Review

Available online http://arthritis-research.com/content/10/5/225

Immune regulation of bone loss by Th17 cells

lannis E Adamopoulos and Edward P Bowman

Department of Inmunology, Schering Plough Biopharma, 901 California Avenue, Palo Alto, CA 94304, USA

Corresponding author: lannis E Adamopoulos, iannis.adamopoulos@spcorp.com

Published: 17 October 2008
This article is online at http://arthritis-research.com/content/10/5/225
© 2008 BioMed Central Ltd

Abstract

A significant macrophage and T-cell infiltrate commonly occurs in
inflammatory joint conditions such as rheumatoid arthritis that have
significant bone destruction. Cytokines produced by activated
macrophages and T cells are implicated in arthritis pathogenesis
and are involved in osteoclast-mediated bone resorption. The
scope of the present review is to analyze current knowledge and to
provide a better understanding of how macrophage-derived factors
promote the differentiation of a novel T-helper subset (Th17) that
promotes osteoclast formation and activation.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease
driven by immune dysregulation. The cause remains unknown,
but environmental and genetic factors are believed to contri-
bute to RA development. RA is characterized by joint inflam-
mation, initially resulting in pain and swelling, and in a majority
of the patients there is bone and cartilage erosion. The goal
of current treatment regimens is to control inflammation and
to retard the progression of structural damage of the joint
bone structure as measured by X-ray analysis.

The RA joint synovial fluid and synovium contain a variety of
hematopoeitic cells that are in direct proximity with the
articular cartilage and underlying bone, and that contribute to
the joint-destructive process. The present review will focus
upon the bone-degrading cell, the osteoclast, and on how
different T-cell subsets and their signature cytokines
positively and negatively modulate osteoclast activity in
autoimmune-driven inflammatory bone diseases. A specific T-
cell subset, the Th17 cell, has a significant osteoclastogenic
potential in the arthritic joint and may therefore provide a
suitable target to combat arthritis and loss of joint function.

Osteoclast differentiation
Physiological and pathological bone resorption is carried out
by a specialized cell called the osteoclast. Osteoclasts are
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large 20 to 100 um multinucleated cells containing three to
100 nuclei with many mitochondria, lysosomes, dense
granules, vesicles, and an extensive Golgi network required
for the synthesis and secretion of factors required to degrade
the bone matrix and subsequently phagocytose the resorbed
products [1]. Tartrate-resistant acid phosphatase [2],
cathepsin K [3], calcitonin receptor [4], and o, 35 integrin [5]
are characteristic gene products of the mature osteoclast [6].

The initial event in bone resorption is the attachment of the
mature osteoclast to the bone matrix. Cell surface o5
integrins bind to a variety of extracellular matrix proteins,
including vitronectin, osteopontin, and bone sialoprotein. Arg-
Gly-Asp-containing peptides, Arg-Gly-Asp mimetics, and
blocking antibodies to o, 5 integrins inhibit bone resorption
in vitro and in vivo, suggesting that this integrin plays a key
role in osteoclast function [7]. Once attached to bone, the
osteoclast generates an isolated extracellular microenviron-
ment between itself and the bone surface by creating a
sealing zone structure unique to the osteoclast. A ring of
filamentous actin associates with the intracellular proteins
vinculin, talin, o-actinin, and cortactin, and the ring links to
o, 35 integrins that have bound various extracellular proteins.
The ring appears when the osteoclast is immobilized on bone
and during the resorption process. The ring disappears prior
to osteoclast detachment from the eroded site and migration
to another resorption site.

Resorption depends upon acidification of this extracellular
compartment, leading to demineralization of the inorganic
bone component and subsequent organic matrix degradation
by cysteine proteases. Cathepsin K, an acid-activated
cysteine proteinase, plays a critical and necessary role in the
bone resorption process [8]. The expanded membrane within
the filamentous actin ring creates additional surface area for
massive H* transport performed by the vacuolar (V-type)

CIA = collagen-induced arthritis; CSF = colony-stimulating factor; IFN = interferon; IL = interleukin; NF = nuclear factor; RA = rheumatoid arthritis;
RANK = receptor activator of NFkB; RANKL = receptor activator of NFkB ligand; Th = T-helper cells; TGFf = transforming growth factor beta; TNF =

tumor necrosis factor; Treg = regulatory T cell.
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electrogenic H*-ATPase [9]. The proton source is carbonic
acid produced by carbonic anhydrase type Il [9]. The intra-
cellular pH is balanced by a passive chloride-bicarbonate
exchange in the basolateral membrane. Metalloproteinases
secreted by vesicles into the sealing zone can also degrade
the organic matrix, but their actions are only partly known. The
resorbed material is transcytosed through the osteoclast
[10,11]. Although there are a few reports that macrophages
and fibroblasts degrade or resorb mineralized bone in vitro
[12,18], it is widely accepted that osteoclasts are the only
cells capable of lacunar resorption [6].

The osteoclast lineage is distinct from other mesenchymal cells
of the bone (osteoblasts, chondrocytes, adipocytes, bone-
marrow stromal cells, and fibroblasts). Osteoclasts are
hematopoietic derived [14] and are from the colony-forming
unit granulocyte—macrophage progenitor cells, which give rise
to granulocytes and macrophages [15]. Monocytes are
released from the bone marrow into the blood, where they
home into different tissues and differentiate into tissue-resident
macrophages. Multinucleated osteoclasts are formed under
appropriate stimuli by the fusion of mononuclear precursors
within the monocyte fraction of peripheral blood [16].

PU.1 is a monocyte/macrophage-specific transcription factor
that acts as a master switch in programming hematopoietic cell
commitment and differentiation [17]. PU.1 promotes the cell-
type-specific expression of the myeloid lineage genes CD11b,
CD11c¢, CD18, the granulocyte colony-stimulating factor (CSF)
receptor, the granulocyte—macrophage CSF receptor, and the
macrophage CSF receptor (c-fms) via binding to these genes’
promoter regions [18]. Mice with homozygous PU.1 deficiency
have osteopetrotic bones due to the lack of osteoclasts that
would form from the myeloid lineage [19].

Osteoclast activation

Macrophage CSF and receptor activator of NFkB ligand
(RANKL) are the most important factors known to date to
drive osteoclast formation and activity [20,21]. Macrophage
CSF is a survival factor for osteoclast precursors due to
upregulating Bel-X|, inhibiting caspase-9 activation [22], and
supporting mature osteoclast survival by preventing
apoptosis [23]. Macrophage CSF stimulation also stimulates
receptor activator of NFkB (RANK) expression in osteoclast
precursor cells, thereby allowing RANKL to drive mature
osteoclast formation [24]. RANKL is a transmembrane
protein expressed by activated osteoblasts, synovial fibro-
blasts, and T cells. It can also be proteolytically cleaved by
TNF convertase (TACE) to generate a soluble molecule that
has osteoclastic activity at distal sites [25,26]. RANKL-
induced osteoclastogenesis is inhibited by osteoprotegerin, a
soluble decoy receptor for RANKL, which is also produced
by a variety of cells including osteoblasts, synovial fibroblasts,
B cells, and T cells [25-29]. Osteoprotegerin-deficient mice
are severely osteoporotic [30], while osteoprotegerin-trans-
genic mice are osteopetrotic [28].
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The NFxB pathway is an integral component in the osteoclast
differentiation pathway. RANKL activates NFxB both via the
canonical pathway due to IkBo degradation to release
p50/RelA and p50/c-Rel heterodimers and via the alternative
or noncanonical pathway by promoting p100 processing into
p52 [31]. TNF also stimulates NFxB activation via the
canonical pathway [32], and a synergistic interaction
between RANKL and TNF may account for the pathological
osteoclastogenesis seen in RA [33,34]. Elevated joint TNF
activates TNF receptors expressed by osteoclast precursors
[35] to drive NFkB and Jun N-terminal kinase activation using
the TNF receptor adaptor proteins TRAF1, TRAF2, and
TRAF6 [36-39]. Importantly, TNF induces osteoclastogenesis
in RANK-deficient mice [40] and induces multinucleated cell
formation from osteoclast precursors in the bone marrow
macrophage population [41].

IL-1 receptors are expressed on mature osteoclasts [42], and
exogenous IL-1 induces NFkB activation via TRAF6 [43]. IL-1
signals feed into the tyrosine kinase pathways through a
TRAF6-Src molecular complex, which regulates the cyto-
skeletal reorganization essential for osteoclast activation and
can enhance the ruffled border formation of the mature osteo-
clast and hence its resorbing activity [44].

There is a significant macrophage infiltrate in the arthritic
joint, and the extent of synovial macrophage infiltration corre-
lates strongly with the degree of joint erosion in arthritis [45].
Synovial macrophages isolated from different types of
arthritides differentiate in vitro to fully functional osteoclasts
via  RANKL stimulation as well as independently of the
RANK/RANKL signaling pathway, via TNF and IL-1o
signaling [46]. Stimulatory, costimulatory, and/or inhibitory
signals may be provided by adjacent T cells present in the
inflammatory infiltrate.

T-cell subsets and their action on osteoclasts
The seminal observation in 1972 that osteoclast activity was
increased by leukocyte-derived factors [47] gave rise to the
idea that T cells influenced osteoclast differentiation and
activation. Similar to the increased macrophage infiltrate,
activated T cells are also found in inflamed RA synovial tissue
and CD4* T-cell infiltration has become a hallmark of RA
pathogenesis. This concept has become central to the under-
standing of RA, and a new field termed osteoimmunology has
recently emerged. How T cells regulate osteoclastogenesis is
only partly known. We provide a brief overview of four T-cell
subsets and the factors that drive their differentiation into
these subsets, and we then concentrate on how the
signature cytokine(s) of these T cells impact inflammation-
driven osteoclastogenesis in arthritis.

T-helper 17 cells

The Th17 lineage has only recently been recognized and the
factors involved in its differentiation are still being identified
and sorted out. If a naive T cell is activated in the presence of



transforming growth factor beta (TGF() plus IL-6 in the
mouse or TGFB plus an inflammatory stimuli in the human,
then the resulting clonal memory T-cell population will be
instructed to produce the Th17 signature cytokines IL-17A,
IL-17F, IL-22, and IL-26 (there is no mouse IL-26). The inflam-
matory stimuli in the human setting can be IL-1p, IL-6, IL-21,
and/or IL-23 [48-53].

IL-17A is the only Th17 signature cytokine currently known to
influence the biology of osteoclasts. The cytokine's message
is also present in RAG-deficient mice (that is, T-cell and B-
cell deficient), consistent with IL-17A also being produced
from nonlymphoid sources [64]. IL-17A receptors are single-
pass transmembrane proteins expressed by many cell types,
including synoviocytes [55], chondrocytes, [66] osteoblasts,
[57], and osteoclasts (our data). Receptor activation results
in NFxB activation and the phosphorylation and activation of
the extracellular signal-regulated kinase, Jun N-terminal kinase,
and p38 mitogen-activated protein kinase pathways [586].

Th17 cells express RANKL [568] and TNF [52,59], which
directly act on osteoclast precursors to induce osteoclasto-
genesis. IL-17A induces RANKL expression by synovial fibro-
blasts and osteoblasts to indirectly drive bone erosion [60]
and to activate synovial macrophages to secrete the known
osteoclastogenic factors TNF and IL-13 [61]. Synovial and
synovial fluid macrophages can differentiate to fully functional
bone-resorbing osteoclasts, and Th17-induced synovial
macrophage—osteoclast differentiation may represent an
important cellular mechanism in the bone destruction asso-
ciated with RA [46,62].

Several types of IL-17A antagonists have been used in a
variety of animal arthritis models to address the efficacy of
therapeutic IL-17A neutralization. Polyclonal anti-IL-17A anti-
body treatment after disease induction in the collagen-
induced arthritis (CIA) model decreased clinical scores over
10 days of therapy compared with controls. Ankles and knees
had reduced synovitis, cartilage damage, chondrocyte death,
proteoglycan depletion, and bone erosion (histologically and
radiographically) [63]. Polyclonal anti-IL-17A antibody also
inhibited the antigen-induced arthritis model’s knee swelling,
proteoglycan depletion, and bone erosion in the smoldering
knee following reintroduction of antigen [64]. Mice immunized
with formalin-fixed Borrelia burgdorferi and later challenged
with live B. burgdorferi display transient joint inflammation.
Knee swelling was reduced with either anti-IL-17A or anti-
IL-17RA therapy, and ankles and knees were free of histo-
pathological changes including bone erosions following
either therapy [65]. Lastly, rat adjuvant-induced arthritis
models treated with an IL-17R-Fc fusion protein demon-
strated decreased paw swelling, joint histopathology scores,
and bone radiographic scores [66].

Mechanistically, the bone protection following therapeutic
IL-17A neutralization has been attributed to normalizing
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excessive RANKL levels. Anti-IL-17A blockade in CIA and
antigen-induced arthritis models that demonstrated decreased
bone erosion correlated with decreased RANKL message
and RANKL-positive cells in the joints [64,67].

T-helper 1 cells

IL-12 is a master differentiation factor produced by activated
antigen-presenting cells. If a naive T cell is activated in the
presence of IL-12, then the resulting clonal memory T-cell
population is instructed to produce the Th1 signature
cytokine IFNy.

IFNYy is also produced by another hematopoeitic cell type, the
natural killer cell, following its activation. Osteoclast
precursors and mature osteoclasts express the IFNy receptor
and exogenous IFNy in vitro inhibits murine osteoclasto-
genesis by inducing the rapid degradation of the RANK
adapter protein TRAF6, resulting in strong inhibition of RANKL-
induced activation of NFkB and Jun N-terminal kinase [68].

Activated mouse Th1 cells inhibited osteoclastogenesis when
mixed in cocultures with either RANKL-stimulated mouse bone
marrow macrophages or osteoblasts stimulated with vitamin
D, and prostaglandin E, [58]. Activated Th1 cells expressed
significant IFNy quantities, and the inhibitory effects of these
cells on osteoclastogenesis were abrogated when using IFNy
receptor-deficient osteoclast precursors [568]. Although
exogenous IFNy inhibits RANKL-induced human osteoclasto-
genesis, it was paradoxical that IFNy-producing human T cells
induced osteoclast formation in a RANKL-dependent mecha-
nism (discussed below) [69]. The increased osteoclasto-
genesis effect may well be due to a Th1 proinflammatory
cytokine TNF, which is known to synergize with RANKL.

The Th1 master differentiation factor IL-12 has anti-osteo-
clastogenic activities but the mechanism of inhibition remains
unclear. Exogenous IL-12 inhibited RANKL-stimulated osteo-
clast formation from splenocytes or from osteoblast and
splenocyte cocultures. This IL-12-dependent inhibition,
however, was not due to IFNy [70]. IL-12 was also identified
as the anti-osteoclast factor produced by Toll-like receptor 9
stimulation with CpG oligodeoxynucleotides that opposed
RANKL-induced osteoclast differentiation [71]. CpG oligo-
deoxynucleotides, known to mimic bacterial DNA, modulate
osteoclastogenesis via interactions with osteoclast precursors
and osteoblasts [72]. Mice specifically deficient in IL-12 (that
is, IL-12p35-deficient mice) were not protected from CIA, but
show exacerbated paw swelling responses following collagen
challenge [73]. Similarly, mice lacking IFNy signaling are not
protected in the CIA model [74]. A Lyme's disease arthritis
model using a two-step inactivated Borrelia vaccination
followed by live Borrelia challenge shows a greater disease
penetrance and severity when using IFNy-deficient mice [65].

Collectively, these data do not support that Th1 cells, nor
their signature cytokine IFNy or their master differentiation
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factor IL-12, are major drivers of inflammation-associated osteo-
clastogenesis. These data instead support that this lineage may
counteract other pro-osteoclast inflalmmation factors present in
the RA joint, including Th17 products [75,76].

T-helper 2 cells

The source of the Th2 master differentiation factor IL-4 during
the naive to memory transition is controversial, but mature
Th2 cells, natural killer T cells, basophils, and mast cells
produce IL-4 [77-79]. Th2 cells produce the signature
cytokines IL-4, IL-5, and IL-13 when they encounter a nonself-
antigen (or a cross-reacting self-antigen) being presented by
an antigen-presenting cell. Little is know regarding the role, if
any, that IL-5 plays in osteoclast biology, whereas IL-4 and
IL-13 have been extensively studied. Mouse spleen cells and
bone marrow macrophages express IL-4 and IL-13 receptors,
and the addition of these factors decreased RANKL-
stimulated tartrate-resistant acid phosphatase-positive multi-
nucleated cell formation and cathepsin K message in spleno-
cytes and bnone marrow macrophages [80]. IL-4 was more
potent than IL-13 at inhibiting mouse osteoblast/osteoclast
progenitor cocultures [81]. Mature osteoclasts express the
IL-4 receptor, and exogenous IL-4 decreased tartrate-resistant
acid phosphatase expression, actin ring formation, and bone
resorption by osteoclasts [82]. Since IL-4 inhibits osteoclasto-
genesis by inhibiting NFkB and mitogen-activated protein
kinase signaling [83], the synergistic action of RANKL and TNF
to stimulate osteoclast formation is also inhibited by IL-4 [84].

The Th2 signature cytokines IL-4 and IL-13 also use other
mechanisms to inhibit osteoclastogenesis. IL-4 and IL-13
promote expression of the natural RANKL antagonist, osteo-
protegerin, by endothelial cells and osteoblasts [81,85]. IL-4
and IL-13 decreased RANKL and RANK protein in calvariae
bone. Exogenous IL-4 addition to the CIA model had minimal
impact on the outward signs of inflammation, but showed a
bone-preserving biology including decreased bone erosion,
tartrate-resistant acid phosphatase activity, and RANKL
message [86,87]. In total, these data do not support that Th2
cells or their signature cytokines IL-4 and IL-13 are major
drivers of inflammation-associated osteoclastogenesis, but
instead support that this lineage along with the Th1 lineage
may counteract Th17 products and other pro-osteoclast
inflammation factors present in the RA joint.

Regulatory T-cells

The regulatory T cell (Treg) lineage is composed of over-
lapping T-cell subsets whose role is to dampen the immune
response to minimize tissue destruction. There are a number
of mechanisms by which the Treg dampens the immune
system, including some requiring cell-to-cell contact, but the
present review will focus upon the Treg signature cytokines
TGFp and IL-10 [88].

There is support for Tregs inhibiting osteoclastogenesis, but
there are discrepancies regarding the key mechanisms by
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which it occurs. Zaiss and colleagues concluded that
CD4+CD25*Foxp3* Tregs inhibited osteoclastogenesis in a
cell-contact-dependent manner with a minor contribution by
the signature cytokines IL-4, TGFpB, and IL-10 [89,90]. In
contrast, Kim and colleagues reported that human
CD4+CD25*Foxp3* Tregs inhibit osteoclast differentiation
from peripheral blood mononuclear cells in a cell-contact-
independent manner, but in an IL-4-dependent and TGFp-
dependent manner [91,92].

Although IL-4 is not considered a Treg signature cytokine, it
does inhibit osteoclastogenesis by inhibiting NFxB and
mitogen-activated protein kinase signaling [83]. The role of
TGFB in bone turnover is quite complex, with conflicting in
vivo and in vitro data on whether resorption is enhanced or
inhibited [93]. IL-10, however, has a clear inhibitory effect on
osteoclasts by downregulating NFATc1 [94].

Tregs are enriched in inflamed joints of patients with
rheumatic disease [95], but the interaction of Tregs with
activated monocytes in the joint might lead to diminished
suppressive activity of Tregs in vivo — thus contributing to the
chronic inflammation in RA [96]. Other workers have reported
that Tregs have neither an inhibitory effect nor an enhancing
effect on osteoclastogenesis. Collectively, these data do not
support that Tregs nor their signature cytokines TGFB and
IL-10 are major drivers of inflammation-associated osteo-
clastogenesis, but instead support that this lineage along
with Th1 and Th2 signature cytokines may counteract Th17
and other pro-osteoclast inflammatory factors present in the
RA joint.

Flavors of T-helper 17 cells

The schematic concept of separate nonoverlapping T-cell
lineages identified by their unique cytokine repertoire, how-
ever, is hampered by reality (Figure 1). A subset of Th17 cells
defined by their expression of the signature cytokine IL-17A
also produce IFNY, albeit less than that produced by Th1
cells [53]. The IL-17A/IFNy double-producing human T cells
arise from in vitro naive to memory T-cell differentiation
cultures and are found in peripheral blood memory T cells
from healthy donors [50,52,53]. It could be envisioned that
factors present in the microenvironment during the naive to
memory transition could alter either the number of double
producers that arise or could alter the magnitude of IL-17A to
IFNY protein made by the double producers [49,50,53].

These different flavors of Th17 cells and, even more, the
distinctly different T-cell subsets must be kept in mind when
evaluating the literature precedent regarding T-cell effects on
osteoclasts. The paradoxical observation that IFNy-producing
T cells promoted osteoclast formation, highlighted above,
provides such an example. IFNy-producing T cells and IFNy-
nonproducing T cells were cultured with human monocytes in
the presence of macrophage CSF. To the authors’ surprise,
IFNy-producing T cells induced osteoclastogenesis in a
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RANKL-dependent manner. The osteoclastogenesis was
further enhanced when the anti-osteoclast factor IFNy was
neutralized, implicating other pro-osteoclast factor(s) being
produced by IFNy-producing T cells [69]. Th17 cells can be
endowed with different cytokine repertoires and/or different
secretion ratios between key cytokines based on master
differentiation factors present in the microenvironment during
initial antigen recognition [49]. All of the various osteoclast-
related factors must be taken into account when hypothesizing
the impact that an activated T cell may have in an inflamed joint.

Mouse models have been key to expanding our knowledge of
various T-cell subsets, the biology of their signature cyto-
kines, and how these cytokines affect osteoclasts. This is also
true for the Th17 lineage; however, there are two keys areas
where mouse studies must be analyzed with caution when
translating to humans.

IL-6 (in combination of TGFp) is required to differentiate
activated naive mouse CD4 T cells into memory IL-17A-
producing Th17 cells [52]. Further exposure to IL-23 was
required for full pathogenic activity in vivo (at least in animal
central nervous system inflammation models). IL-6 is just one of
a handful of proinflammatory factors (for example, IL-1f, IL-21,
and IL-23) that can work singly and in combination to drive
human Th17 development [49,50,52,53]. This dichotomy may
overemphasize the role of IL-6 (from mouse studies) in human
Th17-mediated osteoclast formation.

Secondly, Th17 cells from mouse autoimmune models rarely
coexpress IFNy — whereas this is more the norm when
working with human Th17 cells from healthy donors. Whether
this is due to an inherent mouse/human difference or due to
different disease states remains to be seen. Human Th17
cells may therefore have a more prominent IFNy anti-osteo-
clastogenesis brake on the human cell's activity than a
corresponding mouse Th17 cell. This would be consistent
with some rodent arthritis models having an explosive bone
eroding component, in comparison with the much slower
bone erosion seen in RA patients. It is important to note that
these above cautions relate to how a memory Th17 cell is
formed. Once the Th17 cell is formed, however, the
osteoclastogenic factors produced by the cell have similar
biology between the mouse and the human (for example,
RANKL, TNF, IL-17A).

T-helper 17 cells in RA

Multiple lines of evidence point to Th17's disease association
with RA. IL-17A protein is present in both the synovium and
the synovial fluid of rheumatoid patients [97-101], and a
subset of T-cell lines expanded in vitro from RA synovium
expressed IL-17A and IFNy following activation [59,102].
Classical IFNy-only Th1 cells were also present and can be
expanded from RA synovium [102,103]. Exploratory medical
studies, however, not only support IL-17A’s disease asso-
ciation, but implicate IL-17A’s correlation with poor disease
prognosis. IL-17A message in synovial membrane biopsies
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was one factor (including TNF, IL-1B3, and IL-10) that was
predictive for subsequent bone erosion and joint damage as
assessed by magnetic resonance imaging and radiography
[104].

Additionally, Raza and colleagues prospectively collected
synovial fluid samples within a few weeks after symptom
onset from patients with early synovitis [105]. The patient’s
outcomes were subsequently determined 18 months after
fluid acquisition to determine what early factors expression
correlated with synovitis progression to RA. Patients were
grouped into those who subsequently progressed to RA,
those who subsequently progressed to non rheumatoid
persistent synovitis, or those whose synovitis resolved.
Importantly, IL-17A was one of a few factors (including IL-2,
IL-4, IL-13, IL-15, basic fibroblast growth factor, and
epidermal growth factor) whose expression in the earliest
stages of disease was associated with subsequent progres-
sion to RA [105]. An IL-17A single nucleotide polymorphism
was significantly associated with radiographic progression
after 2 years [106].

Collectively, these data support that IL-17A is present in the
inflamed synovium and that IL-17A expression levels correlate
with poor prognosis and greater joint destruction.

In summary, Th17 cells are arrayed with factors that can
directly and indirectly drive osteoclastogenesis. It is well
appreciated within the T-cell development literature that
master differentiation factors and signature cytokines of the
Th1, Th2, and Treg lineage inhibit Th17 development. This
same concept holds true from an osteoclastogenesis view-
point since master differentiation factors and signature cyto-
kines of the Th1, Th2, and Treg lineage inhibit osteoclasto-
genesis and Th17 products stimulate osteoclastogenesis.

Conclusion

Th17 cells are a newly discovered T-cell lineage that plays a
role in the adaptive immune response to extracellular patho-
gens. The repertoire of molecules at its disposal to combat
these pathogens is formidable. When these products are
unleashed within an inflamed joint, however, they can directly
drive osteoclast precursors to differentiate into osteoclasts
via RANKL-dependent and RANKL-independent pathways.
Additionally, Th17 factors can act on other cell types to
indirectly increase the osteoclastogenic potential in the
inflamed joint microenvironment. Targeting this T-cell lineage
and/or its osteoclastic factors may provide alternative
strategies to combat inflammatory joint diseases compared
with the gold-standard TNF antagonist therapies.
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