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Abstract

Chronic pain is associated with N-methyl-D-aspartate (NMDA)
receptor activation and downstream production of nitric oxide,
which has a pivotal role in multisynaptic local circuit nociceptive
processing in the spinal cord. The formation of nitric oxide is
catalyzed by three major nitric oxide synthase (NOS) isoforms
(neuronal, nNOS; inducible, iNOS; endothelial, eNOS), which
are increased in the spinal cord of rodents subjected to some
tonic and chronic forms of experimental pain. Despite the
important role of NOS in spinal cord nociceptive transmission,
there have been no studies exploring the effect of NMDA
receptor blockade on NOS expression in the dorsal horn during
chronic pain. Furthermore, NOS isoforms have not been fully
characterized in the dorsal horn of animals subjected to arthritic
pain. The aim of this work was therefore to study the expression
of nNOS, iNOS and eNOS in the dorsal horns of monoarthritic
rats, and the modifications in NOS expression induced by
pharmacological blockade of spinal cord NMDA receptors.
Monoarthritis was produced by intra-articular injection of
complete Freund's adjuvant into the right tibio-tarsal joint. At
week 4, monoarthritic rats were given either the competitive

NMDA antagonist (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-
phosphonic acid (CPP) or the uncompetitive NMDA antagonist
ketamine. After 6 and 24 hours, animals were killed and
posterior quadrants of the lumbar spinal cord were dissected.
Sample tissues were homogenized and subjected to
immunoblotting with anti-nNOS, anti-iNOS or anti-eNOS
monoclonal antibodies. The nNOS isoform, but not the iNOS
and eNOS isoforms, were detected in the dorsal horns of
control rats. Monoarthritis increased the expression of nNOS,
iNOS and eNOS in the dorsal horns ipsilateral and contralateral
to the inflamed hindpaw. Intrathecal administration of CPP and
ketamine reduced nNOS expression in monoarthritic rats but
increased the expression of iNOS and eNOS. Results suggest
that blockade of spinal cord NMDA receptors produces
complex regulatory changes in the expression of NOS isoforms
in monoarthritic rats that may be relevant for nitridergic neuronal/
glial mechanisms involved in the pathophysiology of
monoarthritis and in the pharmacological response to drugs
interacting with NMDA receptors.

Introduction
Hyperalgesia, one of the main features of chronic pain, devel-
ops closely associated with increased glutamatergic neuro-
transmission in the dorsal horn of the spinal cord, especially to
N-methyl-D-aspartate (NMDA) receptor activation. Accord-

ingly, a variety of NMDA receptor antagonists, acting on differ-
ent sites of the receptor, have demonstrated antinociceptive
efficacy on chronic experimental inflammatory and neuropathic
pain syndromes [1-5]. NMDA receptor activation is followed
by downstream modifications of intracellular signaling,
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CFA = complete Freund's adjuvant; CPP = (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid; eNOS = endothelial nitric oxide synthase; 
iNOS = inducible nitric oxide synthase; L-NAME = Nωω-nitro-L-arginine methyl ester; NMDA = N-methyl-D-aspartate; NOS = nitric oxide synthase; 
nNOS = neuronal nitric oxide synthase.
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including activation of nitric oxide synthase (NOS), which cat-
alyzes the formation of nitric oxide from arginine. Nitric oxide is
a gaseous mediator that seems to have a pivotal role in multi-
synaptic local circuit nociceptive processing in the spinal cord.
It is generated by three major NOS isoforms: nNOS (neuronal
NOS) and eNOS (endothelial NOS), which are calcium-
dependent constitutive enzymes, and iNOS (inducible NOS),
which a calcium-independent inducible isoform [6-8].

Intrathecally administered NMDA induces short-term hyperal-
gesia, whereas systemic and intrathecal administration of the
non-selective NOS inhibitor Nω-nitro-L-arginine methyl ester
(L-NAME) blocks NMDA-induced hyperalgesia, suggesting
that the generation of nitric oxide contributes to this response
[9]. In addition, intrathecal L-NAME prevents thermal pain
hypersensitivity in rats after carrageenan injection [10] and sci-
atic nerve constriction-induced injury [11], as well as thermal
and mechanical hypersensitivity induced in mice by the intra-
plantar administration of complete Freund's adjuvant (CFA)
[12]. Besides, increased expression of one or more of the
three NOS isoforms has been shown in the spinal cord of
rodents after carrageenan injection into a hindpaw [13], intra-
plantar injection of CFA [12] and formalin [14], and intrader-
mal injection of capsaicin [15]. However, in these models of
tonic experimental pain, only fast and short-term hyperalgesia
and allodynia are tested. With regard to changes in NOS
expression in long-term experimental models of chronic pain,
the available data refer only to the spinal nerve ligation model
in rats [16,17], whereas expression of NOS in the spinal cord
in rat models of arthritic pain was only partly studied [18]. It
has been shown that monoarthritic pain is highly sensitive to
NMDA antagonists [19] and to L-NAME [20], suggesting an
involvement of the nitric oxide/cyclic GMP cascade in down-
stream NOS activation in the spinal cord. However, there have
been no studies exploring the effect of NMDA receptor block-
ade on NOS expression in the dorsal horn. The aim of this
work was therefore to study the expression of nNOS, iNOS
and eNOS in the dorsal horns of monoarthritic rats, and to
explore how the expression of NOS isoforms in this model of
chronic pain is modified by pharmacological blockade of spi-
nal cord NMDA receptors with competitive and uncompetitive
antagonists.

Materials and methods
Animals
Investigations were performed on 26 young adult male
Sprague-Dawley rats weighing 300 to 350 g. The animals
were housed in a room with a 12-hour light/dark cycle with
food and water ad libitum. All experimental protocols and ani-
mal management were in accordance with the Ethical Guide-
lines for Investigations of Experimental Pain in Conscious
Animals [21] and were approved by the Committee for the Eth-
ical Use of Experimental Animals, Faculty of Medicine, Univer-
sity of Chile.

Monoarthritis
Monoarthritis was induced by intra-articular injection (50 μl) of
CFA (60 mg of killed Mycobacterium butyricum suspended in
a mixture of 6 ml of paraffin oil, 4 ml of 0.9% NaCl and 1 ml of
Tween 80) into the right tibio-tarsal joint, as described by But-
ler and colleagues [22]. Control rats were injected intra-artic-
ularly with the vehicle used to suspend mycobacteria.
Monoarthritis and control rats were used 4 weeks after the
administration of adjuvant or vehicle.

Protocols
The animals were divided into four groups receiving intrathe-
cally, by the percutaneous route [23], 10 μl of saline solution
or drug, as follows: (1) control group (n = 4), normal rats
receiving saline; (2) monoarthritic/saline group (n = 6),
monoarthritic rats receiving saline; (3) monoarthritic/CPP
group (n = 8), monoarthritic rats receiving 100 μg of the com-
petitive NMDA receptor antagonist (±)-3-(2-carboxypiperazin-
4-yl)-propyl-1-phosphonic acid (CPP); (4) monoarthritic/keta-
mine group (n = 8), monoarthritic rats receiving 100 μg of the
uncompetitive NMDA receptor antagonist ketamine. Drugs
and saline were administered three times every 2 hours.

At 6 and 24 hours after the first administration of drug or
saline, animals were deeply anesthetized with 60 mg/kg
sodium pentobarbital and killed by decapitation. The lumbar
spinal cord was then removed (L2–L4 vertebrae level), and the
right and left posterior quadrants containing the I–VI laminae
were dissected. Spinal cord dissection was made under a × 5
magnifying glass in a Petri dish containing saline solution at
4°C. Each spinal segment was kept in an Eppendorf tube and
stored at -20°C.

Immunoblotting
A first screening for the presence of the three NOS isoforms
in the dorsal horn of the spinal cord of normal and monoar-
thritic rats was performed by Western blot assay, which per-
mitted the determination of the size and the fractionation
degree of each NOS isoform as well as the sensitivity and spe-
cificity of the monoclonal antibodies used (Figure 1). To eval-
uate the specificity of antibodies, the positive and negative
controls provided by the manufacturer were used. The positive
controls for nNOS, iNOS and eNOS were, respectively, rat
pituitary homogenate, macrophages cultured in a medium with
interferon-γ and lipopolysaccharide, and human vascular
endothelium (Transduction Laboratories, Lexington, KY, USA).
The positive control for anti-eNOS antibody was used as a
negative control for both nNOS and iNOS, and the positive
control for anti-iNOS antibody was used as a negative control
for eNOS. Sample tissues were homogenized in four volumes
of cold Tris-HCl buffer (50 mM Tris-HCl, 0.1 mM EDTA, 12
mM 2-mercaptoethanol, 2 μM leupeptin, 1 μM pepstatin and
1 μM phenylmethylsulfonyl fluoride) and centrifuged at 3,000g
for 20 minutes at 4°C. In the Western blot assay, 5 μg of total
protein from each sample, determined by the method of Lowry
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[24], were separated by electrophoresis in 8% polyacrylamide
gels (SDS-PAGE) and thereafter transferred to poly(vinylidene
difluoride) membranes (Immobilon®; Millipore, Marlborough,
MA, USA) by means of electroblotting with Mini Protean Cell
III equipment (Bio-Rad Laboratories, Richmond, CA, USA).
Afterwards the membranes were incubated at 4°C in blocking
solution made of 6% dried non-fat milk in TBS-T buffer (20 mM
Tris-HCl, 137 mM NaCl and 0.05% Tween 20, pH 7.6). The
membranes were then incubated for 2 hours with either anti-
nNOS, anti-iNOS or anti-eNOS monoclonal antibody, diluted
1:4,000, 1:4,000 and 1:1,000 respectively, dissolved in 6%
dried non-fat milk in TBS-T buffer. After being rinsed with TBS-
T buffer, the membranes were incubated overnight with horse-
radish peroxidase-conjugated secondary antibody (Pierce
Biotechnology Inc., Rockford, IL, USA), diluted 1:10,000 in
6% dried non-fat milk in TBS-T buffer. A positive reaction was
identified with enhanced chemiluminescence (SuperSignal
West Pico Chemiluminescent Substrate; Pierce Biotechnol-
ogy Inc.). Membranes were exposed to X-ray film (CL-Xposure
film; Pierce Biotechnology Inc.) and the films were then
scanned to determine the optical density of each band with
the program Uni-Scan (Lab Systems, Espoo, Finland). The
specificity of the second antibody was also evaluated by incu-
bating the tissue samples with the second antibody alone,
thus permitting the detection of possible unspecific interac-
tions between the second antibody with some proteins of the
sample.

Because of the high specificity of the antibodies employed
and the absence of unspecific interactions of the second anti-
body with tissue samples (Figure 1), it was possible to perform
all determinations of NOS isoforms by means of an immunodot
blot. Proteins (5 μg) from the supernatant homogenates of the
right and left dorsal horns were added directly to poly(vinyli-
dene difluoride) membranes by means of a dot-blot device
(Bio-Rad Laboratories). Thereafter, the membranes were incu-

bated with primary and secondary antibodies, with the same
procedures as those described above for Western blotting.
Membranes were exposed to X-ray film and the films were
scanned to determine the optical density of each dot. Densit-
ometric measurements in every experiment were standardized
by dividing the results for a unique internal control for each iso-
form of NOS, which were systematically employed in every
experiment.

Statistical analysis
All data are presented as means ± SEM. The statistical signif-
icance of differences between groups was determined with
the Kruskal–Wallis test (InStat 3.00; GraphPad Software Inc.,
San Diego, CA, USA). Differences were considered signifi-
cant at p < 0.05.

Results
NOS expression in control and monoarthritic rats
The nNOS isoform was detected bilaterally in dorsal horns of
control rats. In monoarthritic rats nNOS expression was
increased in the dorsal horns ipsilateral (right) and contralat-
eral (left) to the inflamed hindpaw, in comparison with those of
control rats. In the ipsilateral dorsal horn nNOS expression
increased by 216% (Figure 2a), and in the contralateral dorsal
horn the increase in nNOS expression was 194%, the differ-
ence between the sides being not statistically significant (Fig-
ure 2b). Then, despite the unilateral condition of the arthritic
disease induced in the present experiments, increments in
nNOS expression were similar in the ipsilateral and contralat-
eral dorsal horns (Figure 2a, b).

Figure 2 also shows that the iNOS and eNOS isoforms could
not be detected in dorsal horns from normal control rats. How-
ever, these two NOS isoforms were clearly expressed in the
spinal cord dorsal horn of monoarthritic rats, presenting a bilat-
eral expression pattern. The expression of iNOS and eNOS in

Figure 1

Western blotting of NOS isoforms in lumbar dorsal horn of normal and monoarthritic ratsWestern blotting of NOS isoforms in lumbar dorsal horn of normal and monoarthritic rats. Left panel, neuronal nitric oxide synthase (nNOS); middle 
panel, inducible nitric oxide synthase (iNOS); right panel, endothelial nitric oxide synthase (eNOS). Lane 4, lumbar dorsal horn of normal rat; lane 5, 
lumbar dorsal horn of monoarthritic rat. The positive and the negative controls are shown in lanes 2 and 3, respectively (for a description of the pos-
itive and negative controls see the Materials and methods section). The standards for molecular mass were run in lane 1, as shown by the adjacent 
marks. Arrows indicate the position of bands detected by the monoclonal antibodies at the expected sizes for nNOS (155 kDa), eNOS (140 kDa) 
and iNOS (130 kDa).
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dorsal horns of monoarthritic rats was less than that of nNOS
(Figure 2a, b).

Effect of NMDA antagonists in NOS expression in 
monoarthritic rats
Intrathecal administration of CPP and ketamine decreased
nNOS expression in monoarthritic rats. In the ipsilateral (right)
dorsal horn nNOS expression decreased by 73% and 77% at
6 and 24 hours after the administration of CPP, respectively,
whereas in the contralateral (left) dorsal horn nNOS
decreased by 73% and 75% during the same periods (Figure
3a). In the right dorsal horn nNOS decreased by 57% and
59% at 6 and 24 hours after intrathecal administration of ket-
amine, respectively, whereas in the left dorsal horn nNOS
decreased by 53% and 39% during the same periods (Figure
3b). Intrathecal administration of saline produced no signifi-
cant effects.

Intrathecal administration of CPP and ketamine increased the
expression of the inducible iNOS isoform in monoarthritic rats,
in comparison with monoarthritic controls receiving intrathecal
saline. In the ipsilateral (right) dorsal horn iNOS expression
increased by 155% and 154% at 6 and 24 hours after the
administration of CPP, respectively, whereas in the contralat-
eral (left) dorsal horn iNOS increased by 244% and 231%
during the same periods (Figure 4a). A similar increasing effect
in iNOS expression was also observed after the administration
of ketamine; these increases were 102% and 31% in the ipsi-
lateral dorsal horn and 146% and 170% in the contralateral
dorsal horn at 6 and 24 hours, respectively, after drug admin-
istration (Figure 4b).

Intrathecal administration of CPP and ketamine also increased
the expression of the constitutive eNOS isoform in monoar-
thritic rats in comparison with monoarthritic controls receiving
intrathecal saline. Thus, intrathecal CPP increased ipsilateral
(right dorsal horn) eNOS expression by 74% and 66% at 6
and 24 hours, respectively, after drug administration, whereas
contralateral (left dorsal horn) eNOS expression increased by
183% and 144% during the same periods (Figure 5a). With
regard to ketamine, in the ipsilateral dorsal horn eNOS
increased by 48 and 93% at 6 and 24 hours, respectively,
after intrathecal administration of ketamine, whereas in the
contralateral dorsal horn eNOS increased by 161% and 56%
during the same periods (Figure 5b).

Discussion
Results showed that the nNOS isoform was expressed in the
lumbar dorsal horn of intact control rats, whereas the iNOS
and eNOS isoforms could not be detected in the same spinal
cord regions of these animals. This is in accordance with ear-
lier studies showing moderate expression of nNOS in the spi-
nal cord of intact rats [25]. In addition, the present results
showed that the three major NOS isoforms were expressed
bilaterally in the dorsal horns of monoarthritic rats, which is in
agreement with previous observations that injection of incom-
plete Freund's adjuvant into the knee joint cavity increased the
expression of the nNOS and iNOS isoforms in the lumbar

Figure 2

Expression of nitric oxide synthase (NOS) isoforms in dorsal horns of control and monoarthritic ratsExpression of nitric oxide synthase (NOS) isoforms in dorsal horns of 
control and monoarthritic rats. (a) Right dorsal horn; (b) left dorsal 
horn. Monoarthritis was induced by intra-articular injection of complete 
Freund's adjuvant (CFA) into the right tibio-tarsal joint; control rats 
received the vehicle of CFA. The expression of NOS isoforms was 
determined 4 weeks later. Bar graphs show the expression of the neu-
ronal (nNOS), inducible (iNOS) and endothelial (eNOS) isoforms in 
standardized units (means ± SEM); below each bar graph a represent-
ative example of immunodot blotting is shown. Only nNOS was 
expressed in control rats. In monoarthritic rats the expression of the 
three NOS isoforms was found to be increased bilaterally (*p < 0.05 
compared with control; Kruskal–Wallis test).
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enlargement of rats [18]. Increased expression of nNOS and/
or iNOS has also been shown in the lumbar spinal cord of rats
after carrageenan injection into a hindpaw [12], intraplantar
administration of formalin [14,26] or CFA [12], and intradermal
injection of capsaicin [15]; large increases in the expression of
nNOS and iNOS have been observed in dorsal horns taken
from L4-L6 spinal cord segments of rats subjected to ligation
of the sciatic nerve [16,17].

The differences in NOS expression levels found in these stud-
ies could be the result of the different procedures used to
induce persistent pain (namely long-lasting chronic pain after
sciatic nerve ligation and intra-articular administration of Fre-
und's adjuvant, versus tonic pain after administration of carra-
geenan, formalin or capsaicin), the different time course of the
pain induced, and/or the different times within the hyperalge-
sic process at which NOS determinations were made, but they
could also be the result of differential glial activation in the spi-
nal cord. In fact, a role of spinal glia has recently been

Figure 3

Expression of nNOS in the right and left dorsal horns of monoarthritic ratsExpression of nNOS in the right and left dorsal horns of monoarthritic 
rats. Neuronal nitric oxide synthase (nNOS) expression was measured 
6 and 24 hours after intrathecal administration of (±)-3-(2-carboxypiper-
azin-4-yl)-propyl-1-phosphonic acid (CPP) (a) and ketamine (b). Bar 
graphs show nNOS expression in standardized units (means ± SEM); 
below each bar graph a representative example of immunodot blotting 
is shown. Both CPP and ketamine decreased nNOS expression com-
pared with saline-injected monoarthritic controls (*P < 0.05 compared 
with control; Kruskal–Wallis test).

Figure 4

Expression of iNOS in the right and left dorsal horns of monoarthritic ratsExpression of iNOS in the right and left dorsal horns of monoarthritic 
rats. Inducible nitric oxide synthase (iNOS) expression was measured 6 
and 24 hours after intrathecal administration of (±)-3-(2-carboxypiper-
azin-4-yl)-propyl-1-phosphonic acid (CPP) (a) and ketamine (b). Bar 
graphs show iNOS expression in standardized units (means ± SEM); 
below each bar graph a representative example of immunodot blotting 
is shown. Both CPP and ketamine increased iNOS expression com-
pared with saline-injected monoarthritic controls (*P < 0.05 compared 
with control; Kruskal–Wallis test).
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described for the initiation and early maintenance of
inflammatory pain facilitation in monoarthritic rats [27]. The
fact that levels of eNOS in the spine have been shown to
increase in astrocytes but not in neurons after the injection of
carrageenan [28] suggests the participation of spinal cord glia
in the increases in eNOS reported here. In this regard, the reg-
ulation of only the genes encoding iNOS in glia has been well
described [29], but more recently reverse transcriptase-medi-
ated polymerase chain reaction and Western blot analyses
have revealed that mRNAs encoding the constitutive nNOS

and eNOS as well as the corresponding proteins were
expressed in human astrocytes [30], thus opening the possi-
bility that glial activation could account, at least in part, for the
observed increases in expression of the three NOS isoforms
in the dorsal horn of monoarthritic rats. Further investigation
will be required to determine to what extent increases in NOS
isoforms in dorsal lumbar spinal cord are dependent on neuro-
nal and/or glial function.

Although in the present experiments the inflammation was
induced on the right hind limb only, the changes in expression
of NOS isoforms were found in the dorsal lumbar horn of both
sides, suggesting a functional role for the contralateral inner-
vation, at least during conditions of arthritic pain. In this
respect it has been recognized that neurons in the spinal cord
receive inputs from the contralateral side that, under normal
conditions, are ineffective in generating an active response.
However, there exist studies showing that on iontophoretic
administration of NMDA or strychnine on one dorsal horn, the
neurons of the opposite dorsal horn increased their excitability,
thereby indicating that the contralateral input participates in
the circuit dynamics of spinal nociceptive transmission [31].
This makes possible a functional role for such crossed con-
nections in neuronal sensitization after unilateral peripheral
injury. Support for this hypothesis can be found in the study by
Ondarza and colleagues [32] showing a bilateral massive
increase in calcitonin gene-related peptide staining (a marker
for nociceptive endings) colocalized with GAP-43 (a marker
for neurite sprouting) in the dorsal horn of rats subjected to
unilateral spinal cord injury, indicating that mechanisms partic-
ipating in the reorganization of nociceptive neuronal connec-
tions in dorsal horn circuits may be bilaterally activated in spite
of the unilateral condition of the injury. An alternative explana-
tion for the bilateral expression of NOS isoforms in monoar-
thritic rats could be that the process of disease spreads to the
contralateral side, thereby stimulating the upregulation of cer-
tain molecules (namely NOS) in the contralateral dorsal horn.
However, this mechanism no longer seems sustainable
because in the monoarthritic model used here the contralateral
hindpaw did not show gross inflammatory alterations [22].

The administration of either NMDA antagonist, CPP or keta-
mine, produced similar changes in NOS expression in the dor-
sal horns of monoarthritic rats; that is, a decrease in nNOS but
increases in iNOS and eNOS. In this regard, it is tempting to
speculate that the decrease in nNOS expression induced by
the intrathecal administration of CPP or ketamine could be
related to the depressant action of these drugs on the activity
of pain-transmitting dorsal horn neurons, but there are no con-
clusive data on this matter. For example, ketamine depresses
the expression of c-Fos protein (an index of neuronal
activation) in various brain areas [33], but its effect on c-Fos
expression in dorsal horn cells is still unexplored. In contrast,
the intrathecal injection of NMDA blockers, such as CPP and
ketamine, in rats exerts a rapid (a few minutes) but brief (about

Figure 5

Expression of eNOS in the right and left dorsal horns of monoarthritic ratsExpression of eNOS in the right and left dorsal horns of monoarthritic 
rats. Endothelial nitric oxide synthase (eNOS) expression was meas-
ured 6 and 24 hours after intrathecal administration of (±)-3-(2-carbox-
ypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) (a) and ketamine (b). 
Bar graphs show eNOS expression in standardized units (means ± 
SEM); below each bar graph a representative example of immunodot 
blotting is shown. Both CPP and ketamine increased eNOS expression 
compared with saline-injected monoarthritic controls (*P < 0.05 com-
pared with control; Kruskal–Wallis test).
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1 hour) antinociceptive effect [34-38], whereas in the present
study the action of these drugs on NOS expression persisted
for more than 24 hours, thus indicating that changes in NOS
expression resulted from genomically mediated mechanisms
occurring downstream of NMDA receptor blockade, an effect
that clearly outlasts the antinociceptive action of the drugs.
The fact that blockade of spinal NMDA receptors produced a
substantial decrease in nNOS only 6 hours after intrathecal
injection of the NMDA antagonists reveals an active and fast
turnover of this constitutive enzyme in dorsal horn cells. Impor-
tantly, the present results indicate that the decrease in dorsal
horn nNOS after NMDA receptor blockade was accompanied
by simultaneous increases in iNOS and eNOS, suggesting
compensatory interactions in the expression of the different
NOS isoforms.

With regard to iNOS, it has been pointed out that nNOS inhi-
bition could activate the nuclear factor NF-κB, which may lead
to the induction of iNOS [39,40] through transcriptional acti-
vation of the genes encoding iNOS [41]. Conversely, iNOS
knockout mice showed increased expression of nNOS in the
lumbar enlargement in comparison with wild-type mice 24
hours after challenge with carrageenan [13]. With regard to
eNOS, it has been shown that endothelial NOS expression in
the spinal cord of nNOS knockout mice was upregulated com-
pared with that in wild-type mice [28]. The apparent compen-
sation for the decrease in nNOS by rapid increases in iNOS
and eNOS that we observed after administering CPP or keta-
mine is expected to have a functional meaning because all
NOS isoforms are involved in producing the pronociceptive
mediator nitric oxide, which may be relevant to prolonged
treatment of chronic pain conditions, such as arthritic pain,
with drugs that block the NMDA receptor.

Taken together, the present results suggest that blockade of
spinal cord NMDA receptors by competitive and uncompeti-
tive antagonists produces complex regulatory, genomically
mediated, rapid (less than 6 hours) but long-lasting (more than
24 hours) changes in the expression of NOS isoforms in
monoarthritic rats that may have some relevance for nitridergic
neuronal/glial mechanisms involved in the pathophysiology of
monoarthritis and in the pharmacological response to drugs
interacting with NMDA receptor-dependent transduction path-
ways. In fact, it has been reported that L-NAME dose-depend-
ently inhibits wind-up activity in the spinal cord of monoarthritic
rats but not in normal controls [20], suggesting that NOS-
dependent nitridergic mechanisms have a non-significant role
in acute pain, whereas it may be essential in chronic pain
processing.

Several studies have sought to clarify the contribution of sev-
eral neural components to joint injury, rather than to determine
the effect of pharmacological blockade of specific NMDA
receptors in rats with adjuvant-induced arthritis. For instance,
the pioneer work of Levine and colleagues [42] pointed out

that no one class of nerve fiber is wholly responsible for the
neurogenic component of inflammation in experimental arthri-
tis but that large-diameter and small-diameter afferents, sym-
pathetic efferents, and central nervous system circuits that
modulate those fiber systems all influence the severity of joint
injury in arthritic rats. However, no further studies establishing
a relationship between lesion of specific neural components
(namely dorsal rhizotomy) and changes in expression of NOS
in the dorsal horn have been done. In addition, no previous
pharmacological studies exploring the modifications of NOS
expression in the lumbar spinal cord of arthritic animals had
been performed with NMDA antagonists, even though
pharmacological modulation of NOS proteins may be relevant
for the successful treatment of long-lasting painful conditions,
such as arthritic pain. Although the present study provides
new evidence on this subject, several questions remain unan-
swered, such as the functional significance of decreased
nNOS together with increased iNOS/eNOS after NMDA
receptor blockade in spinal cord of monoarthritic rats,
because no studies have examined whether nNOS loss and its
possibly associated antinociceptive effect could be function-
ally compensated for by increases in iNOS and/or eNOS.

Conclusion
CFA-induced monoarthritis resulted in increased expression
of nNOS, eNOS and iNOS in the dorsal horns ipsilateral and
contralateral to the inflamed hindpaw. Intrathecal administra-
tion of the NMDA receptor antagonists CPP and ketamine rap-
idly decreased nNOS expression in the spinal cord of
monoarthritic rats and increased the expression of eNOS and
iNOS. Results suggest that blockade of spinal cord NMDA
receptors produces complex regulatory, genomically medi-
ated, rapid but long-lasting changes in the expression of NOS
isoforms in monoarthritic rats that may be relevant for nitrider-
gic neuronal/glial mechanisms involved in the pathophysiology
of monoarthritis and in the pharmacological response to drugs
interacting with NMDA receptor-dependent transduction
pathways.
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