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Abstract

Chronic arthritis typically leads to loss of periarticular bone,
which results from an imbalance between bone formation and
bone resorption. Recent research has focused on the role of
osteoclastogenesis and bone resorption in arthritis. Bone
resorption cannot be observed isolated, however, since it is
closely linked to bone formation and altered bone formation may
also affect inflammatory bone loss. To simultaneously assess
bone resorption and bone formation in inflammatory arthritis, we
developed a histological technique that allows visualization of
osteoblast function by in-situ hybridization for osteocalcin and
osteoclast function by histochemistry for tartrate-resistant acid
phosphatase. Paw sections from human tumor necrosis factor
transgenic mice, which develop an erosive arthritis, were
analyzed at three different skeletal sites: subchondral bone
erosions, adjacent cortical bone channels, and endosteal
regions distant from bone erosions. In subchondral bone
erosions, osteoclasts were far more common than osteoblasts.

In contrast, cortical bone channels underneath subchondral
bone erosions showed an accumulation of osteoclasts but also
of functional osteoblasts resembling a status of high bone
turnover. In contrast, more distant skeletal sites showed only
very low bone turnover with few scattered osteoclasts and
osteoblasts. Within subchondral bone erosions, osteoclasts
populated the subchondral as well as the inner wall, whereas
osteoblasts were almost exclusively found along the cortical
surface. Blockade of tumor necrosis factor reversed the
negative balance of bone turnover, leading to a reduction of
osteoclast numbers and enhanced osteoblast numbers,
whereas the blockade of osteoclastogenesis by
osteoprotegerin also abrogated the osteoblastic response.
These data indicate that bone resorption dominates at skeletal
sites close to synovial inflammatory tissue, whereas bone
formation is induced at more distant sites attempting to counter-
regulate bone resorption.

Introduction

Rheumatoid arthritis (RA) is one of the most typical examples
of a chronic inflammatory process, which leads to profound
changes of the skeleton [1]. In fact, RA and other forms of
chronic arthritis are major precipitators of bone loss. Structural
skeletal damage plays a major role in the outcome of RA
patients since functional disability is a result of accumulating
changes of the joint architecture [2]. Typically, juxta-articular
bone is the skeletal site most exposed to the chronically
inflamed RA synovial membrane, which directly invades bone
and leads to formation of local erosions. These local bone ero-

sions are characteristic for RA and are part of the diagnostic
criteria of the disease [3].

The underlying mechanisms leading to the excessive bone
loss in RA are not fully understood, although some key interac-
tions between inflammation and bone, such as the receptor
activator of NF-xB ligand (RANKL), have been unraveled dur-
ing recent years [4-6]. Since bone loss is always the result of
a negative net balance of bone formation and resorption, medi-
ators expressed within the synovial tissue are thought to
induce a shift from bone formation to bone resorption. For

bp = base pair; H & E = haematoxylin and eosin; hTNFtg = transgenic for human tumor necrosis factor; M-CSF = macrophage stimulating factor; NF
= nuclear factor; OPG = osteoprotegerin; PBS = phosphate buffered saline; RA = rheumatoid arthritis; RANKL = receptor activator of NF-kB ligand;
TNF = tumor necrosis factor; TRAP = tartrate-resistant acidic phosphatase.
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instance, tumor necrosis factor (TNF) enhances osteoclast
formation, and thus bone resorption, but it has also negative
effects on bone formation since it interferes with differentiation
and metabolic activity of osteoblasts [7-9].

The pathological role of altered bone turnover in destructive
arthritis is strongly supported by the detection of osteoclasts
at sites of local bone erosion. These cells are localized at the
interphase of inflammatory tissue and bone, and are found in
all animal models of destructive arthritis as well as in human
RA [10-13]. Moreover, osteoclast precursors form in the syn-
ovial inflammatory tissue, allowing a continuous replenishment
of the osteoclast pool necessary to achieve progressive bone
damage [5]. Kinetic studies in animal models have also shown
that osteoclast formation in the joint is a fast and dynamic
process, leading to a rapid attack on juxta-articular bone, the
prerequisite of early onset of structural damage [14]. Less is
known about the role of osteoblasts in arthritic bone damage.
These stromal-derived cells are the natural counterplayers of
osteoclasts and might serve as a potential repair mechanism.
In fact, osteoblasts are found within the arthritic bone erosions
of animal models of arthritis as well as human RA [10]. In addi-
tion, stimulation of osteoblasts by parathyroid hormone has
proven a repair process in experimental arthritis [15].

The relation of the metabolic activities of osteoclasts, evoking
bone erosion, and of osteoblasts, mediating repair, is crucial
for understanding the process of skeletal damage in arthritis.
However, techniques that allow assessing the activity of both
cell types simultaneously have not so far been employed.
Here, using a new technique that facilitates simultaneous
detection of metabolically active osteoclasts and osteoblasts
in one histological section, and thus enables a direct investiga-
tion of bone turnover in arthritis, we have analyzed the role of
osteoblasts relative to osteoclasts in experimental arthritis. As
the experimental model for destructive arthritis we chose mice
that are transgenic for human tumor necrosis factor ("TNFtg),
since these mice develop a destructive arthritis closely mim-
icking human RA [16] and their disease is based on overex-
pression of TNF, which is centrally involved in joint
inflammation and arthritic bone loss.

Materials and methods
Animals and treatments

The heterozygous hTNFtg mice (strain Tg197; genetic back-
ground, C57BL/6) have been described previously [16].
These mice develop a chronic inflammatory and destructive
polyarthritis within 4—6 weeks after birth. In the present study,
a total of 35 mice were examined in two independent experi-
ments comprising 17 mice and 18 mice, respectively. The
mice were divided into two groups in a 5:1:1 ratio and were
treated according to the following protocol: group 1 received
PBS (negative control); group 2 received a chimeric mono-
clonal anti-TNF antibody (infliximab, kindly provided by Cento-
cor Pharmaceuticals, Leiden, The Netherlands)
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intraperitoneally at a dose of 10 mg/kg three times per week;
and group 3 received osteoprotegerin (OPG) (an OPG-Fc
fusion protein; Amgen, Thousand Oaks, CA, USA) intraperito-
neally at a dose of 10 mg/kg three times a week. Therapy was
started at the onset of symptoms (week 5) and lasted for 6
weeks. At the end of the study, mice were sacrificed by cervi-
cal dislocation, blood was drawn by heart puncture and the
hind paws were obtained for histological evaluation. The local
ethics committee approved all animal procedures.

Preparation of specimens for histological evaluation of
bone erosions

Right hind paws were fixed in 4% paraformaldehyde overnight
and were decalcified in 14% ethylenediamine tetraacetic acid
(Sigma, St Louis, MO, USA) at 4°C (pH adjusted to 7.2 by
addition of ammonium hydroxide; Sigma) until the bones were
pliable. Serial paraffin sections (2 ym) were stained with H &
E for evaluation of synovial inflammation and bone erosions.

Tartrate-resistant acidic phosphatase-osteocalcin
double labeling

Double labeling of osteoclasts and osteoblasts was per-
formed by combining tartrate-resistant acidic phosphatase
(TRAP) labeling for detection of osteoclasts and osteocalcin
in-situ hybridization for detection of osteoblasts. Sections
were first stained with TRAP (leukocyte acid phosphatase kit;
Sigma) as described previously [5]. The sections were subse-
quently prepared for in-situ hybridization by post-fixating paw
sections with 4% paraformaldehyde for 10 minutes at room
temperature, rinsing with 0.1% Tween in PBS and digesting
with proteinase K (1 pg/ml; Roche, Mannheim, Germany).
After rinsing again with 0.1% Tween in PBS, another post-fix-
ation step with 4% paraformaldehyde for 10 minutes at room
temperature was carried out, followed by acetylation in acetic
anhydride (2.5 pl/ml in triethanolamine buffer) for 16 minutes
at room temperature and air drying for 30 minutes at 37°C.

The cDNA probe for the osteocalcin in-situ hybridization was
kindly provided by Christine Hartmann (Research Institute of
Molecular Pathology, Vienna, Austria). The osteocalcin probe
consisted of a 600 bp insert cleaved with Notl and transcribed
with T3 RNA polymerase to generate antisense probes using
digoxygenin labeling (DIG RNA labeling kit; Roche). The dig-
oxygenin-labeled osteocalcin probe was diluted 1:100 in
hybridization solution (10 mM Tris, pH 7.5, 600 mM NaCl, 1
mM ethylenediamine tetraacetic acid, 0.25% SDS, 10% dex-
trane sulfate, 1 x Denhardt's solution, 200 pg/ml yeast tRNA,
50% formamide) and heated to 85°C for three minutes. The
sections were then incubated with the probe, covered with
coverslips and stored overnight in a humified chamber at
65°C. After removal of the coverslips, the slides were rinsed
with 1 x SSC/50% formamide for 30 minutes at 65°C, fol-
lowed by digestion of single-stranded RNA with RNase A (20
pg/mlin TNE buffer; Roche) for 10 minutes at 37°C and wash-
ing steps in TNE buffer (10 mM Tris, 500 mM NaCl, 1 mM



ethylenediamine tetraacetic acid) for 10 minutes at 37°C and
in 2 x SSC and 0.2 x SSC for 20 minutes each at 65°C.

Detection of the probe was performed by incubating the slide
with MABT buffer (100 mM maleic acid, 150 mM NaCl, 0.1%
Tween 20, pH 7.5) for 5 minutes at room temperature before
blocking with 20% heat-inactivated sheep serum in MABT
buffer for 1 hour. The sections were then incubated with alka-
line phosphatase-labeled anti-digoxygenin antibody (1:2000;
Roche) in 2% heat-inactivated sheep serum/MABT buffer at
4°C in a humified chamber. For the color reaction, nitroblue
tetrazolium (0.25 ug/ml) and 5-bromo-4-chloro-3-indolyl phos-
phate (0.125 pg/ml) dissolved in NTMT buffer (100 mM NaCl,
100 mM Tris, pH 9.5, 50 mM MgCl,, 0.1% Tween 20) was
applied at room temperature overnight.

Histomorphometry

All analyses were performed using a microscope (Zeiss Axi-
oskop 2; Zeiss, Marburg, Germany) equipped with a digital
camera and an image analysis system (Osteomeasure; Osteo-
Metrics, Decatur, GA, USA) as described previously [17]. The
area of bone erosion was quantified in all tarsal joints of all hind
paws in H & E-stained axial sections of hind paws. Osteoclasts
(three or more nuclei, purple color) and osteoblasts (dark blue
color) were identified in the TRAP-osteocalcin double-stained
slides. Quantification of these cells was separately carried out
in three different compartments of the juxta-articular bone: the
subchondral bone erosion, the subchondral bone channels
(also termed Haversian channels) within cortical bone adja-
cent to the inflamed joints, and the endosteal surface at distant
sites from bone erosion. Moreover, within synovial bone ero-
sions, the distribution of osteoclasts and osteoblasts was
assessed at: the surface adjacent to the articular cartilage
(subchondral surface), the inner frontier of erosion (inner sur-
face), and the surface adjacent to the cortical bone (cortical
surface). Two different histomorphometrical analyses were
performed: the number of osteoclasts as well as osteoblasts
per bone perimeter (cell numbers per millimeter of bone sur-
face), and the amount of bone surface covered by osteoclasts
and osteoblasts (percentage). All analyses were carried out by
a single investigator in blinded fashion.

Statistical analysis

Data are presented as the mean * standard error. Group mean
values were compared by the two-tailed Student ¢ test. The
non-parametric Spearman test was used for correlation
analysis,.

Results

Synovial inflammation affects juxta-articular bone at
different compartments

Based on the knowledge of arthritic bone loss in histological
studies of animal models of arthritis and the radiographic
appearance of arthritic bone erosions in human disease, we
defined three different compartments of periarticular bone,
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where a direct in situ analysis of bone turnover would be of
interest (Figure 1). The first is the cortical bone directly adja-
cent to articular cartilage at the cartilage-pannus junction (Fig-
ure 1b, black arrow), which is most directly affected by
synovial inflammatory tissue leading to formation of subchon-
dral bone erosions. Another compartment is the area of corti-
cal bone channels, also termed Haversian channels (Figure
1b, red arrow), which is somewhat more distant, albeit still in
close vicinity to the synovial inflammatory tissue. The final com-
partment is the endosteal surface of bone at sites distant from
inflammatory tissue (Figure 1b, green arrows). We analyzed
bone turnover in these compartments in hTNFtg mice, which
develop a chronic destructive arthritis similar to RA. In this
model, tarsal joints are among the first affected by arthritis,
which is characterized by a hyperplastic synovial membrane
invading the subchondral bone (Figure 1).

Compartments with different patterns of bone turnover
in inflammatory arthritis

To assess bone turnover in the various juxta-articular bone
compartments during arthritis, we developed a technique to
simultaneously assess the metabolic activity of osteoclasts
and osteoblasts in situ by detection of TRAP for osteoclast
activity and of osteocalcin for osteoblast activity. Representa-
tive images of the different skeletal regions showing osteo-
clasts and osteoblasts simultaneously are depicted in Figure
2.

All hTNFtg mice showed accumulation of osteoclasts and
osteoblasts in the inflamed joint region, whereas such cells
were virtually absent in wild-type mice (data not shown).
Within subchondral bone erosions, the number of osteoclasts
significantly (P < 0.01) exceeded osteoblasts (mean * stand-
ard error 13.6 + 1.1 osteoclasts versus 2.5 + 0.9 osteoblasts
per mm bone surface; Figure 3a). Also, a fivefold larger bone
surface was covered by osteoclasts (26.0 £ 2.1%) than by
osteoblasts (5.4 £ 1.9%; Figure 3b). This indicates high bone
turnover within subchondral bone with an excess in bone
resorption. In cortical bone channels, however, we observed
an equal distribution of osteoclasts and osteoblasts (9.5 + 0.8
osteoclasts and 11.5 + 1.1 osteoblasts per mm bone surface),
both covering approximately 25% of the bone surface, indicat-
ing high but balanced bone turnover (Figure 3c,d,). In contrast,
the endosteal surface distant from bone erosions contained
only few bone cells. Mean numbers of 1.2 (£ 0.3) osteoclasts
and 1.4 (£ 0.4) osteoblasts per mm bone surface were
detected, attributing to only 2.5% and 3.5% bone surface cov-
ered by osteoclasts and osteoblasts, respectively (Figure
3e,f). This indicates a low bone turnover at skeletal sites dis-
tant from bone erosions in inflammatory arthritis.

Localization of osteoclasts and osteoblasts in local bone
erosions of TNF transgenic mice

Next, we determined the distribution of osteoclasts and oste-
oblasts in the primary skeletal lesion of arthritis: subchondral
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Figure 1

Figure 2

Synovial inflammation affects different compartments of juxta-articular
bone. H & E-stained sections from the tarsal region of healthy 12-week-
old (a) wild-type mice and (b) mice transgenic for human tumor necro-
sis factor ("TNFtg). The hTNFtg mice develop extensive synovial inflam-
mation, cartilage damage and bone erosions. Three bone
compartments affected by synovitis were analyzed in arthritic mice: the
subchondral bone adjacent to the synovial inflammatory tissue (black
arrow), the cortical bone channels in close vicinity of the inflamed areas
(red arrow), and the endosteal bone surface distant from the inflamma-
tory tissue (green arrows).

bone erosion. Three compartments were defined within these
lesions: the surface adjacent to the articular cartilage
(subchondral surface), the inner frontier of erosion (inner sur-
face), and the surface adjacent to cortical bone (cortical
surface).

Histomorphometrical analysis revealed that more than one-half
of the osteoclasts (57%) were located at the subchondral
bone surface, whereas fewer osteoclasts were found at the
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Double labeling for osteocalcin and tartrate-resistant acidic phos-
phatase for visualization of osteoblasts and osteoclasts. Paraffin-
embedded sections of hind paws from arthritic mice transgenic for
human tumor necrosis factor (nTNFtg) were stained by TRAP to deter-
mine osteoclasts (black arrows; purple-colored cells with three or more
nuclei). In the same sections, osteoblasts were visualized by in-situ
hybridization for osteocalcin (green arrows; deep blue-stained cells). (a)
Overview of a representative section, original magnification x 100. (b)
Close-up view of the compartment of subchondral bone erosion, origi-
nal magnification x 400. (c) Cortical bone channels underneath
subchondral bone erosions, original magnification x 400. (d) Inflamed
endosteal bone surface distant from bone erosion, original magnifica-
tion x 400.

cortical bone surface (28%) and inner bone surface (15%),
respectively (Figure 4a). The distribution of osteoblasts in
subchondral bone erosions was inverse: most osteoblasts
were found at the cortical bone surface (71%), fewer at the
inner surface (29%), and no osteoblasts were seen at the
subchondral surface of the erosions (Figure 4b). Similar
results were also obtained when measuring the density of
osteoclasts and osteoblasts at these different compartments:
53% of the subchondral bone surface was covered by osteo-
clasts, whereas none was covered by osteoblasts. At the inner
bone surface, 21% and 5% bone was covered by osteoclasts
and osteoblasts, respectively. In contrast, osteoblasts at the
cortical bone surface covered a significantly greater amount of
bone surface (21%) than osteoclasts (7%) (Figure 4c,d).
Hence, osteoclasts are more frequent at the subchondral
bone surface, whereas osteoblasts are most abundant at the
cortical surface of bone erosions.

We next examined whether the size of subchondral bone ero-
sions was linked to the amount of osteoclasts and osteoblasts
within these lesions. A strong positive correlation (r=0.82; P
< 0.001) was found when correlating the number of osteo-
clasts with bone erosion size (Figure 4e). Interestingly, the
number of osteoblasts at the site of bone erosion correlated
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Arthritis induces different patterns of bone turnover in the various compartments of juxta-articular bone. Untreated 12-week-old arthritic mice trans-
genic for human tumor necrosis factor were evaluated for the numbers (a, c, €) and density (b, d, f) of functional osteoclasts by labeling tartrate-
resistant phosphatase and osteoblasts by in-situ hybridization for osteocalcin. Three compartments were analyzed by histomorphometry: (a, b)
subchondral bone, (c, d) cortical bone channels and (e, f) the endosteal bone surface distant from inflamed areas. Results are presented as numbers
of cells per mm bone surface (a, ¢, €) and the fraction (%) of bone surface covered by cells (b, d, f). *Statistically significant difference, P < 0.05.

inversely with the area of bone erosion (r =-0.38, P < 0.05;
Figure 4f).

Reversed local bone turnover upon anti-TNF treatment in
erosive arthritis

We analyzed the effects of TNF blockade on local bone turno-
ver. TNF blockade was initiated at the stage of early arthritis and
was continued for six weeks. We then determined the extent of
local bone damage and quantified the area of subchondral
bone erosions. Whereas untreated TNF transgenic mice exhib-

ited extensive bone erosions (mean * standard error, 6330 +
1060 um32), anti-TNF treatment strongly reduced the area of
bone erosions to 450 £ 170 pm2 (P < 0.001).

Moreover, the microenvironment in the residual subchondral
bone erosions showed a dramatic change compared with
untreated mice. As shown in Table 1, the number of osteo-
clasts was dramatically reduced to a mean of 1.9 = 1.9 per
bone perimeter (-86%), covering only 3 + 3% of the bone
surface (-88% when compared with untreated animals, as
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numbers of (e) osteoclasts and (f) osteoblasts within these lesions. Spearman's correlation coefficients are given. The numbers of osteoclasts corre-
lated positively (r=0.82, P<0.0001) with the area of bone erosion, whereas the numbers of osteoblasts correlated negatively (r=-0.38, P < 0.05).

shown in Figure 3). In contrast, the number of osteoblasts was
strikingly increased to a mean of 47.9 *+ 13.4 cells per bone
perimeter (+1600%) resulting in 37% bone surface coverage
by osteoblasts (+6859%). A similar picture was observed when
analyzing cortical bone channels. Osteoclasts decreased to a
number of 8.9 £ 1.9 (-7%), covering 9% of the bone surface
(-64%). At the same time, osteoblasts had expanded (26 + 7.4
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osteoblasts per mm bone perimeter [+226%]), reflecting 43%
covered bone surface (+172%). At endosteal sites distant
from bone erosions, the numbers of osteoclasts per bone
perimeter remained unchanged (1.6 £ 0.7), covering 0.6% of
the bone surface. The numbers of osteoblasts, however,
increased to 11.2 = 5.1 per bone perimeter, covering a mean
of 4% of the endosteal bone surface.
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TNF and RANKL blockade differently alter local bone turnover in hTNF-transgenic mice

Mice OcPm/BPm (%)

ObPm/BPm (%)

NOc/BPm (cells/mm) NOb/BPm (cells/mm)

Untreated hTNFtg

Subchondral bone erosion 26+2 5+2 135+ 1.1 25+0.8

Cortical bone channels 22 %1 25+ 9.5+0.7 11.4+1.0

Endosteal bone surface 1+1 4+1 1.2+0.2 1.4+0.3
OPG-treated hTNFtg

Subchondral bone erosion 1£1 0.6 £ 0.4

Cortical bone channels 1+1 1£1 04+0.4 0.2+0.2

Endosteal bone surface 0 0 0 0
Anti-TNF treated hTNFtg

Subchondral bone erosion 33 36*5 41+1.2 483+ 114

Cortical bone channels 9+2 43+ 10 8.7 £ 3.3 26.1 £7,2

Endosteal bone surface 11 4+1 25+1.2 109+5.4

Results presented as the mean * standard error of the mean. Paw sections of transgenic for human tumor necrosis factor (NTNFtg) mice treated
for six weeks with a neutralizing antibody against TNF (anti-TNF) or osteoprotegerin (OPG) were stained for functional osteoclasts and
osteoblasts. The fraction of bone surface covered by osteoclasts and osteoblasts (OcPm/BPm, ObPm/BPm) and the numbers of osteoclasts and
osteoblasts per bone perimeter (NOc/BPm, NObPm) were assessed and allocated to three skeletal compartments.

TNF blockade therefore completely reverses increased bone
resorption and leads to a dramatic increase in osteoblast
numbers, indicating high bone turnover with a positive net bal-
ance in anti-TNF-treated arthritic mice.

Blockade of osteoclastogenesis abolishes osteoblast
activity, indicating the osteoblastic response is
dependent on bone erosion

To determine whether specific inhibition of osteoclastogene-
sis without affecting synovial inflammation influences the ana-
bolic response in bone of arthritic mice, we treated 6-week-old
hTNFtg mice three times per week for 6 weeks with OPG. This
treatment did not significantly inhibit joint inflammation (data
not shown) but did strongly diminish local bone erosions by
90% (mean * standard error, 6330 + 1060 pm?2 for untreated
mice versus 618 £ 860 pm?2 for OPG-treated mice) compared
with TNF blockade. Analysis of osteoclasts and osteoblasts
within the remaining bone erosions not only showed the antic-
ipated dramatic reduction of osteoclasts in bone erosions (0.6
+ 0.4 osteoclasts per mm, -96%), but also a complete
absence of osteoblasts (Table 1). A similar picture emerged
when cortical bone channels were analyzed: almost no osteo-
clasts (0.4 = 0.4 per mm bone surface) and almost no osteob-
lasts (0.2 = 0.2 per mm bone surface) were detectable,
attributing to less than 1% of a bone surface coverage by bone
active cells. Similarly, no bone cells were seen at the endosteal
bone surface distant from bone erosions.

Selective blockade of osteoclasts in arthritic mice is therefore
accompanied by a strong reduction of osteoblasts, suggest-
ing that accumulation of osteoblasts is a consequence of

arthritic bone resorption and not of synovial inflammation per
se.

Discussion

Skeletal turnover is a complex physiological process, which
requires bone resorption mediated by osteoclasts as well as
bone formation exerted by osteoblasts. Chronic inflammation
can lead to sustained alterations of bone turnover, as typically
seen in juxta-articular and periarticular damage of inflamed
joints in RA. TNF is a proinflammatory cytokine of major impor-
tance in chronic inflammatory arthritis and also exerts profound
effects on bone: TNF can induce osteoclast formation,
whereas it has negative effects on bone formation. Its unfavo-
rable skeletal effects on bone make TNF an ideal candidate for
linking inflammation and bone loss. Indeed, the therapeutic
blockade of TNF is highly effective in preventing and/or reduc-
ing skeletal damage in conditions of chronic arthritis [18].

In the current work, while developing a technique allowing
direct visualization and quantitative assessment of
metabolically active bone cells to simultaneously analyze func-
tional osteoclasts and osteoblasts representing areas of bone
loss and bone formation, respectively, we evaluated juxta-artic-
ular and periarticular bone turnover in the context of chronic
arthritis. Using a model of TNF overexpression, these analyses
revealed several interesting insights into arthritic bone loss, as
illustrated in Figure 5.

First, bone turnover was massively increased at sites of joint
inflammation. Arthritis in hTNFtg mice involves peripheral
joints, such as tarsal, carpal and digital joints, largely reflecting
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Figure 5
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Overview on local bone turnover in tumor necrosis factor transgenic mice. (a) Schematic overview of a healthy joint with only scarce osteoblasts
(cubic-shaped blue cells) and osteoclasts (multinucleated red cells) in cortical bone channels and the endosteal bone surface. (b) In arthritis, syno-
vial inflammatory tissue comprised of synovial fibroblasts (yellow spindle-shaped cells), macrophages (purple cells), T cells (green cells), B cells
(dark blue cells) and other cells invade the subchondral bone and trigger massive local osteoclastogenesis and — as a reactive process — osteoblas-
togenesis. Also, osteoclast and osteoblast accumulation occurs in cortical bone channels but not at the endosteal bone surface distant from synovi-
tis. (c) TNF blockade efficiently diminishes bone erosion and suppresses osteoclastogenesis in subchondral bone erosions and cortical bone
channels. In contrast, enhanced osteoblast activity can be detected in both regions, suggesting an increased reparative response when TNF is
blocked. (d) Receptor activator of NF-kB ligand blockade inhibits bone erosion but not synovitis. Osteoclastogenesis is efficiently blocked in all com-
partments but, in contrast to anti-TNF, osteoblasts are also massively reduced. OPG, osteoprotegerin.

the distribution of inflammation found in human disease. Small
peripheral bones predominantly consist of cortical bone,
which has a slow turnover compared with trabecular bone. In
physiological conditions, therefore, only few osteoclasts and
osteoblasts are found at these peripheral skeletal sites. In
arthritis, however, accumulation of osteoclasts but also of
osteoblasts is found at sites where these cells are normally
absent or are only scarcely present [5]. On the basis of these
data, the hypothesis that the inflammatory events in RA prima-
rily lead to activation of osteoclasts and bone resorption by
means of TNF and RANKL, but do not induce the osteoblast
compartment and consequent bone formation, needs to be
revisited.

While the negative effects of TNF on bone formation are well
documented [8], synovial inflammation in fact appears to also
provoke an osteoblastic response, which may be seen as an
attempt at bone repair. In fact, the observed accumulation of
osteoblasts may be considered as a skeletal response to TNF-
mediated bone loss [19]. Osteoclasts and osteoblasts are in
close vicinity to each other, suggesting a dynamic interplay
between these cells, and consequently between bone resorp-
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tion and formation at these skeletal sites. This hypothesis is
supported by the observation of the metabolically active state
of both cell types as observed by the expression of TRAP, a
key enzyme for osteoclasts [20], as well as osteocalcin, a spe-
cific extracellular matrix molecule produced by osteoblasts
[21]. Moreover, accumulation of both cell types was linked to
synovial inflammatory tissue, since the number of active oste-
oblasts and osteoclasts decreased dramatically with growing
distance from the inflamed joint, suggesting that mediators
originating from inflammatory tissue influence activation of
bone turnover by paracrine mechanisms.

A second insight is that the net effect on bone was highly
dependent on the proximity to the inflamed synovial mem-
brane. The area closest to inflammatory tissue is the subchon-
dral bone of the junction zone, where the synovial membrane
inserts into the cortical bone surface. This site faces rapid
resorption, supported by the massive accumulation of osteo-
clasts, which by far outweighs the number of active osteob-
lasts in these lesions. The result is a negative net balance of
bone formation compared with resorption and progressive
local bone erosions. It also reflects the direct effects of a



chronic exposure of adjacent bone to proinflammatory
cytokines from the synovial membrane and cells (osteoclasts)
generated in the synovial membrane. In deeper skeletal layers,
however, the osteoblastic response tends to outweigh bone
resorption, as evident by similar numbers of osteoblasts and
osteoclasts in cortical bone channels underneath erosions.
These areas are characterized by high bone turnover with
abundance of metabolically active osteoclasts and
osteoblasts.

These differences between the compartments suggest that
the inflammatory tissue directly drives osteoclastogenesis,
which is a well-known process and involves the expression of
TNF by various cells types within inflammatory tissue and of
RANKL by T cells and synovial fibroblasts [22-25]. On the
other hand, these data show that the skeletal response to
increased bone resorption emerges from deeper layers of the
cortical bone and involves accumulation of osteoblasts syn-
thesizing new bone matrix. A similar state is even found within
subchondral bone erosions: although in these lesions only a
minority of bone-active cells are osteoblasts, they are almost
exclusively found in the deeper cortical areas surrounding the
bone erosion but are absent in the superficial area adjacent to
articular cartilage. This suggests that the catabolic signal for
bone is strongly associated with inflammatory tissue, whereas
the anabolic response comes from deeper layers of cortical
bone.

Third, hypothesizing that the anabolic skeletal response is an
indirect effect, which depends on bone resorption induced by
synovial inflammatory tissue, we aimed to shut down osteo-
clastogenesis specifically by interfering with RANKL-receptor
activator of NF-xB interaction. Blockade of RANKL has proven
to effectively prevent arthritic bone erosion without interfering
with synovial inflammation [11,26-29]. Interestingly, the ana-
bolic response was almost completely abolished when osteo-
clast generation was blocked by OPG. Previous studies
assessing the systemic bone changes in hTNFtg mice have
shown that OPG treatment not only blocks bone resorption,
but also downregulates bone formation [19]. This is also in line
with the effect of RANKL blockers in human clinical trials. The
molecular background of the inhibitory effect of RANKL block-
ers in bone formation is poorly understood. It cannot be ruled
out that osteoblastogenesis is dependent on RANKL; how-
ever, such an effect has only been described for glutathione S-
transferase fusion RANKL (GST-RANKL), not for native
RANKL [30].

More generally, however, these observations favor the con-
cept that the generation of viable osteoclasts is necessary for
optimal bone anabolic responses [31]. Such a hypothesis of
coupling stress is also supported by recent studies, which
suggest that acidification of the resorption compartment is an
important stimulus for the influx of bone-forming cells into
resorption sites [32]. An alternative explanation for osteoblas-
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togenesis next to inflamed joints is that synovial inflammation
is directly responsible for the anabolic response of cortical
bone. However, several points of evidence contradict such a
mechanism: proinflammatory mediators, such as TNF, are neg-
ative regulators and not positive regulators of osteoblasts;
osteoclasts but not osteoblasts dominate the areas close to
synovial inflammatory tissue; accumulation of osteoblasts is
always linked to the presence of osteoclasts and is not seen
as an isolated process upon emergence of arthritis; and selec-
tive blockade of bone resorption by RANKL blockade does not
interfere with synovitis, but does block the anabolic response.
This clearly indicates that the accumulation of metabolically
active osteoblasts at sites of inflammatory bone erosions is not
directly based on joint inflammation per se, but is rather a con-
sequence of osteoclastogenesis and active bone resorption.

Fourth, from a therapeutic standpoint the reversibility of the
pathophysiology of destructive arthritis is a key point of inter-
est. Since in this model TNF is not only responsible for inflam-
matory arthritis but also for alteration bone turnover [19],
removal of this essential trigger might also reverse dysregula-
tion of bone turnover. Indeed, treatment with a TNF blocker
completely reversed bone turnover by blocking osteoclasts
and fostering osteoblasts. In subchondral sites of bone ero-
sion, where osteoclasts dominated highly, TNF blockade com-
pletely switched negative bone turnover to an anabolic
phenotype, leading to an excess amount of osteocalcin-syn-
thesizing osteoblasts compared with osteoclasts. This was
partially achieved by an effective inhibition of osteoclastogen-
esis, since TNF is not only a direct activator of osteoclasts but
also induces expression of RANKL [9]. However, it was also
based on an increase of osteoblasts, which illustrates the
mentioned negative role of TNF on bone formation.

Whether these effects of TNF blockade on local bone metab-
olism are long-term effects is currently unknown, since the
duration of treatment, although comparatively long for a model
of inflammatory arthritis, is not designed to assess potential
long-term effects. Another potential limitation is that no dose
titration of skeletal effects of TNF and/or RANKL blockers has
been accomplished, since blockade of TNF and RANKL was
used as a proof-of-concept study on the role of TNF and oste-
oclasts in local skeletal remodeling in this experimental model.

Conclusion
This investigation extends current insights into bone loss in the

context of inflammatory arthritis. Bone erosion is not a purely
resorptive process, but rather harbors complex interactions of
bone resorption and formation throughout the entire cortical
bone. Induction of bone formation in deeper layers of cortical
bone can be regarded as an attempt to auto-repair, which lim-
its but does not reverse skeletal damage. This process
depends on the potential of synovial inflammatory tissue to
generate osteoclasts and to resorb bone, but is not a
consequence of synovial inflammation per se. Most impor-
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tantly, distorted bone metabolism is reversible when the initial
trigger, primarily TNF, is neutralized — suggesting that TNF
blockade might not only block bone resorption but also pave
the path for effective repair of skeletal damage.
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