κB pathway and members of the steroid hormone receptor
family, and their role in synovial inflammation, have advanced
significantly, although with controversial results [10,11]. In
particular, after binding with E2, oestrogen receptors have
been shown to interact with NF-κB factors, via transcriptional
co-factors, resulting in mutual or non-mutual antagonism.
Other studies hypothesize that, since oestrogen receptors
may repress both constitutive and inducible NF-κB activity, the
overexpression of NF-κB-inducible genes in oestrogen recep-
tor-negative cells might contribute to malignant cell growth
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and chemotherapeutic resistance [12,13]. On the contrary,
further studies report that E2 blocks the transcriptional activity
of p65 in macrophages [14]. However, these opposite obser-
vations arise using different cell lines (human/animals) and cul-
ture conditions as well as different hormone concentrations
[15]. In addition, multiple mechanisms concerning the interac-
tion between oestrogen receptors and NF-κB have been pro-
posed, such as repression of NF-κB DNA binding by physical
association with oestrogen receptors and the regulation of
IκB-α expression by oestrogens [16,17].

The androgen receptor seems to be closely related to the glu-
cocorticoid receptor in terms of both structure and sequence
homology. The androgen receptor and the glucocorticoid
receptor have been shown to interact and repress activator
protein 1 via a similar mechanism; consequently, it would not
be surprising that the androgen receptor might also interact
with NF-κB in a manner very similar to that observed for the
glucocorticoid receptor [18]. Both the androgen receptor and
NF-κB are inducible transcription factors with some opposing
functions in the regulation of immune and inflammatory
responses [19].

It is possible that inflammatory agents that activate NF-κB in
vivo may interfere with normal androgen signalling, and recent
studies indicate that the androgen receptor and NF-κB (subu-
nit p65) are mutual transcriptional antagonists [20]. The
present study was therefore undertaken to examine the long-
term (time course of 7 days) effects of sex hormones on acti-
vated cultured human monocytic/macrophage cell line (THP-
1) cells by investigating their effects on cell proliferation and
apoptosis. These cells are equipped with functional sex hor-
mone receptors and are an important target of sex steroid hor-
mones, particularly in inflammatory diseases such as
rheumatoid arthritis (RA) [21]. In particular, in the present
study we used pharmacological concentrations of E2 (final
concentration, 10 nM; Sigma-Aldrich, Milan, Italy) that have
been already described as the most efficient in stimulating
macrophages in vitro [22]. Accordingly, the same concentra-
tion has been used for testosterone [23].

We therefore investigated sex hormone effects on the NF-κB
pathway, as a complex of molecules modulating cellular
responses in activated cells.

Materials and methods
Cell cultures and treatments
THP-1 cells (Interlab cell line collection HTL097014; IST c/o
CBA, Genoa, Italy) were cultured in RPMI-1640 medium sup-
plemented with 2% foetal bovine serum (Sigma-Aldrich) (5%
CO2 humidified atmosphere at 37°C). Moreover, the absence
of binding of the hormones with other foetal bovine serum
components related to growth rate and the survival of cultured
THP-1 cells over the course of 7 days were investigated. The
cells were maintained in logarithmic growth by passage every

3–4 days. The viability of the cells (97–98%) was tested by
the Trypan blue exclusion procedure. Briefly, the cells were
seeded into six-well flat-bottom plates (106 cells/well) and
were treated with 500 U/ml IFN-γ (Sigma-Aldrich) in order to
differentiate THP-1 into macrophage cells [24]. The activation
and transformation of the cells was evaluated by the expres-
sion of different macrophage antigens: CD68, CD14, HAM
56, Mac 387. The THP-1 activated cells were then incubated
for 24, 48, 72, 96 and 168 hours with E2 and testosterone (10
nM).

After that time samples of THP-1 cells were also treated with
an apoptosis inducer [25], staurosporine (17 nM; Sigma
Aldrich), for 24 hours. At the end of the different incubation
times, the cells were harvested, washed in Dulbecco's phos-
phate-buffered saline (DPBS) and treated with different lysis
buffers for the nuclear and total protein extraction. Part of the
cell was then collected for DNA content (normal and apop-
totic) evaluation by flow analysis cytometry scatter analysis
and for immunocytochemistry analysis.

Expression of macrophage markers
The immunocytochemistry analysis to evaluate the expression
of CD68, CD14, HAM56 and Mac387 in the treated cells
showed positive results (data not shown), confirming the acti-
vation of monocytes by IFN-γ.

Cell growth
The cell growth was evaluated at different times by the methyl-
tetrazolium salt test, which represents a quantitative colorimet-
ric assay to detect cell survival and proliferation. The test is
based on the ability of living cells to cleave the tetrazolium ring
at the level of active mitochondria. Briefly, the cells were
seeded into 96-well microtitre plates and were treated accord-
ing to the experimental design. At the established time, 50 µl
methyl-tetrazolium salt labelling reagent [3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide, 5 mg/ml in PBS]
was added to each well and incubated in humidified atmos-
phere at 37°C. Four hours later, 100 µl dimethylsulfoxide were
introduced into each well and mixed thoroughly. The absorb-
ance was calculated at 540 nm, using a scanning multiwell
spectrophotometer. Standard curves were constructed for
THP-1 cells using known plating densities, allowing the cell
number to be calculated from this optical density reading.
Each experiment was performed in triplicate.

Apoptosis
The apoptotic events were evaluated after 168 hours from
both sex hormone stimulation and staurosporine treatment (17
nM for 24 hours) by annexin V-propidium iodide analysis (MBL
Co., Ltd, Nagoya, Japan), in order to detect the early-stage
apoptosis (cells only annexin-positive) and the late-stage
apoptosis (cells annexin-positive and propidium-positive).
After resuspending the cells (1 × 105) into 200 µl of 1 x bind-
ing buffer, 1 µl fluorescein-labelled annexin V and 1 µl
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propidium iodide were added. Then the cells were incubated
for 5 min at room temperature (dark light). Finally, the cells
were plated on glass slides and analysed by fluorescence
microscopy (550 nm) for a total of 500 cells per sample, which
allows detection even of a single apoptotic cell. To confirm the
reduced DNA content (oligonucleosomal-size fragments) the
cells stimulated with hormones, without and with stau-
rosporine, after fixation were stained with intercalating dyes
(propidium iodide) and were analysed by flow analysis cytom-
etry scatter (Becton-Dickinson-Immunocytometry Systems,
Erembodegem, Belgium).

Immunocytochemistry
THP-1 cells were harvested at a concentration of 5 × 103,
being sedimented on poly-L-lysine-coated glass slides for 40
min at 4°C. The spots were then air-dried and fixed in cold ace-
tone for 30 s, and stored at -20°C until the immunodetermina-
tion of poly-ADP ribose polymerase (PARP)-cleaved
expression, proliferating cell nuclear antigen (PCNA) expres-
sion, NF-κB, IκB-α and IκB-α-ser 32 (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA). After rehydration in PBS, spots
were incubated with the anti-human antibody at different dilu-
tions at room temperature. The second and third steps were
performed using the improved biotin-streptavidin-amplified
detection system (Vector Laboratories Inc., Burlingame, CA,
USA). Briefly, according to this method, cells were incubated
with the secondary antibody (biotinylated IgG, 1:20 dilution)
for 20 min at room temperature and then, after several washes
in PBS, cells were treated with the concentrated enzyme label
(biotin-streptavidin-peroxidase) for 20 min and, finally, incu-
bated at room temperature with the peroxidase-substrate solu-
tion (0.04% 3,3-diaminobenzidine [Sigma-Aldrich] in 50 mM
Tris-HCl buffer containing 0.3% hydrogen peroxide) for 15
min. After rinsing with PBS, slides were counterstained with
haematoxylin, were dried and cover slipped with Eukitt, and
were examined by light microscopy and computerized image
analysis. Controls were treated identically, except for omitting
the primary or secondary antibodies.

Image analysis
Image analysis was performed with the Leica Q500 MC Image
Analysis System (Leica, Cambridge, UK). For each sample,
100 cells were randomly analysed and the pixels per micron
square (positive area) were quantified by the Leica Q500 soft-
ware. The single cells were randomly selected by the opera-
tors using the cursor and then automatically measured as the
positive area. A constant optical threshold and filter combina-
tion was set to select only the positive cells.

Statistical analysis
The results were analysed by the analysis of variance non-par-
ametric test (Bonferroni test), and the values are presented as
means ± standard deviations.

Western blot analysis
Cells were lysed in buffer containing 20 mM Tris-HCl, 150 mM
NaCl, 1 mM phenylmethylsulfonylfluoride, 5 mg/ml aprotinin,
0.5% Nonidet P-40 (Sigma-Aldrich) for 1 hour at 4°C. The
lysates were centrifuged for 10 min at 13,000 rpm. The surna-
tants were collected and stored at -80°C.

The samples of surnatants were thereafter diluted with reduc-
ing sample buffer and were separated by electrophoresis on a
10% SDS-PAGE gel (20 µg protein per lane loaded). The pro-
teins were transferred onto Hybond-C-nitrocellulose mem-
brane (Amersham Italia, Milan, Italy). The reaction was blocked
by DPBS with 5% non-fat powdered milk at 4°C overnight. For
immunoblot analysis, the membranes were incubated with the
different antibodies for 1 hour (NF-κB, IκB-α, IκB-α-ser 32,
respectively; Santa Cruz Biotechnology) (dilution 1:200) in
DPBS at room temperature with constant shaking, and were
washed extensively in 0.05% DPBS/Tween 20, pH 7.4.
Finally, the membranes were incubated with secondary horse-
radish peroxidase-labelled polyclonal anti-goat IgG antibody
(SC-2020; Santa Cruz Biotechnology) (dilution 1:5000) in
DPBS for 1 hour at room temperature. After washing three
times in DPBS, the bands were detected using the enhanced
chemiluminescence system (Amersham Italia).

DNA binding assay (electrophoretic mobility shift assay)
Double-stranded oligonucleotides corresponding to the wild-
type and mutated NF-κB consensus element (Santa Cruz Bio-
technology) were used as 32P-labelled probes or as unlabelled
competitors (100 times). The assays were performed in a final
volume of 20 µl containing 10 mM Tris-HCl (pH 7.5), 50 mM
NaCl, 1 mM dithiothreitol, 1 mM ethylenediamine tetraacetic
acid and 10% glycerol. Briefly, 7 µg cell nuclear extracts,
unstimulated or stimulated with testosterone and E2 as previ-
ously described, were pre-incubated with 4 µg poly(dI-dC)
(Pharmacia, Milan, Italy) as a non-specific competitor, for 10
min at room temperature. End-labelled oligonucleotides (10
fmol, about 30,000 cpm) were then added to each mixture to
a final volume of 20 µl and were incubated for an additional 20
min. The bound/retarded complexes were separated from the
free probe by electrophoresis on 5% polyacrylamide gels and
were visualized by autoradiography of the dried gels. A lane
without nuclear extract was also included as the negative con-
trol. Competition experiments were performed in the presence
of a 100-fold molar excess of unlabelled wall-type or mutated
NF-κB oligonucleotide, added to the pre-incubation step.

For the super shift assay, 2 µl anti-p65, c-rel and p50 NF-κB
subunit antibodies (Santa Cruz Biotechnology) were included
in the pre-incubation mixture prior to the addition of the probe.
A lane containing pre-immune serum was always included as
the control.
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Results
Effect of hormonal treatment on cell growth
As already stated, hormonal signals regulate the amount of the
cell-cycle control proteins and of the transcription factors [26].
In the present study, after 168 hours we observed a significant
growth inhibition of the human monocytic cell line activated
with IFN-γ and treated with testosterone, when compared with
the other conditions studied. At 168 hours the cell growth was
reduced by 14.8% versus untreated controls and by 12.7%
versus E2-treated cells. These data were obtained with the
methyl-tetrazolium salt test and confirmed with the trypan blue
exclusion assay (Fig. 1). The bromodeoxyuridine/propidium
iodide incorporation test showed similar results (data not
shown).

Further interesting data were related to the modulation of the
PCNA expression, as a marker for proliferating cells. This
marker was analysed by immunocytochemistry and the data
were confirmed by western blot analysis. In the testosterone-
treated cells, the expression of the PCNA at the immunocyto-
chemistry analysis was found decreased by 24% when com-
pared with untreated cells, and was decreased by 40% when
compared with E2-treated cells (Fig. 2a–d). Interestingly, the
testosterone-treated cells showed staining positivity localized
in the cell cytoplasm, whereas in the untreated and E2-treated
cells the PCNA expression was found predominantly in the
nucleus.

Effects of hormonal treatment on cell apoptosis
In the present study the inhibitory role of E2 on apoptosis, as
well as the pro-apoptotic effects exerted by testosterone in
long-term treatment of THP-1 cells, were investigated.

The annexin V-propidium iodide analysis showed a significant
increase of early and late apoptosis in testosterone-treated
cells when compared with other conditions. In the absence of
staurosporine, the apoptosis was found increased in testoster-
one-treated cells (9.9%) when compared with control
untreated cells (2.7%) and with E2-treated cells (3.8%). In the
presence of staurosporine, the apoptotic cells were increased
in all conditions. In testosterone-treated cells (24.8%) the
apoptosis was found increased when compared with
untreated cells (19.4%). On the contrary, in the E2-treated
(15%) cells the apoptosis was decreased versus controls
(19.4%) (Fig. 3a). These data were confirmed by flow analysis
cytometry scatter analysis (Fig. 3b,c).

The immunocytochemistry analysis showed a significant
increase of the PARP-cleaved form in testosterone-treated
cells compared with other conditions, suggesting an increase
of pro-apoptotic events. On the contrary, the PARP-cleaved
staining showed a decrease (19% versus untreated controls)
in E2-treated cells, suggesting a trend of oestrogens in pro-
tecting cells from the apoptotic stimuli (Fig. 4a–e). These data
were confirmed with western blot analysis.

Figure 1

Growth rate of the cultured human THP-1 cell line without or with 17β-oestradiol (E2) and testosterone (T), and with staurosporine after 168 hoursGrowth rate of the cultured human THP-1 cell line without or with 17β-
oestradiol (E2) and testosterone (T), and with staurosporine after 168 
hours. The number of recovered live cells at different times was evalu-
ated using the methyl tetrazolium salt reduction test. Results are 
expressed as the mean ± standard deviation of five different 
experiments.

Figure 2

Proliferating cell nuclear antigen (PCNA) expression in cultured human THP-1 cell lineProliferating cell nuclear antigen (PCNA) expression in cultured human 
THP-1 cell line. (a) Proliferating cell nuclear antigen (PCNA) expression 
in the cultured human THP-1 cell line after hormonal treatment. Results 
are expressed as the mean ± standard deviation of the percentage of 
staining area (positive area defined as the number of pixels detectable 
per micron square) for 100 cells in five different experiments. Bottom: 
western blot analysis. (b) PCNA expression in untreated THP-1 cells 
(control [cnt]). (c) PCNA expression in THP-1 cells treated with testo-
sterone (T) after 168 hours. (d) PCNA expression in THP-1 cells 
treated with 17β-oestradiol (E2) after 168 hours (magnification, × 500).
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Effects of hormonal treatment on the NF-κB complex
The defined mechanism of NF-κB activation includes the site-
specific phosphorylation and subsequent degradation of the
inhibitory IκB-α factor, which usually retains the NF-κB factors
inactivated in cytosol [27]. We therefore performed western
blot analysis to detect the expression of NF-κB (p65), IκB-α
and the IκB-α phosphorylated form (IκB-α-ser 32) in THP-1
cells treated with the different hormone combinations. As
shown in western blot analysis (Fig. 5) a decreased expression
of NF-κB (p65) and an increased content of IκB-α with a con-

comitant decrease of the IκB-α phosphorylated form was
observed in testosterone-treated cells when compared with
untreated controls and with E2-treated THP-1 cells; the differ-
ences between conditions observed with staurosporine treat-
ment were similar but the expression was lower. The observed
differences between E2-treated and testosterone-treated
THP-1 cells were confirmed by immunocytochemistry staining
and image analysis; similar data were observed with stau-
rosporine treatment (Table 1). The concomitant electro-
phoretic mobility shift assay analysis for the evaluation of the

Figure 3

Apoptosis evaluation in cultured human THP-1 cell lineApoptosis evaluation in cultured human THP-1 cell line. (a) Apoptosis evaluation in the cultured human THP-1 cell line after 168 hours of hormonal 
treatment without and with staurosporine. Results are expressed as the mean ± standard deviation of the percentage number of annexin-positive 
cells in five different experiments. (b) Apoptotic DNA evaluation in THP-1 cells after 168 hours of hormonal treatment without staurosporine as 
detected by flow analysis cytometry scatter analysis. Region G, control (cnt), 3.96%; 17β-oestradiol (E2), 5.54%; testosterone (T), 15.9%. (c) 
Apoptotic DNA evaluation in THP-1 cells after 168 hours of hormonal treatment and staurosporine (stau) for 24 hours, as detected by flow analysis 
cytometry scatter analysis. Region G: control/S, 18.9%; E2/S, 16.5%; T/S, 24.5%. PI, propidium iodide.
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NF-κB DNA binding confirmed an increased binding in E2-
treated cells, when compared with other conditions with or
without staurosporine, as shown in Fig. 6a. Finally, the gel shift
assay of nuclear protein extracts from E2-treated cells again
showed an increase of the p65 subunit DNA binding (Fig. 6b)
when compared with other conditions. Similar results were
obtained during staurosporine treatment.

Discussion
Monocytes/macrophages contribute to the autoimmune proc-
ess, mainly acting as antigen-processing/presenting cells and

sources of inflammatory cytokines, particularly at the level of
the synovial tissue in RA [28]. Moreover, sex hormones can
exert local actions (paracrine) in the tissues in which they are
formed, including the synovial tissue [29,30].

Activated THP-1 cells differentiate into macrophages for long-
term cultures. On the contrary, synovial macrophages are
characterized by a short life during in vitro culture.

The present study shows opposite effects by sex hormones on
cultures of activated monocytic/macrophage cells (THP-1
cells) concerning their modulatory effects on cell proliferation
and/or apoptosis.

The signalling pathways modulating the pro-inflammatory and
anti-inflammatory mechanisms seem to involve steroidal hor-
mone receptor activation and the NF-κB complex factors, In
addition, oestrogens may differently regulate NF-κB activation
depending on the cell type tested [14,31].

E2 therefore increased the expression of markers of cell
growth and proliferation, whereas testosterone induced an
increase of the PARP-cleaved expression, indicating DNA
damage and apoptosis. In addition, to support the proliferative
role exerted by E2, the THP-1 cells pre-treated with the oes-
trogens showed a decrease of staurosporine-induced apopto-
sis when compared with testosterone-treated and untreated
cells. Furthermore, the increased NF-κB p65 expression and
the evident NF-κB binding to DNA in E2-treated cells, when
compared with untreated cells or with testosterone-treated
cells, as well as the increased levels of the IκB-α

Figure 4

Poly-ADP-ribose polymerase (PARP)-cleaved expression in cultured human THP-1 cell linePoly-ADP-ribose polymerase (PARP)-cleaved expression in cultured human THP-1 cell line. (a) Poly-ADP-ribose polymerase (PARP)-cleaved 
expression in the cultured human THP-1 cell line in basal conditions and after 168 hours of hormonal treatment and staurosporine (stau). Results are 
expressed as the mean ± standard deviation of the percentage of the positive area for 100 cells in five different experiments. Bottom: western blot 
analysis related to PARP-cleaved expression in untreated cells (basal condition) and cells treated with hormones and staurosporine. (b) PARP-
cleaved expression in THP-1 cells (basal condition). (c) PARP-cleaved expression in THP-1 cells after normal medium. (d) PARP-cleaved expression 
in THP-1 cells after testosterone (T) treatment. (e) PARP-cleaved expression in THP-1 cells after 17β-oestradiol (E2) treatment. cnt, control.

Figure 5

NF-κB p65, IκB-α and phosphorylated IκB-α (ser 32) protein expres-sion in the cultured human THP-1 cell line after 168 hours of hormonal treatment without or with staurosporineNF-κB p65, IκB-α and phosphorylated IκB-α (ser 32) protein expres-
sion in the cultured human THP-1 cell line after 168 hours of hormonal 
treatment without or with staurosporine. The results are representative 
of four separate experiments. CNT, control; T, testosterone; E2, 17β-
oestradiol.
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phosphorylated form, seems to support the major enhancing
role exerted by oestrogens on the immune/inflammatory
response by activating the NF-κB complex.

On the contrary, the observed positive upregulation of IκB-α
exerted by testosterone treatment presumably dampens the
pro-inflammatory effects mediated by the NF-κB activation,
and therefore might represent a further mechanism by which
androgens exert anti-inflammatory effects. Recent studies sup-
port these results, showing that E2 inhibits apoptosis in differ-
ent cell types (cardiac myocytes and others) whereas
androgens have been found to induce apoptosis [32,33].

The increased concentrations of oestrogens (and low andro-
gens) recently described at the level of the synovial fluid of RA
patients of both sexes [29] seem to support their possible
modulator roles on synovial tissue hyperplasia and chronic
synovial cell activation, by considering the oestrogenic effects
on cell proliferation and apoptosis. These observations have
been recently obtained also in human breast cancer cells [34].

To explain increased oestrogen concentrations in RA synovial
fluids, the pro-inflammatory cytokines (tumour necrosis factor
alpha, IL-1β, IL-6) have been found to accelerate the metabolic
conversion of oestrogens from androgens by inducing the syn-

Table 1

NF-κB complex, IκB-α and IκB-α-ser 32 evaluated by immunocytochemistry

NF-κB IκB-α IκB-α-ser 32

Without staurosporine

Control 42.6 ± 4 17.7 ± 8 17.1 ± 2

Testosterone (10 nM) 29.6 ± 5 (T vs control, P < 0.001) 26.9 ± 4 (T vs control, P < 0.01) 13 ± 3

17β-oestradiol (10 nM) 45.8 ± 3 (E2 vs T, P < 0.001) 12.5 ± 2 (E2 vs T, P < 0.001) 25.3 ± 2 (E2 vs T, P < 0.01; E2 vs 
control, P < 0.001)

With staurosporine

Control 18.9 ± 4 23 ± 6 11.6 ± 4

Testosterone (10 nM) 18.2 ± 4 20.7 ± 3 9.2 ± 2

17β-oestradiol (10 nM) 32.3 ± 6 (E2 vs T, P < 0.05; E2 vs 
control, P < 0.001)

25.5 ± 4 (E2 vs T, P < 0.05) 22.8 ± 3 (E2 vs T, P < 0.001; E2 vs 
control, P < 0.001)

Expression and regulation after 168 hours of hormonal treatment (T, testosterone; E2, 17β-estradiol) in THP-1 cells (without and with 
staurosporine). Data are expressed as the mean ± standard deviation of the positive area per 100 cells stained for NF-κB complex, IκB-α and IκB-
α-ser 32. Results were obtained as the mean of five different experiments. The statistical evaluation was determined for T versus control, for E2 
versus control, and for E2 versus T (absence of significance not reported).

Figure 6

Electrophoretic mobility shift assay for NF-κB (arrow) in the cultured human THP-1 cell lineElectrophoretic mobility shift assay for NF-κB (arrow) in the cultured human THP-1 cell line. (a) Electrophoretic mobility shift assay for NF-κB (arrow) 
in the cultured human THP-1 cell line after 168 hours of hormonal treatment and without or with staurosporine (17 nM) reveals an increased DNA 
binding in 17β-oestradiol (E2)-treated cells. (b) Super shift assay for p65 (arrow) in the cells under the same conditions confirms the increased bind-
ing of p65 in E2-treated cells. The results are representative of four separate experiments. cnt, control; T, testosterone.
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ovial tissue aromatases [35-37]. As a consequence, locally
increased oestrogen levels might exert activating effects on
synovial cell proliferation, including macrophages and fibrob-
lasts [38].

Conclusion
In the present study the concentrations for E2 and testoster-
one tested seem to modulate the activity of NF-κB molecules
in the human monocytic/macrophage cell line (THP-1) with
opposite effects, interfering with cell growth and apoptosis.
These observations might provide a further biological link
between gender effects and the complex inflammatory proc-
ess involved in rheumatoid synovitis. Further studies, using
peripheral metabolites of oestrogens and synovial macro-
phages from RA patients, might extend the value of these
observations.
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