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Abstract

In this study we examined the effect of ribbon-type (circular-
type) NF-kB decoy oligodeoxynucleotides (RNODN) on
osteoclast induction and activity. We extracted bone marrow
cells from the femurs of rats and incubated non-adherent cells
with receptor activator of nuclear factor kB ligand (RANKL) and
macrophage colony-stimulating factor (M-CSF). First, transfer
efficiency into osteoclasts and their precursors, resistance to
exonuclease, and binding activity of decoy to NF-xB were
examined. Next, to examine the effect of RNODN on osteoclast
induction and activity, osteoclast differentiation and pit
formation assays were performed. RNODN were injected into
the ankle joints of rats with collagen-induced arthritis. Joint
destruction and osteoclast activity were examined by

histological study. The resistance of RNODN to exonuclease
and their binding activity on NF-kB were both greater than those
of phosphorothionated NF-«B decoy oligodeoxynucleotides.
The absolute number of multinucleate cells scoring positive for
tartrate-resistant acid phosphatase was significantly decreased
in the RNODN-treated group. The average calcified matrix
resorbed area was significantly decreased in the RNODN-
treated group. Histological study showed marked suppression
of joint destruction and osteoclast activity by intra-articular
injection of RNODN. These results suggest the inhibitory effect
of RNODN on the induction and activity of osteoclasts. Direct
intra-articular injection of RNODN into the joints may be an
effective strategy for the treatment of arthritis.

Introduction
Osteoclasts are multinucleate giant cells formed by the fusion

of hematopoietic cells of the monocyte/macrophage lineage.
They are the major resorptive cells of bone [1,2]. In the differ-
entiation pathway of osteoclast progenitors into functionally
active osteoclasts, macrophage colony-stimulating factor (M-
CSF) is important in proliferation; both M-CSF and receptor
activator of NF-kB ligand (RANKL) are essentially involved in
differentiation, survival, and fusion; and RANKL enhances
osteoclast function [3,4]. The expression of RANKL can be
observed in synovial fibroblasts from patients with rheumatoid
arthritis (RA) [5]. A crucial target of signaling by RANKL is the
activation of NF-xB [6-9]. NF-kB is associated with the activa-

tion of osteoclasts and is important in the differentiation of
osteoclast precursors [10]. Several studies indicate that
selective inhibition of NF-xB in osteoclast precursors prevents
osteoclast differentiation and function in vitro and in vivo
[11,12]. Mice deficient in both the p50 and p65 subunits of
NF-xB develop osteopetrosis because of a defect in osteo-
clast differentiation [13,14]. Recently the importance of the
IxB kinase (IKK) B subunit as a transducer of signals from
RANK to NF-xB for inflammation-induced bone loss and oste-
oclastogenesis in vivo was reported [15].

RA is a chronic inflammatory disease of unknown etiology,
characterized by articular inflammation associated with

FCS = fetal calf serum; FITC = fluorescein isothiocyanate; IL = interleukin; M-CSF = macrophage colony-stimulating factor; NF-kB = nuclear factor-
«B; ODN = oligodeoxynucleotide; PBS = phosphate-buffered saline; PNODN = phosphorothionate double-stranded NF-kB decoy ODN; PSODN =
phosphorothionate double-stranded scrambled decoy ODN; RA = rheumatoid arthritis; RANKL = receptor activator of NF-kB ligand; RNODN = rib-
bon-type NF-kB decoy ODN; RSODN = ribbon-type scrambled decoy ODN; TNF = tumor necrosis factor; TRAP = tartrate-resistant acid

phosphatase.
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abnormal immune responses and pronounced synovial hyper-
plasia. Synovial macrophages are capable of differentiating
into osteoclasts; the osteoclasts generated within the synovial
membrane are probably involved in bone destruction in vivo
[16]. Multinucleate cells scoring positive for tartrate-resistant
acid phosphatase (TRAP) were also induced from CD14-pos-
itive cells in the synovial fluid from patients with RA [17].
TRAP-positive multinucleate cells are present in the bone ero-
sion area of patients with RA [18] and also in the bone erosion
area of a mouse arthritis model [19,20]. Although the precise
mechanism of joint destruction has not been elucidated, oste-
oclasts seem to have a pivotal role in the joints of patients with
RA.

Specific DNA sequences have been used successfully as
decoys for binding specific transcription factors, rendering the
transcription factors incapable of subsequent binding to the
promoter region of target genes [21,22]. This approach has
been shown to be effective in modulating gene expression in
vitro and in vivo. The applications of the decoy oligodeoxynu-
cleotides (ODN) strategy against NF-kB have been reported
in several studies [23-26]. However, one of the major limita-
tions of the decoy ODN approach is the rapid degradation of
phosphodiester ODN by intracellular nucleases. Previously,
circular dumbbell double-stranded decoy ODN (we call these
ribbon-type decoy ODN) were developed to resolve these
issues [27,28]. According to the previous reports, ribbon-type
decoy ODN tend to bind more specifically to the transcription
factors and have stronger resistance to exonuclease [29,30].
In this study, we tried to use ribbon-type NF-kB decoy ODN
for inhibiting the expression of NF-kB, leading to the inhibition
of osteoclast induction and activity.

Materials and methods
Materials

Ribbon-type decoy ODN and phosphorothionated double-
stranded decoy ODN were purchased from Gene Design
(Osaka, Japan). Mouse RANKL and mouse M-CSF were pur-
chased from Wako (Tokyo, Japan). Lewis rats were purchased
from Clea Japan (Osaka, Japan). Bovine type Il collagen was
purchased from Cosmo Bio (Tokyo, Japan) and Freund's
incomplete adjuvant from Sigma (Munich, Germany).

Construction of ribbon-type decoy ODN and
phosphorothionated double-stranded decoy ODN

The sequences of ribbon-type decoy ODN and phospho-
rothionated double-stranded decoy ODN are as follows (con-
sensus sequences are shown in bold): ribbon-type NF-xB
decoy ODN (RNODN), 5'-TCAAGGAAAACCTTGAAG-
GGATTTCCCTCCAAAAGGAGGGAAATCCCT-3' ; ribbon-
type  scrambled decoy  ODN (RSODN), 5'-
TAGCCAAAAGGCTAAGTCAGGTACGGCAAAAAATT-
GCCGTACCTGACT-3' ; phosphorothionated double-
stranded NF-xB decoy ODN (PNODN), 5'-CCTTGAAG-
GGATTTCCCTCC-3' and 3'-GGAACTTCCCTAAAG-
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GGAGG-5' ; and phosphorothionate double-stranded
scrambled decoy ODN (PSODN) 5-TTGCCGTACCTGACT-
TAGCC-3' and 3'-AACGGCATGGACTGAATCGG-5' (Fig-
ure 1). Decoy ODN containing the NF-xB consensus
sequence has been shown to bind the NF-kB transcription
factor [24]. PNODN and PSODN were annealed for 2 hours
with a steady temperature decrease from 70°C to 25°C. One
unit of T4 DNA ligase was added to the mixture, followed by
incubation for 24 hours at 22°C to generate a covalently
ligated RNODN.

Resistance to exonuclease

To check resistance for exonuclease, electrophoresis of
RNODN and PNODN was performed. In brief, 3 pg of
RNODN or PNODN was incubated with exonuclease lll at
37°C for 2 hours and then at 65°C for 5 minutes. The solution
containing ODN was resolved by electrophoresis on a 19%
acrylamide gel.

Estimation of binding activity

The binding activity of RNODN was examined by using Mer-
cury Transfactor Kits for NF-xB p65 (BD Bioscience, Clon-
tech, Palo Alto, CA, USA) as oligonucleotide competition
assays. Kits contain a 96-well format in which wells are coated
with an oligonucleotide containing the NF-xB p65 consensus
binding sequence. The quantity of nuclear extract binding to
the oligonucleotide of the wells is correlated with an increase
in signal. An increase in the amount of competitor oligonucle-
otide corresponds to a decrease in signal because transcrip-
tion factor binding decreases as the competitor keeps it away
from the oligonucleotide-coated surface of the trans-Factor
well. We estimated the binding activity of oligonucleotides by
incubating the same amounts of nuclear protein and various
oligonucleotides. An aliquot (30 pg) of TNF-a-stimulated HelLa
nuclear extract (Active Motif, Carlsbad, CA, USA) was incu-
bated with decoy ODN (15, 30, and 45 nM) in trans-Factor
wells for 60 minutes at room temperature. Wells were incu-
bated with primary and secondary antibodies, and the absorb-
ance of the plate was measured with a microplate reader
(Model 680; Bio-Rad, Hercules, CA, USA).

Osteoclast differentiation assay

Bone marrow cells were obtained by flushing femurs of 6-
week-old female Lewis rats and were seeded at 2 x 107 cells
per 10 cm Petri dish, then cultured in a-minimal essential
medium containing 10% FCS and 1% penicillin/streptomycin.
One day after the treatment, non-adherent cells were seeded
again and cultured in o-minimal essential medium containing
10% FCS, 1% penicillin/streptomycin, and 20 ng/ml M-CSF
in Lab-Tek eight-well chamber slides (Nalge Nunc, New York,
NY, USA) at a density of 2 x 105 cells per well. Two days after
the incubation, cells were cultured with 100 ng/ml RANKL and
20 ng/ml M-CSF for 7 days. On days 1, 3, and 5 various decoy
ODNs were transiently transferred. Then the cells were
washed and stained with a commercial TRAP staining kit (Cell
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Figure 1 Figure 2
PNODN 5’-CCTTGAAGGGATTTCCCTCC-3” (a)
3’-GGAACTTCCCTAAAGGGAGG-5’
5-TTGCCGTACCTGACTTAGCC-3’
PSODN 3I’-AACGGCATGGACTGAATCGG-5
A A
RNODN A  CCTTGAAGGGATTTCCCTCC A
A GGAACTTCCCTAAAGGGAGG
A A
RSODN A A Exoll - + - +
A TTGCCGTACCTGACTTAGCC A (b) PNODNRNODN
A AACGGCATGGACTGAATCGG A 120
A A
1.00 -
Structures and sequences of the decoy oligodeoxynucleotides used in
this study. PNODN and RNODN (phosphorothionated decoy oligode- = 0.30 1
oxynucleotides) contain the NF-kB-binding site in its double-stranded E
lesion (consensus sequences are underlined). Q 0.60 1
a
o 040 -
Garage, Tokyo, Japan). The number of TRAP-positive multinu- 020 -
clear (three or more nuclei) cells was counted.
0.00 -

Pit formation assay

To examine the effect of RNODN on resorbing activity, cells
were cultured on BD BioCoat osteologic calcium hydroxyapa-
tite-coated slides (BD Biosciences, Bedford, MA, USA) in a
5% CO, incubator. The non-adherent bone marrow cells were
seeded at a density of 105 cells per well. After incubation for 2
days with 20 ng/ml M-CSF, cells were cultured with 100 ng/
ml RANKL and 20 ng/ml M-CSF. On days 3, 5, and 7 various
decoy ODNSs were transiently transferred, and on day 8 cells
were washed vigorously and the calcified matrix resorption
area on each disc was measured with a Mac SCOPE image
analyzer, version 2.51 (Mitani, Fukui, Japan).

Immunofluorescence staining

Cells were fixed in 4% paraformaldehyde for 20 minutes at
37°C and treated with 0.5% Triton X-100 for 5 minutes. Cells
were then blocked for 30 minutes with 2% goat serum/PBS
and incubated in 4 ng/ml rabbit polyclonal antibody against
NFATc1 (sc-13033; Santa Cruz biotechnology, Santa Cruz,
CA, USA) at 4°C for 16 hours and 400 ng/ml Alexa 488 goat
anti-rabbit 1gG (A-12373; Invitrogen Molecular Probes,
Carlsbad, CA, USA) at room temperature for 60 minutes. The
density of fluorescence was estimated by calculating the area
of fluorescent cells by NIH image software.

Induction of arthritis by collagen in rats

This experimental study was performed in accordance with the
recommendations in the Guide for the Care and Use of Labo-
ratory Animals of National Institutes of Health (NIH). The pro-
tocol was approved by the committee on the Ethics of Animal
Experiments in Osaka University. Arthritis was induced by col-

NE PSODN PNODN RSODN RNODN

The stability and binding activity of RNODN and PNODN. (a) Stability
of phosphorothionate double-stranded NF-kB decoy oligodeoxynucle-
otide (PNODN) and ribbon-type NF-kB decoy oligodeoxynucleotide
(RNODN) in the presence of exonuclease lll. (b) Effects of various
decoys on binding activity towards NF-kB. The binding activity of decoy
oligodeoxynucleotides (ODNs) reflected their ability to decrease
absorbance. NE, nuclear extract without treatment of decoy ODN. (n =
5 per group; *p < 0.05, **p < 0.01, #p < 0.05, ##p < 0.01, ###p <
0.001 compared with nuclear extract without treatment of decoy ODN.)

lagen with the use of the modified method described by
Trentham and colleagues [31]. In brief, 6-week-old female
Lewis rats were immunized intradermally with 0.5 mg of bovine
type Il collagen, which was dissolved in 0.5 ml of 0.1 M acetic
acid at 4°C and emulsified in 0.5 ml of cold Freund's incom-
plete adjuvant. On day 7, the rats received an intradermal
booster injection of half the volume of the first immunization.
Onset of arthritis in the ankle joints could be usually recog-
nized visually between days 10 and 14. All rats in which the
onset of arthritis could not be recognized visually by day 14
were excluded from this study.

In vivo transfer of fluorescein isothiocyanate (FITC)-
labeled RNODN

To examine the localization of RNODN delivery, 50 ng of FITC-
labeled RNODN were injected intra-articularly. One day after
transfer, synovial tissues were extracted and fixed. Cryostat
sections of synovial cells were observed by ultraviolet micros-
copy (T6300; Nikon, Tokyo, Japan). The sections were also
stained with 4',6-diamidino-2-phenylindole.
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Figure 3
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Osteoclast differentiation induced in vitro by macrophage colony-stimulating factor and RANKL. Cells were transiently transferred with ribbon-type
scrambled decoy oligodeoxynucleotide (RSODN) (b) or ribbon-type NF-kB decoy oligodeoxynucleotide (RNODN) (c), or were untreated alone (a).
Original magnification x 100. (d) Numbers of TRAP-positive multinuclear cells. (n =5 per group; *p < 0.001, compared with rats treated with
RSODN.) (e-h) Calcified matrix resorption by osteoclast-like cells induced by soluble receptor activator of nuclear factor kB ligand (RANKL). Cells
were transiently transferred with RSODN (f) or RNODN (g) or were untreated alone (e). (h) Mean calcified matrix resorption areas calculated by
MacSCOPE image analyzer. (n =5 per group; *p < 0.01 compared with the RSODN-treated group.)

Experimental protocol

On day 14 after immunization, 50 pl of suspension containing
200 pg of RNODN or 200 ng of RSODN or 50 pl of PBS was
administered intra-articularly with a 30-gauge needle into the
right side hind-ankle joint of rats with collagen-induced arthritis
(CIA). Administration was performed once every week for 3
weeks. At the end of the experiment (day 35), the ankle joints
were fixed in 4% paraformaldehyde, decalcified with EDTA,
and embedded in paraffin; sections 4 um thick were prepared.
Next, sections were stained with hematoxylin and eosin. The
extent of arthritis in the ankle joints was assessed in accord-
ance with the method reported previously [32]: 0 = normal
synovium, 1 = synovial membrane hypertrophy, 2 = pannus
and cartilage erosion, 3 = major erosion of cartilage and
subchondral bone, and 4 = loss of joint integrity and ankylosis.
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To investigate the osteoclastic activity in vivo, sections were
stained with a TRAP staining kit (Cell Garage, Tokyo, Japan).
TRAP-positive multinuclear cells were counted in the sections
of each ankle (at x 100 magpnification). All procedures com-
plied with the standards described in the Osaka University
Medical School Guidelines for the Care and Use of Laboratory
Animals.

Statistical analysis

Statistical analysis was performed with the unpaired ¢ test and
the Mann-Whitney U test; p < 0.05 was considered signifi-
cant. All experiments in vitro were performed at least three
times.
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Expression of NFATc1 protein in osteoclast precursor cells. (a-d)
Immunohistochemistry of NFATc1 protein with specific antibody in
osteoclast precursor cells. Bone marrow macrophages were incubated
with M-CSF/RANKL for 48 hours after incubation with ribbon-type
scrambled decoy oligodeoxynucleotide (RSODN) (c) or ribbon-type
NF-xB decoy oligodeoxynucleotide (RNODN) (d), or were untreated
alone (b). (a) Without reaction with primary antibody. The expression of
NFATc1 by immunofluorescence is shown in each upper panel. Nuclei
stained with 4',6-diamidino-2-phenylindole are shown in each lower
panel. Original magnification x 100. (e) Measurement of fluorescent
area of osteoclast precursor cells. The areas of fluorescent cells in
RSODN-treated and RNODN-treated groups are shown as percent-
ages over that of the untreated group. (n =5 per group; *p < 0.001
compared with the RSODN-treated group.)

Results
Stability of RNODN

In this study we used RNODNSs to improve stability to exonu-
clease. Initially, the structural stability of decoy ODN was

Available online http://arthritis-research.com/content/8/4/R103

examined by the ability to resist degradation in the presence of
exonuclease lll. The primary cause of degradation of standard
DNA oligomers in biological applications is a 3'-exonuclease
activity found in cells [33,34]. RNODN showed high resist-
ance to exonuclease lll and was observed as a major band in
gel electrophoresis. In comparison with RNODN, PNODN
was degraded after incubation in the presence of exonuclease
Il (Figure 2a).

Binding activity of RNODNs on NF-<B

To examine the binding activity of RNODN on the NF-xB pro-
tein, an in vitro competition assay was performed with Mercury
Transfactor Kits for NF-«xB p65 (Figure 2b). An increase in the
concentration of unbound NF-kB protein was accompanied by
a corresponding increase in absorbance. The binding activity
of decoy ODNs reflected their ability to decrease the absorb-
ance level. The result of calculating the absorbance of each
group is shown as a percentage over that of the untreated
group. When PNODN or RNODN was used as a competitor
oligonucleotide at 30 or 45 nM, a significant decrease in
absorbance was confirmed against the absorbance of nuclear
extract without competitor oligonucleotides. A stronger
competitive effect was observed when RNODN was used
than with PNODN. At a concentration of 15 nM, the competi-
tive effect was observed only in the RNODN-treated group.
When RSODN or PSODN was used as a competitor oligonu-
cleotide, the decrease in absorbance was minimal compared
with that of nuclear extract without competitor oligonucle-
otides. The result shows that RNODN has specific and strong
binding activity on the NF-xB protein.

RNODN inhibits RANKL-induced osteoclastogenesis

To examine the effects of RNODN on osteoclastogenesis in
vitro, bone marrow macrophages were incubated with decoy
in the presence of RANKL and M-CSF (Figure 3a—c). The
number of TRAP-positive multinuclear cells in the untreated
group and in the RSODN-treated and RNODN-treated groups
were 124.2 + 34.6, 126.2 + 45.5, and 5.2 *+ 1.9, respectively
(mean = SD; Figure 3d). Osteoclastogenesis induced by
RANKL was inhibited by incubation with RNODN (p < 0.001
compared with the RSODN-treated group). The inhibitory
effect was not observed when cells were incubated with
RSODN (Figure 3).

RNODN inhibits RANKL-induced pit formation

To examine the inhibitory effects of RNODN on the activation
of osteoclasts, a pit formation assay was performed (Figure
3e—g). The calcified matrix resorption area in the untreated
group and in the RSODN-treated and RNODN-treated groups
were 1.083+0.12,1.01 £0.12,and 0.36 + 0.21 mm?2, respec-
tively (mean = SD; Figure 3h). Results showed that calcified
matrix resorption by RANKL-induced osteoclast-like cells was
significantly inhibited by incubation with RNODN (p < 0.01
compared with the RSODN-treated group). The inhibitory
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Figure 5

Representative findings of fluorescence microscopy of synovium transferred with FITC-labeled RNODN. (a) Synovium transferred with ribbon-type
NF-kB decoy oligodeoxynucleotide (RNODN) not labeled with fluorescein isothiocyanate (FITC). (b) The sections were counterstained with 4',6-dia-
midino-2-phenylindole. (c) Synovium transferred with FITC-labeled RNODN. Original magnification x 200. (d) The sections were counterstained

with 4',6-diamidino-2-phenylindole.

effect was not observed when cells were incubated with
RSODN.

Downregulation of NFATc1 by RNODN

To clarify the mechanism underlying the inhibitory effect of
RNODN on osteoclastogenesis, we examined the expression
of the NFATc1 protein in bone marrow cells incubated with
RANKL. NFATc1 is a master switch for regulating the terminal
differentiation of osteoclasts, functioning downstream of
RANKL [35]. As shown in Figure 4, the expression of NFATc1
in RANKL-stimulated bone marrow cells increased in accord-
ance with the fusion of cells (Figure 4b). The results of calcu-
lating the area of fluorescent cells in RSODN-treated and
RNODN-treated groups are shown as percentages over that
of the untreated group. The data for each group (mean + SD)
are 90.0 + 38.6% and 3.5 * 3.29%, respectively (Figure 4e).
The expression of NFATc1 was inhibited by incubation with
RNODN (p < 0.001 compared with the RSODN-treated
group; Figure 4d).

In vivo transfer of FITC-labeled RNODN into joint
synovium

We performed in vivo transfer of FITC-labeled RNODN into rat
ankle joints. Fluorescence was localized in synovial cells,
especially the surface area (Figure 5c). Synovium transferred
with decoy ODN not labeled with FITC showed no specific flu-
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orescence (Figure 5a). The nucleus was stained with 4',6-dia-
midino-2-phenylindole (Figure 5b,d).

Inhibitory effects of intra-articular injection of RNODN
on joint destruction and osteoclast activity in rats with
CIA

To evaluate the effect of RNODN on joint destruction and
osteoclast activation, we performed a histological analysis of
the ankle joints treated with RNODN, RSODN, or PBS. Histo-
logically, ankle joints of rats with CIA treated with PBS (Figure
6b) or RSODN (Figure 6¢) showed pannus invasion and mas-
sive cellular infiltration of the synovium, with disruption of car-
tilage and subchondral bone. Conversely, ankle joints of rats
with CIA treated with RNODN (Figure 6d) showed marked
improvement in arthritis. The arthritis scores (mean £ SD) of
PBS-treated joints, RSODN-treated joints, and RNODN-
treated joints were 3.0 £ 0.7,3.2 £ 0.8, and 1.8 £ 0.8, respec-
tively (Table 1). The number of osteoclasts around the ankle
joints was significantly smaller in RNODN-treated rats than in
RSODN-treated or PBS-treated rats (Figure 6f,g). The num-
bers of osteoclasts in PBS-treated joints, RSODN-treated
joints, and RNODN-treated joints were 142.8 + 15.1,1563.8 +
28.2, and 31.0 £ 27.8, respectively (Table 1). Figure 6a and
Figure 6e show HE staining and TRAP staining of ankle joints
in naive rats.
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Histological analysis in the ankle joints of rats with collagen-induced
arthritis (CIA) at day 35. Samples were stained with hematoxylin and
eosin in (a-d) and with tartrate-resistant acid phosphatase [TRAP] in
(e-h). (a) Naive rats had normal joints. (b) Ankle joints of rats with CIA
treated with PBS showed pannus invasion and massive cellular infiltra-
tion of the synovium, with disruption of cartilage and subchondral bone.
(c) Ankle joints of rats with CIA treated with ribbon-type scrambled
decoy oligodeoxynucleotide (RSODN) also showed pannus invasion
and massive cellular infiltration of the synovium, with disruption of carti-
lage and subchondral bone. (d) Ankle joints of rats with CIA treated
with ribbon-type NF-kB decoy oligodeoxynucleotide (RNODN) also
had nearly intact articular joints. (e) Ankle joints of naive rats had few
TRAP-positive multinuclear cells. (f) Ankle joints of rats with CIA treated
with PBS showed active resorption of cartilage and subchondral bone
by pannus and synovium including TRAP-positive multinuclear cells. (g)
Ankle joints of rats with CIA treated with RSODN also showed active
resorption of cartilage and subchondral bone by pannus and synovium
including TRAP-positive multinuclear cells. (h) TRAP-positive multinu-
clear cell formation was suppressed in ankle joints of rats with CIA
treated with RNODN. Original magnifications x 100.

Discussion

The Rel/NF-xB family of transcription factors is induced in
response to several signals. In unstimulated cells, NF-xB is
associated in the cytoplasm with the inhibitory protein IkB. In
response to an external signal, IkB is phosphorylated and
degraded, releasing NF-kB to enter the nucleus and activate
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transcription [36,37]. The wide variety of genes regulated by
NF-xB includes cytokines, chemokines, adhesion molecules,
acute-phase proteins, and inducible effector enzymes. The
important role of NF-«B in the differentiation and activation of
osteoclasts has been mentioned previously [38]. Selective
inhibition of NF-kB by several drugs blocks osteoclastogene-
sis [11,12]. In the present study we have shown that selective
inhibition of NF-xB with a ribbon-type NF-kxB decoy could sup-
press the differentiation and activation of RANKL-induced
osteoclastogenesis. Transfection of decoy ODN correspond-
ing to the cis sequences result in the attenuation of authentic
cis-trans interaction, leading to the removal of trans-factors
from the endogenous cis-element, with subsequent modula-
tion of gene expression [39]. The principle of the transcription
factor decoy approach is based on the reduction of promoter
activity as a result of the inhibition of binding of a transcription
factor to a specific sequence in the promoter region. This
approach is relatively simple and can be targeted to specific
tissues; decoy ODN can be more effective than antisense
ODN in blocking constitutively expressed factors as well as
multiple transcription factors that bind to the same cis element
[39]. However, one of the major limitations of the decoy ODN
approach is the rapid degradation of phosphodiester ODN by
intracellular nucleases [40-42]. The lack of sequence specifi-
city of phosphodiester ODN has been reported previously
[29,43,44]. To overcome these issues, the circular dumbbell
double-stranded decoy ODN was developed [42,45,46]. Cir-
cular dumbbell decoy ODN for AP-1 or E2F have been dem-
onstrated to be more effective than conventional decoy ODN
in previous studies [40,41]. In this study, RNODN showed
higher resistance to exonuclease and stronger binding activity
on NF-kB than PNODN, and we examined the effect of
RNODN for the inhibition of osteoclast differentiation and acti-
vation. A previous report [47] showed the effect of decoy tar-
geting NF-xB on apoptosis of human osteoclasts. In contrast
to their results we were unable to show the specific effect of
RNODN for apoptosis of rat osteoclasts. It is not yet clear
whether NF-«B is responsible for the survival of osteoclasts
[48].

In this study, we were able to transfer decoy ODN to adherent
macrophage/monocyte-like cells and osteoclast-like cells
without reagent. The possibility and effectiveness of ODN
transfer into these cells have been reported previously [49].
The cellular uptake of ODN is reportedly achieved by a recep-
tor-mediated endocytosis mechanism [50,51]. However, the
exact mechanism of cellular uptake of naked DNA or ODN is
still poorly defined [52]. The efficiency of internalizing naked
DNA varies between cell types [52]. In our study, the effective-
ness of ODN transfer was promoted in serum-free conditions.
The size of the ribbon-type decoy is about 20 base pairs,
which is small compared with the plasmid, so it may be easier
for ODN to be transferred into osteoclasts or their precursors.
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Table 1

Mean histological scores and osteoclast numbers of rats with
collagen-induced arthritis

Group Number of joints Histological Osteoclast
score number
PBS injection 5 3.0+0.7 142.8+15.1
RSODN injection 5 3.2+0.8 153.8 £ 28.2
RNODN injection 5 1.8+0.82 31.0 £ 37.3°

ap < 0.01 compared with PBS injection group; bp < 0.01 compared
with PBS-injection group (n =5 rats and n =5 joints for each group).
RNODN, ribbon-type NF-kB decoy oligodeoxynucleotide; RSODN,
ribbon-type scrambled decoy oligodeoxynucleotide. Results are
means £ SD.

In the pit formation assay of this study, we transferred the
decoy on day 3. We were able to confirm TRAP-positive multi-
nuclear cells on day 3 but the cells were not so large and it
might be difficult to state that these cells were mature osteo-
clasts. It would have been better if we could have incubated
mature osteoclasts on a hydroxyapatite-coated disc, but oste-
oclasts are easily damaged and it is technically difficult to sub-
culture rat mature osteoclasts.

In the previous study, the gene encoding NFATc1, a member
of the NFAT family of transcription factor genes, was found to
be the most strongly induced transcription factor gene after
stimulation by RANKL in osteoclast differentiation. NFATc1
autoamplifies its own gene, possibly by binding to its own pro-
moter [35]. The AP-1 and NF-kB binding sites are present with
the promoter region of the NFATc1 gene [563]. Recently,
Takatsuna and colleagues showed that (-)-DHMEQ, a newly
designed NF-xB inhibitor, inhibited RANKL-induced osteo-
clast differentiation in mouse bone marrow macrophages
through the downregulation of NFATc1 [54]. In the present
study the expression of NFATc1 was inhibited by treatment
with RNODN.

The skeletal complications of RA consist of focal bone ero-
sions and periarticular osteoporosis at sites of active inflam-
mation, and generalized bone loss with reduced bone mass. In
rheumatoid synovium, activated T cells and fibroblasts express
RANKL. TNF-a. and IL-1p are also overproduced in synovium.
TNF-a and IL-1 B, acting in concert with RANKL, can power-
fully promote osteoclast recruitment, activation, and osteolysis
in RA [55]. In the synovium of patients with RA, NF-kB was
present in most macrophages within the lining and sublining
lesions throughout the synovium, including endothelial cells
[656,57]. CIA is an autoimmune model that in many ways
resembles RA. Immunization of genetically susceptible
rodents with type Il collagen leads to the development of
severe polyarticular arthritis mediated by an autoimmune
response. Just as in RA, synovitis and erosions of cartilage and
bone are hallmarks of CIA [568]. In the present study, direct
injection of RNODN in arthritic joints of rats with CIA led to an
amelioration of arthritis and decreased the number of TRAP-

Page 8 of 10

(page number not for citation purposes)

positive cells in the synovium. The strategy of naked RNODN
transfer into the joint implies a potential for future clinical
treatment.

Conclusion

RNODN showed higher resistance to exonuclease and higher
binding activity on NF-kB than did PNODN. Differentiation and
calcium resorption were suppressed by treatment with
RNODN, by preventing NFATc1 expression. Joint destruction
and osteoclast activity were significantly suppressed by intra-
articular injection of RNODN.

These data suggest that RNODNSs inhibit the induction and
activity of osteoclasts and that the direct injection of RNODNs
into the joints might be an effective strategy for the treatment
of arthritis.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

YK performed molecular and animal experiments, measure-
ments and evaluation of the data, and statistical analyses. TT
supervised the study design, the interpretation of data, and the
writing of the manuscript. TN conceived and participated in
the experimental design of the study. RM and HY supervised
the study design and gave valuable advice to YK. All authors
read and approved the final manuscript.

Additional files

The following Additional files are available online:

Additional File 1

A PDF containing a supplementary figure that
demonstrates that there is no activity in the nuclear
extracts leading to time-dependent degradation of DNA.
See http://www.biomedcentral.com/content/
supplementary/ar1980-S1.pdf

Additional File 2

A PDF containing a supplementary figure that examines
the effects of RSODN and RNODN on cell growth.
See http://www.biomedcentral.com/content/
supplementary/ar1980-S2.pdf

Acknowledgements

We wish to thank Tsuyoshi Tajima, Hideaki Sato, and Masafumi Yoshino
for their excellent technical assistance. This study was supported in part
by grants from the Ministry of Education, Culture, Sports, Science, and
Technology of Japan, and the Ministry of Health, Labour and Welfare of
Japan.


http://www.biomedcentral.com/content/supplementary/ar1980-S1.pdf
http://www.biomedcentral.com/content/supplementary/ar1980-S2.pdf

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Teitelbaum SL: Bone resorption by osteoclasts. Science 2000,
289:1504-1508.

Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Goto
M, Mochizuki SI, Tsuda E, Morinaga T, Udagawa N, et al.: A novel
molecular mechanism modulating osteoclast differentiation
and function. Bone 1999, 25:109-113.

Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ:
Modulation of osteoclast differentiation and function by the
new members of the tumor necrosis factor receptor and lig-
and families. Endocr Rev 1999, 20:345-357.

Yao GQ, Sun BH, Hammond EE, Spencer EN, Horowitz MC,
Insogna KL, Weir EC: The cell-surface form of colony-stimulat-
ing factor-1 is regulated by osteotropic agents and supports
formation of multinucleated osteoclast-like cells. J Biol Chem
1998, 273:4119-4128.

Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S:
Expression of osteoclast differentiation factor in rheumatoid
arthritis. Arthritis Rheum 2000, 43:2523-2530.

Kong YY, Yoshida H, Sarosi |, Tan HL, Timms E, Capparellic ,
Morony S, Oliveira-dos-Santos AJ, Van G, ltie A, et al.: OPGL is a
key regulator of osteoclastogenesis, lymphocyte development
and lymph-node organogenesis. Nature 1999, 397:315-323.
Hsu H, Lacey DL, Dunstan CR, Solovyev |, Colombero A, Timms E,
Tan HL, Elliott G, Kelley MJ, Sarosi |, et al.: Tumor necrosis factor
receptor family member RANK mediates osteoclast differenti-
ation and activation induced by osteoprotegerin ligand. Proc
Natl Acad Sci USA 1999, 96:3540-3545.

Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T,
Elliott R, Colombero A, Elliott G, Scully S, et al.: Osteoprotegerin
ligand is a cytokine that regulates osteoclast differentiation
and activation. Cel// 1998, 93:165-176.

Wei S, Teitelbeum SL, Wang MW-H, Ross FP: Receptor activa-
tor of nuclear factor-xB ligand activates nuclear factor-«B in
osteoclast precursors. Endocrinology 2001, 142:1290-1295.
Boyce BF, Xing L, Franzoso G, Siebenlist U: Required and non-
essential functions of nuclear factor-kappa B in bone cells.
Bone 1999, 25:137-139.

Jimi E, Aoki K, Saito H, Acquisto FD, May MJ, Nakamura |, Sudo T,
Kojima T, Okamoto F, Fukushima H, et al.: Selective inhibition of
NF-«B blocks osteoclastogenesis and prevents inflammatory
bone destruction in vivo. Nat Med 2004, 10:617-624.

Bharti AC, Takada Y, Aggarwal BB: Curcumin (diferuloylmeth-
ane) inhibits receptor activator of NF-«B ligand-induced NF-xB
activation in osteoclast precursors and suppresses
osteoclastogenesis. J /mmunol 2004, 172:5940-5947.
Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD,
Leonardi A, Tran T, Boyce BF, Siebenlist U: Requirement for NF-
kB in osteoclast and B-cell development. Genes Dev 1997,
11:3482-3496.

lotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R: Osteopet-
rosis in mice lacking NF-k<B1 and NF-xB2. Nat Med 1997,
3:1285-1289.

Ruocco MG, Maeda S, Park JM, Lawrence T, Hsu LC, Cao Y,
Schett G, Wagner EF, Karin M: IkB kinase (IKK)B but not IKKa,
is a critical mediator of osteoclast survival and is required for
inflammation-induced bone loss. J Exp Med 2005,
201:1677-1687.

Takayanagi H, Oda H, Yamamoto S, Kawaguchi H, Tanaka S,
Nishikawa T, Koshihara Y: A new mechanism of bone destruc-
tion in rheumatoid arthritis: Synovial fibroblasts induce osteo-
clastogenesis. Biochem Biophys Res Commun 1997,
240:279-286.

Takano H, Tomita T, Totosaki-Maeda T, Maeda-Taniyama M,
Tsuboi H, Takeuchi E, Kaneko M, Shi K, Takahi K, Myoui H, et al.:
Comparison of the activities of multinucleated bone-resorbing
giant cells derived from CD14-positive cells in the synovial flu-
ids of rheumatoid arthritis and osteoarthritis patients. Rheu-
matology 2004, 43:435-441.

Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS,
Goldring SR: Identification of cell types responsible for bone
resorption in rheumatoid arthritis and juvenile rheumatoid
arthritis. Am J Pathol 1998, 152:943-951.

Lubberts E, Oppers-Walgreen B, Pettit AR, Bersselaar L, Joosten
L, Goldring SR, Gravallese EM, Berg WB: Increase in expression
of receptor activator of nuclear factor B, at sites of bone ero-

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Available online http://arthritis-research.com/content/8/4/R103

sion correlates with progression of inflammation in evolving
collagen-induced arthritis. Arthritis Rheum 2002,
46:3055-3064.

Pettit AR, Ji H, von Stechow D, Muller R, Goldring SR, Choi Y,
Benoist C, Gravallese EM: TRANCE/RANKL knockout mice are
protected from bone erosion in a serum transfer model of
arthritis. Am J Pathol/ 2001, 159:1689-1699.

Mann MJ, Dzau VJ: Therapeutic application of transcriptional
factor decoy oligonucleotides. J Clin Invest 2000,
106:1071-1075.

Dzau VIJ: Transcription factor decoy.
90:1234-1236.

Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A,
Maeda K, Sawa Y, Kaneda Y, Higaki J, et al.: In vivo transfection
of cis element 'decoy'against nuclear factor-«xB binding site
prevents myocardial infarction. Nat Med 1997, 3:894-899.
Tomita T, Takeuchi E, Tomita N, Morishita R, Kaneko M, Yamamoto
K, Nakase T, Seki H, Kato K, Kaneda Y, et al.: Suppressed sever-
ity of collagen-induced arthritis by in vivo transfection of
nuclear factor-xB decoy oligodeoxynucleotides as a gene
therapy. Arthritis Rheum 1999, 42:2532-2542.

Tomita T, Takano H, Tomita N, Morishita R, Kaneko M, Shi K,
Takahi T, Nakase Y, Kaneda Y, Yoshikawa H, Ochi T: Transcrip-
tion factor decoy for NFxB inhibits cytokine and adhesion mol-
ecule expressions in synovial cells derived from rheumatoid
arthritis. Rheumatology 2000, 39:749-757.

Tomita N, Morishita R, Tomita S, Yamamoto K, Aoki M, Matsushita
H, Hayashi S, Higaki J, Ogihara T: Transcription factor decoy for
nuclear factor-xB inhibits tumor necrosis factor-o-induced
expression of interleukin-6 and intracellular adhesion mole-
cule-1 in endothelial cells. J Hypertens 1998, 16:993-1000.
Lee IK, Ahn JD, Kim HS, Park JY, Lee KU: Advantages of the cir-
cular dumbbell decoy in gene therapy and studies of gene
regulation. Curr Drug Targets 2003, 4:619-623.

Tomita N, Tomita T, Yuyama K, Tougan T, Tajima T, Ogihara T,
Morishita R: Development of novel decoy oligonucleotides:
advantages of circular dumb-bell decoy. Curr Opin Mol Ther
2003, 5:107-112.

Hosoya T, Takeuchi H, Kanesaka Y, Yamakawa H, Miyano-Kuro-
saki N, Takai K, Yamamoto N, Takaku H: Sequence-specific inhi-
bition of a transcription factor by circular dumbbell DNA
oligonucleotides. FEBS Lett 1999, 461:136-140.

Moon 1J, Choi K, Choi YK, Kim JE, Lee Y, Schreiber AD, Park JG:
Potent growth inhibition of leukemic cells by novel ribbon-type
antisense oligonucleotides to c-myb1. J Bio/ Chem 2000,
275:4647-4653.

Trentham D, Townes A, Kang A: Autoimmunity to type 2 colla-
gen: an experimental model of arthritis. J Exp Med 1977,
146:857-868.

Shiozawa S, Shimizu K, Tanaka K, Hino K: Studies on the contri-
bution of c-fos/AP-1 to arthritic joint destruction. J Clin Invest
1997,99:1210-1216.

Rumney SIV, Kool ET: DNA recognition by hybrid oligother-oli-
godeoxynucleotide macrocycles. Angew Chem Int Ed Engl
1992, 31:1617-1619.

Gamper HB, Reed MW, Cox T, Virosco JS, Adams AD, Gall AA,
Scholler JK, Meyer RB Jr: Facile preparation of nuclease resist-
ant 3' modified oligodeoxynucleotides. Nucleic Acids Res
1993, 21:145-150.

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H,
Saiura A, Isobe M, Yokochi T, Inoue J, et al.: Induction and activa-
tion of the transcription factor NFATc1(NFAT2) integrate
RANKL signaling in terminal differentiation of osteoclasts. Dev
Cell 2002, 3:889-901.

Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto
S: Rel/NF-xB/IxB family: intimate tales of association and
dissociation. Genes Dev 1995, 9:2723-2735.

Karin M, Delhase M: The IkB kinase (IKK) and NF-«B: key ele-
ments of proinflammatory signaling. /mmunology 2000,
12:85-98.

Jimi E, Nakamura |, lkebe T, Akiyama S, Takahashi N, Suda T: Acti-
vation of NF-kB is involved in the survival of osteoclasts pro-
moted by interleukin-1. J Bio/l Chem 1998, 273:8799-8805.
Morishita R, Tomita N, Kaneda Y, Ogihara T: Molecular therapy to
inhibit NFkB activation by transcription factor decoy
oligonucleotides. Curr Opin Pharmacol 2004, 4:139-146.

Circ Res 2002,

Page 9 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10968780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10423033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10423033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10423033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11083276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11083276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11083276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9950424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9950424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9950424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10097072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10097072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10097072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9568710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9568710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9568710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10423039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10423039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15156202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9407039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9359707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15897281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15897281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15897281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9388467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9388467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9388467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14762224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14762224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14762224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9546355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9546355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9546355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12428250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12428250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12428250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11067859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11067859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9256281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9256281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10615998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10615998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10908694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10908694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10908694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14577652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14577652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14577652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12772498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12772498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10671493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10671493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10671493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=894190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=894190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9077528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9077528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8382790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8382790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12479813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12479813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12479813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7590248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7590248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9535858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9535858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15063357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15063357

Arthritis Research & Therapy Vol 8 No 4 Kunugiza et al.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Ahn JD, Morishita R, Kaneda Y, Lee SJ, Kwon KY, Choi SY, Lee
KU, Park JY, Moon lJ, Park JG, et al.: Inhibitory effects of novel
AP-1 decoy oligodeoxynucleotides on vascular smooth mus-
cle cell proliferation in vitro and neointimal formation in vivo.
Circ Res 2002, 90:1325-1332.

Ahn JD, Morishita R, Kaneda Y, Kim HS, Chang Y-C, Lee K-U, Kim
YH, Lee IK: Novel E2F decoy oligodeoxynucleotides inhibit in
vitro vascular smooth muscle cell proliferation and in vivo
neointimal hyperplasia. Gene Ther 2002, 9:1682-1692.

Park KK, Ahn JD, Lee IK, Magae J, Heintz NH, Kwak JY, Lee YC,
Cho YS, Kim HC, Chae YM, et al.: Inhibitory effects of novel E2F
decoy oligodeoxynucleotides on mesangial cell proliferation
by coexpression of E2F/DP. Biochem Biophys Res Commun
2003, 308:689-697.

Brown DA, Kang SH, Gryaznov SM, Dedionisio L, Heidenreich O,
Sullivan S, Xu X, Nerenberg MI: Effect of phosphorothionate
modification of oligodeoxynucleotides on specific protein
binding. J Biol Chem 1994, 269:26801-26805.

Khaled Z, Benimetskaya L, Zeltser R, Khan T, Sharma HW, Naray-
anan R, Stein CA: Multiple mechanisms may contribute to the
cellular anti-adhesive effects of phosphorothionate
oligodeoxynucleotides. Nucleic Acids Res 1996, 24:737-745.
Chu BCF, Orgel LE: The stability of different forms of double-
stranded decoy DNA in serum and nuclear extracts. Nucleic
Acids Res 1992, 20:5857-5858.

Chu BCF, Orgel LE: Binding of hairpin and dumbbell DNA to
transcription factors. Nucleic Acids Res 1991, 19:6958.
Penolazzi L, Lambertini E, Borgatti M, Piva R, Cozzani M, Giovan-
nini I, Naccari R, Siciliani G, Gambari R: Decoy oligodeoxynucle-
otides targeting NF-kB transcriptional factors: induction of
apoptosis in human primary osteoclasts. Biochem
Pharmacology 2003, 66:1189-1198.

Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y,
Yamamoto A, Pando MP, Asano T, Verma IM, Oda H, et al.: Recip-
rocal role of ERK and NF-xB pathways in survival and activa-
tion of osteoclasts. J Cell Biol 2000, 148:333-342.

Ishikawa T, Kamiyama M, Tani-ishii N, Suzuki H, Ichikawa Y,
Hamaguchi Y, Momiyama N, Shimada H: Inhibition of osteoclast
differentiation and bone resorption by cathepsin K antisense
oligonucleotides. Mol Carcinog 2001, 32:84-91.

Yakubov LA, Deeva EA, Zarytova VF, Ivanova EM, Ryte AS, Yurch-
enko LV, Vlassov VV: Mechanism of oligonucleotide uptake by
cells: involvement of specific receptors? Proc Natl Acad Sci
USA 1989, 86:6454-6458.

Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe
C, Cohen JS, Neckers LM: Characterization of oligonucleotide
transport into living cells. Proc Natl Acad Sci USA 1989,
86:3474-3478.

Wu-Pong S: Alternative interpretations of the oligonucleotide
transport literature: insights from nature. Adv Drug Deliv Rev
2000, 44:59-70.

Zhou B, Cron RQ: Regulation of the murine Nfatc1 gene by
NFATc2. J Biol Chem 2002, 277:10704-10711.

Takatsuna H, Asagiri M, Kubota T, Oka K, Osada T, Sugiyama C,
Saito H, Aoki K, Ohya K, Takayanagi H, et al: Inhibition of
RANKL-induced osteoclastogenesis by (-)-DHMEQ, a novel
NF-«B inhibitor, through downregulation of NFATc1. J Bone
Miner Res 2005, 20:653-662.

Romas E, Gillespie MT, Martin TJ: Involvement of receptor acti-
vator of NF-xB ligand and tumor necrosis factor-a in bone
destruction in rheumatoid arthritis. Bone 2002, 30:340-346.
Marok R, Winyard PG, Coumbe A, Kus ML, Gaffney K, Blades S,
Mapp PI, Morris CJ, Blake DR, Kaltscmidt C, et al.: Activation of
the transcription factor nuclear factor-kB in human inflamed
synovial tissue. Arthritis Rheum 1996, 39:583-591.

Handel ML, McMorrow LB, Gravallese EM: Nuclear factor-«B in
rheumatoid synovium. Arthritis Rheum 1995, 38:1762-1770.
Myers LK, Rosloniec EF, Cremer MA, Kang AH: Collagen-
induced arthritis, an animal model of autoimmunity. Life Sci
1997,61:1861-1878.

Page 10 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12457282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12457282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12927774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12927774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12927774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7929417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7929417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7929417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1454556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1454556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1762929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1762929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10648566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10648566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11746820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11746820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11746820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2549537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2549537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2726730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2726730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11035198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11035198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15765185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11856640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11856640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8630106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8630106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8849348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8849348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9364191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9364191

	Abstract
	Introduction
	Materials and methods
	Materials
	Construction of ribbon-type decoy ODN and phosphorothionated double-stranded decoy ODN
	Resistance to exonuclease
	Estimation of binding activity
	Osteoclast differentiation assay
	Pit formation assay
	Immunofluorescence staining
	Induction of arthritis by collagen in rats
	In vivo transfer of fluorescein isothiocyanate (FITC)- labeled RNODN
	Experimental protocol
	Statistical analysis

	Results
	Stability of RNODN
	Binding activity of RNODNs on NF-kB
	RNODN inhibits RANKL-induced osteoclastogenesis
	RNODN inhibits RANKL-induced pit formation
	Downregulation of NFATc1 by RNODN
	In vivo transfer of FITC-labeled RNODN into joint synovium
	Inhibitory effects of intra-articular injection of RNODN on joint destruction and osteoclast activity in rats with CIA

	Discussion
	Table 1 

	Conclusion
	Competing interests
	Authors' contributions
	Additional files
	Acknowledgements
	References

