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Abstract

Introduction There is a growing body of evidence implicating
aberrant dendritic cell function as a crucial component in the
immunopathogenesis of systemic lupus erythematosus. The
purpose of the present study was to characterize the phagocytic
capacity and expression of receptors involved in pathogen
recognition and self-nonself discrimination on myeloid dendritic
cells from patients with lupus.

Methods Unstimulated or stimulated monocyte-derived
dendritic cells were obtained from lupus patients and healthy
control individuals, and expression of C-type lectin receptors
(mannose receptor and dendritic cell-specific intercellular
adhesion molecule-grabbing nonintegrin), complement-receptor
3 and Fcy receptors was determined by flow cytometry. Dextran
uptake by lupus and control dendritic cells was also assessed
by flow cytometry. Serum IFNy was quantified by ELISA, and
uptake of microbial products was measured using fluorescently
labeled zymosan.

Results When compared with dendritic cells from healthy
control individuals, unstimulated and stimulated lupus dendritic
cells displayed significantly decreased dextran uptake and
mannose receptor and dendritic cell-specific intercellular
adhesion molecule-grabbing nonintegrin expression. Decreased
expression of the mannose receptor was associated with high
serum IFNy levels, but not with maturation status or medications.
Diminished dextran uptake and mannose receptor expression
correlated with lupus disease activity. There were no differences
between control and lupus dendritic cells in the expression of
other pattern recognition receptors or in the capacity to uptake
zymosan particles

Conclusions Lupus dendritic cells have diminished endocytic
capacity, which correlates with decreased mannose receptor
expression. While this phenomenon appears primarily intrinsic
to dendritic cells, modulation by serum factors such as IFNy
could play a role. These abnormalities may be relevant to the
aberrant immune homeostasis and the increased susceptibility
to infections described in lupus.

Introduction

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease with protean clinical manifestations, typically character-
ized by the presence of autoantibodies to nuclear components
and by the deposition of immune complexes in various tissues.
While many cell types have been implicated as pathogenic in
this disease, a growing body of literature demonstrates the
potential role that dendritic cells (DCs) may play in the devel-
opment and perpetuation of disease in SLE (reviewed in [1]).

DCs regulate both innate and adaptive immune effector cells,
and have powerful and widespread effects on all aspects of
the immune system. Breakdown of DC regulation can lead to
loss of tolerance at multiple levels, and can thereby promote
autoimmune responses. Additionally, plasmacytoid DCs are
the primary cellular producers of type | interferons — cytokines
strongly implicated in SLE immunopathogenesis [2].

BSA: bovine serum albumin; CR3: type 3 complement receptor; DC: dendritic cell; DC-SIGN: dendritic cell-specific intercellular adhesion molecule-
grabbing nonintegrin; ELISA: enzyme-linked immunosorbent assay; Fc: crystallizable fragment; FD: FITC-dextran; FITC: Fluorescein isothiocyanate;
IFN: interferon; IL: interleukin; CTLR: C-type lectin receptor; mAb: monoclonal antibody; moDC: monocyte-derived dendritic cell; MR: mannose recep-
tor; PBS: phosphate-buffered saline; SLE: systemic lupus erythematosus; TNF: tumor necrosis factor.
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Myeloid DCs reside in an inactive, highly phagocytic state at
sites of potential antigen exposure. Uptake of harmless envi-
ronmental or self-antigens (often products of normal cellular
senescence, apoptosis or necrosis) results in low-level migra-
tion to regional lymph nodes, where antigen presentation
induces tolerance or anergy in resident lymphocytes. Uptake
of pathogenic antigens in the presence of other stimulatory
signals induces DC maturation, manifested by downregulation
of phagocytic receptors and upregulation of antigen-presenta-
tion machinery, and migration to lymphoid tissues to trigger
secondary specific immune responses. DCs are therefore cru-
cial for generating and maintaining peripheral tolerance, a key
component in the prevention of autoimmunity, as well as stim-
ulating immune responses in appropriate settings [3].

Abnormal DC function could result in aberrant uptake and
presentation of harmless self-antigen, triggering inappropriate
immune responses to self, a hallmark of SLE. It could also lead
to inadequate response to truly pathogenic stimuli, with result-
ant inability to properly combat infections. This also is of poten-
tial relevance in lupus, as individuals with this disease have
significant morbidity/mortality from infections. Whether the
poor outcomes after infection are secondary to intrinsic abnor-
malities in immune function seen in this disease or to the use
of immunosuppressive medications, however, is unclear [4,5].

A crucial aspect of normal DC function is to discriminate
between harmless self-antigens and potentially harmful foreign
antigens. To this end, DCs express a number of pattern recog-
nition receptors, which recognize specific molecular patterns
exhibited on a variety of cell types and pathogens. Among
these are the C-type lectin receptors (CTLRs). The CTLRs
comprise a family of evolutionarily conserved proteins contain-
ing one or more C-type lectin domains, and may bind carbohy-
drate moieties in a calcium-dependent manner [6]. CTLRs can
recognize pathogen-associated molecular patterns expressed
on microbes, as well as ligands expressed on apoptotic and
malignant endogenous cells. Additionally, they can interact
with other pattern recognition receptors such as Toll-like
receptors. DCs express a number of different membrane-
bound CTLRs, which can function as pathogenic antigen-rec-
ognition and antigen-uptake receptors, internalizing and
processing for efficient presentation to effector cells. CTLRs
can also recognize endogenous glycoproteins and can bind
cellular adhesion molecules, thus having roles in homeostatic
clearance and migration (reviewed in [7-9]).

One DC-associated CTLR is the mannose receptor (MR),
CD206. This type | transmembrane protein is expressed by
both macrophages and DCs, and has numerous ligands
including bacterial cell wall components [10] and endogenous
glycoproteins (lysosomal hydrolases) [11]. The MR internal-
izes antigens to early endosomes before recycling back to the
surface. Antigens are subsequently processed for presenta-
tion on Major Histocompatibility Complex (MHC) molecules as
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well as (in the case of the Mycobacterium tuberculosis lipoara-
binomannan component [12]) on CD1b.

Another CTLR expressed exclusively by human myeloid DCs
is the DC-specific intercellular adhesion molecule-grabbing
nonintegrin (DC-SIGN), CD209. A type Il transmembrane pro-
tein, DC-SIGN binds intercellular adhesion molecule 2 (on
endothelial cells) and intercellular adhesion molecule 3 (on
leukocytes), thereby regulating DC migration and T-cell inter-
actions [13,14]. DC-SIGN also is involved in the transport of
HIV-1 for subsequent transinfection of CD4+ T cells [15].
Other DC-associated CTRLs include DEC-205 (CD205) and
DC-associated C-type lectin-1 (Dectin-1), an important binder
of B-glucan.

DCs express other uptake receptors involved in pathogen rec-
ognition and self-nonself discrimination [16]. Type Ill comple-
ment receptor (CR3), CD11b/CD18, is a PB,-integrin that
serves both as an adhesion molecule and a myeloid phago-
cytic receptor for complement-opsonized particles [17]. Fcy
receptor | (CD64), Fcy receptor Il (CD32) and Fcy receptor llI
(CD16) are present on different subsets of human DCs. In
addition to binding immunoglobulin-opsonized particles, liga-
tion of Fcy receptor Il by nucleic acid-containing immune com-
plexes can trigger IFNo production by plasmacytoid DCs
[18,19]. Recent genome-wide association studies in lupus
patients have identified single nucleotide polymorphisms in or
near ITGAM and FCGR2A (the genes for CR3 and Fcy recep-
tor Il, respectively) [20], supporting a potential role for variants
of these genes in lupus susceptibility.

Our group has previously demonstrated that monocyte-
derived DCs (moDCs) from human SLE patients display an
activated phenotype, characterized by accelerated differentia-
tion, increased baseline maturation, augmented synthesis of
proinflammatory cytokines, and increased ability to promote
increased proliferation and activation of allogeneic control T
cells [21]. In the present study, we investigated the endocytic
capacity and surface expression of different pattern recogni-
tion receptors in SLE moDCs.

Materials and methods

Patient selection

The study was approved by the University of Michigan Medical
Institutional Review Board and the research was in compli-
ance with the Helsinki Declaration. Written informed consent
was obtained for all patients.

Patients fulfilling the American College of Rheumatology crite-
ria for SLE [22,23] were recruited during routine outpatient
rheumatology clinic visits as well as during inpatient admis-
sions at the University of Michigan. Patients were excluded if
they had undergone or were undergoing treatment for concur-
rent malignancy or they had significant clinical overlap with
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Demographic and clinical characteristics of systemic lupus erythematosus patients

Characteristic

Systemic lupus erythematosus patients Control individuals

Number
Female (%)
Age, mean (range) (years)
Systemic Lupus Erythematosus Disease Activity Index (mean)
Systemic Lupus Erythematosus Disease Activity Index >2 (%)
Elevated dsDNA antibodies (%)
Decreased C3 and/or C4 (%)
Medications (%)
Antimalarials
Azathioprine
Cyclophosphamide
Methotrexate
Mycophenolate
Prednisone (%)
None
<30 mg/day
>30 mg/day

No medications (%)

63 31
85.7 67.8
40.6 (21 to 67) 31.9 (23 to 54)
42104

57.2

58.7

31.7

73.0
4.8
4.8
4.8
30.2

36.5
52.4

14

another autoimmune condition. Healthy control individuals
were obtained by advertisement.

The SLE activity was assessed by the SLE Disease Activity
Index [24]. Patient cells and control cells were cultured and
analyzed in parallel. Information regarding the demographics,
disease activity, and use of medications is presented in Table
1. Only two patients had evidence of active lupus nephritis and
one patient had active lupus cerebritis. The majority of SLE
clinical manifestations were cutaneous, arthritic or
hematologic.

Reagents

Human recombinant IL-4, TNFa, and IFNy were purchased
from PeproTech (Rocky Hill, NJ, USA). Human granulocyte-
macrophage colony-stimulating factor was either purchased
(recombinant) from Invitrogen (Carlsbad, CA, USA) or kindly
donated from Berlex (Montville, NJ, USA).

The culture media for DCs included X-vivo 15 serum-free
media (BioWhittaker, Walkersville, MD, USA), RPMI1640,
fetal calf serum, L-glutamine and penicillin/streptomycin/
amphotericin B (Gibco/Invitrogen, Carlsbad, CA, USA).
Lipopolysaccharide (026:B6), D-mannose, and FITC-dextran

(FD; 40 kDa) were purchased from Sigma (St Louis, MO,
USA).

Anti-human mAbs and their appropriate isotype controls con-
jugated to FITC, Phycoerythrin, allophycocyanin, and
CyChrome were purchased from BD Biosciences (San Jose,
CA, USA), from Ancell (Bayport, MN, USA), and from Bioleg-
end (San Diego, CA, USA). These mAbs include anti-CD11c,
CD11b,CD14,CD16,CD32,CD64, CD209, CD206, CD40,
CD80, CD83, CD86, and class 2. Unlabeled zymosan A and
zymosan A fluorescent BioParticles were purchased from
Molecular Probes/Invitrogen (Carlsbad, CA, USA).

Generation and stimulation of monocyte-derived
dendritic cells

The moDCs were obtained as previously described [21].
Human peripheral blood mononuclear cells were isolated from
whole blood by standard density gradient centrifugation on
Ficoll-Hypaque Plus (Amersham Biosciences, Sweden) and
were resuspended at 6 x 108 cells/ml in RPMI 1640 with anti-
biotics, L-glutamine and 10% fetal bovine serum. Cells were
transferred to tissue culture plates, and monocytes were
allowed to adhere to the plastic surface for 1 hour at 37°C.
Nonadherent cells were removed by washing with PBS, and
monocytes were further cultured for 5 days in DC growth
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medium (serum-free X-vivo-15 containing antibiotics, 50 ng/ml
granulocyte-macrophage colony-stimulating factor and 5 ng/
ml IL-4). At days 5 to 7, cells were harvested for immediate
analysis, or stimulated with 1 ug/ml LPS and 100 ng/ml TNFa
for an additional 48 hours prior to harvest.

FITC-dextran uptake

Harvested moDCs were washed and resuspended in RPMI/
antibiotics/10% fetal bovine serum with or without D-mannose
(100 mg/ml). Cells were preincubated for 15 minutes at either
4°C or 37°C, followed by incubation for 1 hour with FD (1 mg/
ml). The uptake reaction was terminated by washing three
times with ice-cold PBS, followed by staining as described
below.

Zymosan uptake

Fluorescently labeled and unlabeled zymosan was reconsti-
tuted in 2 mM sodium azide/PBS (Sigma, St. Louis, MO, USA)
as per the manufacturer's protocol to a concentration of 20
mg/ml each. As preliminary experiments revealed that fluores-
cein-labeled zymosan particles saturated the FITC channel of
the flow cytometer and were not fully quenchable by acidic
trypan blue, fluorescein zymosan was diluted 1:100 in unla-
beled zymosan. Immature moDCs were harvested and prein-
cubated as above, followed by addition of the diluted zymosan
mixture to achieve a ratio of 1 DC:10 particles zymosan (25 pl
zymosan mixture per 1 million DCs). Incubation, washing,
processing, and flow cytometry was performed as for the FD
experiments.

Immunofluorescence staining and flow cytometry

DCs were washed with PBS/0.2% BSA, and Fc receptors
were blocked by incubating cells for 20 minutes with 50%
control human plasma. DCs were then incubated for 30 min-
utes at 4°C with 0.06 to 0.15 ug/ml fluorochrome-conjugated
mAbs or appropriate isotype-matched control antibodies fol-
lowing the manufacturer's directions. Cells were then washed
three times with PBS/0.2% BSA, fixed in 2% w/v paraformal-
dehyde, and analyzed on the FACSCalibur (BD Biosciences)
and EPICS XL flow cytometers (Beckman Coulter, Fullerton,
CA).

Data analysis was performed using WinMDI 2.8 software.
Stained cells were gated by side-scatter and forward-scatter
characteristics and were further identified by surface markers.
The results were expressed as the percentage of cells staining
positive for different markers as well as by mean channel fluo-
rescence. The cutoff point for positive staining was above the
level of the control isotype antibodies.

IFNy measurement

Plasma was collected from patient samples during peripheral
blood mononuclear cell isolation and frozen at -80°C until use.
IFNy plasma levels were determined by ELISA using Ready-
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Set-Go kits with precoated plates (eBioscience, San Diego,
CA, USA) as per the manufacturer's protocol.

Drug treatment

Monocytes were cultured to induce DC differentiation in the
presence or absence of graded concentrations of indometh-
acin (0.01 to 1 pg/ml), hydroxychloroquine (0.02 to 2 pg/ml),
hydrocortisone (0.01 to 1 uM), 6-mercaptopurine (0.01 to 1
uM) and mycophenolate-mofetil (0.04 to 4 pug/ml) (all obtained
from Sigma-Aldrich) or vehicle, as described previously [21].

Statistical analysis

Data are expressed as the mean * standard error of the mean.
P values were calculated using two-tailed Student's t-tests. All
correlations were calculated using the Spearman's rank corre-
lation test.

Results
SLE dendritic cells exhibit diminished FITC-dextran

uptake

We first demonstrated that moDCs from SLE patients have
impaired endocytic capacity. Healthy control moDCs exhibited
low basal FD uptake at 4°C, which significantly increased
when cells were incubated at 37°C. Lupus moDCs, however,
exhibited decreased uptake of FD, both before (percentage
uptake: control (n=20), 83.1 £+ 3.2 versus SLE (n=47), 63.9
+ 8.9; P=0.003; Figure 1a,c) and after stimulation with LPS
and TNFa (percentage uptake: control (n = 13), 83.1 £ 5.8
and SLE (n=30), 64.6 = 6.5; P=0.05; Figure 1b). FD uptake
was blunted by preincubation of cells with D-mannose (Figure
1d), confirming that a mannose-dependent uptake mechanism
is involved.

SLE dendritic cells have decreased surface mannose
receptor expression, which correlates with FITC-dextran
uptake

As the MR is the major receptor responsible for FD uptake
inhibited by mannose, we then assessed MR expression in
SLE moDCs and in control moDCs (Figure 2a). Both lupus
and control moDCs expressed surface MR, which significantly
downregulated upon stimulation/maturation with LPS and
TNFa (P = 0.08 for lupus DCs, P = 0.007 for control). Imma-
ture moDCs from lupus patients, however, displayed signifi-
cantly less MR when compared with control moDCs
(percentage expression: control (n = 29), 73.6 + 2.7 and SLE
(n=49),59.2 + 3.5; P=0.0002). This difference was not sig-
nificant after DC stimulation. Linking levels of MR to C-type
lectin uptake, there was a positive correlation between MR
expression and FD uptake in both unstimulated (r = 0.64) and
stimulated (r = 0.80) lupus moDCs (P < 0.0001; Figure 2b).

Decreased mannose receptor expression correlates with
circulating IFNy

We next investigated potential factors contributing to the
observed aberrant phenotype in DCs from SLE patients. To
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Lupus monocyte-derived dendritic cells display decreased FITC-dextran uptake. (a) Unstimulated dendritic cells (DCs) (*P = 0.003). (b)
Lipopolysaccharide/TNFa-stimulated DCs (**P = 0.05). Results are expressed as the mean * standard error of the mean. (c) Representative histo-
gram demonstrating impaired FITC-dextran (FD) uptake by unstimulated systemic lupus erythematosus (SLE) DCs. (d) Representative histogram
showing blunted FD uptake by unstimulated DCs after D-mannose preincubation. Line colors: dark blue = control, 37°C; red = SLE, 37°C,; light blue
= control, 4°C; light green = SLE, 4°C; black = control + D-mannose, 37°C; dark green = SLE + D-mannose, 37°C.

determine whether the DC maturation status could account for
the diminished FD uptake and MR expression, the association
with expression of the maturation marker CD86 was examined

(Figure 3a). Whereas in unstimulated control DCs there was a
significant negative correlation between CD86 expression and

Figure 2
(a) Mannose receptor expression (b) MR expression vs FD Uptake
100 f * 1 100 i
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Unstimulated lupus monocyte-derived dendritic cells, mannose receptor expression, and FITC-dextran uptake. Unstimulated lupus mono-
cyte-derived dendritic cells display decreased mannose receptor (MR) expression, which correlates with FITC-dextran (FD) uptake. (a) Both groups
significantly downregulate MR upon lipopolysaccharide/TNF stimulation (*P = 0.007, **P = 0.03, ***P = 0.0002). Results are expressed as the
mean £ standard error of the mean. (b) Positive correlation between MR expression and FD uptake. This was observed in unstimulated lupus DCs
(*r=0.64, P<0.0001) and stimulated lupus DCs (**r = 0.80, P < 0.0001).
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Figure 3
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Mannose receptor expression in systemic lupus erythematosus. Mannose receptor (MR) expression is not correlated with CD86 expression or
prednisone use, but is associated with high serum IFNy in systemic lupus erythematosus (SLE) patients. (a) Correlation between CD86 expression
and either FITC-dextran (FD) uptake or MR expression. In control dendritic cells (DCs) there is significant or near-significant negative correlation
(*FD uptake: r=-0.76, P = 0.03; **MR expression: r =-0.46, P = 0.08), whereas there is no correlation in lupus DCs (FD uptake: r=-0.23, P =
0.46; MR expression: r =-0.33, P = 0.33). (b) Patients with higher levels of circulating IFNy display lower expression of MR on autologous DCs.
Graph displays patients with IFNy levels >100 ng/ml (n = 3) compared with patients with lower plasma levels (n = 12; *P = 0.03). Results are
expressed as the mean * standard error of the mean. (c) Prednisone dose does not correlate with MR expression or FD uptake. Graph shows the
distribution of MR expression (black diamonds) and FD uptake (clear squares) relative to the prednisone dose.

FD uptake (r=-0.76, P = 0.03) and there was a near-signifi-
cant negative correlation with MR expression (r =-0.46, P =
0.08), this was not found in unstimulated lupus DCs (r=-0.23,
P = 0.383 for FD uptake; r =-0.33, P = 0.46 for MR expres-
sion). Similarly, no correlation was found with other maturation
markers, including CD40, CD80, CD83 and class Il Major His-
tocompatibility Complex (data not shown).

We also examined whether medications commonly used to
treat lupus could account for decreased FD uptake or MR
expression in this disease. There was no correlation of these
variables with the prednisone dosage (Figure 3c) or with the
use of nonsteroidal anti-inflammatory drugs, hydroxychloro-
quine, azathioprine, or mycophenolate (data not shown). Addi-
tionally, healthy control moDCs cultured in the presence of
graded doses of the above medications did not exhibit
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decreased FD uptake or MR expression when compared with
autologous untreated DCs (data not shown).

Overall, these results indicate that the abnormal phenotype
and function of this CTLR are not secondary to a drug factor
or DC maturation status.

IFNy downregulates transcription and surface expression of
the MR, and elevated levels of this cytokine have been
described in SLE [25]. To assess whether CTLR abnormalities
were secondary, at least in part, to this cytokine, plasma levels
of IFNy were quantified. Indeed, SLE individuals with IFNy con-
centration >100 ng/ml had significantly lower moDC MR
expression than those with lower levels (percentage expres-
sion: <100 ng/ml (n =12), 75.2 = 5.4 and >100 ng/ml (n =
3), 48.1 £ 5.6; P = 0.02; Figure 3b).



Decreased mannose receptor expression and endocytic

capacity correlates with lupus disease activity

In both unstimulated and stimulated lupus moDCs, the MR
expression negatively correlated with SLE Disease Activity
Index scores (unstimulated, r=-0.36, P= 0.006; stimulated, r
=-0.48, P=0.002; Figure 4a) and with serum anti-dsDNA tit-
ers (unstimulated, r=-0.35, P=0.01; stimulated, r=-0.33, P
= 0.04; Figure 4b). Similar negative correlations were
observed between the FD uptake and SLE Disease Activity
Index scores (unstimulated, r =-0. 34, P = 0.02; stimulated, r
=-0.55, P=0.001; Figure 4c) or anti-dsDNA (unstimulated, r
=-0.29, P=0.05; stimulated, r=-0.49, P=0.004; Figure 4d).

Lupus dendritic cells display decreased DC-SIGN, but
present normal CR3 and Fcy receptor expression

To determine whether this endocytic defect was restricted to
the MR or whether other receptors were also aberrantly
expressed, the surface expression of other receptors involved
in antigen uptake was evaluated. There were no differences in
CR3 and Fcy receptor |, Fcy receptor Il or Fcy receptor llI
expression between lupus DCs and control DCs (data not
shown).

Available online http://arthritis-research.com/content/10/5/R114

The CTLR DC-SIGN, however, was also downregulated in
SLE moDCs - both before and after stimulation (unstimulated
percentage expression: control (n =30), 71.3 £ 3.5 and SLE
(h = 52), 53.2 £ 3.7; P = 0.005; stimulated percentage
expression: control (n = 21), 64.7 £ 6.0 and SLE (n = 39),
48.6 + 4.5; P=0.03; Figure 5). Unlike the MR, the DC-SIGN
expression did not correlate with FD uptake, either in control
DCs or lupus DCs (data not shown). Control DCs and SLE
DCs showed a strong correlation between MR and DC-SIGN
expression (control, r = 0.75 for unstimulated cells and r =
0.62 for stimulated cells, P< 0.005; SLE, r=0.32, P=0.03).
Additionally, only stimulated DCs exhibited a correlation
between DC-SIGN expression and the SLE Disease Activity
Index score (r=-0.35, P= 0.04).

Lupus dendritic cells have normal uptake of zymosan A
particles

As zymosan A can be taken up by the MR [26], we determined
whether lupus moDCs displayed diminished zymosan uptake.
There was no significant difference in zymosan uptake
between control individuals and lupus patients, either as deter-
mined by the mean fluorescence intensity or by the percent-
age of fluorescein positivity (percentage positivity: control,

Figure 4
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Mannose receptor expression correlation with disease activity in monocyte-derived dendritic cells. Disease activity and levels of anti-dsDNA
antibody correlate with lower levels of mannose receptor (MR) and aberrant dextran uptake by lupus monocyte-derived dendritic cells. (a) Correla-
tion between MR expression and systemic lupus erythematosus Disease Activity Index (SLEDAI) scores (*r =-0.36, P= 0.006; **r=-0.48, P=
0.002) in systemic lupus erythematosus (SLE) patients. (b) Correlation between anti-dsDNA antibodies and MR expression (*r=-0.35, P=0.01; **r
=-0.33, P=0.04). (c) Correlation between lupus dendritic cell FITC-dextran (FD) uptake and SLEDAI scores (*r =-0. 34, P=0.02; **r =-0.55, P
= 0.001). (d) Correlation between anti-dsDNA antibody titers and FD uptake (*r =-0.29, P = 0.05; **r =-0.49, P = 0.004).
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Figure 5

DC-SIGN expression
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Dendritic cell-specific intercellular adhesion molecule-grabbing
nonintegrin expression in systemic lupus erythematosus dendritic
cells. Dendritic cell-specific intercellular adhesion molecule-grabbing
nonintegrin (DC-SIGN) expression is downregulated in unstimulated
and stimulated systemic lupus erythematosus (SLE) monocyte-derived
dendritic cells. Results represent the mean * standard error of the
mean of 30 control individuals and 52 SLE patients (*P = 0.005, **P =
0.03).

40.6 £ 5.3 and SLE, 42.0 £ 5.15; P = 0.85; mean fluores-
cence intensity: control, 286.2 £ 86.5 and SLE, 295.6 + 39.4;
P =0.90).

Discussion

A growing body of literature is defining the spectrum of abnor-
malities associated with DCs in SLE. Lupus DCs exhibit an
aberrantly activated and mature phenotype [21,27]. As DC
maturation is associated with increased migratory capacity,
this phenotype may account for the decreased numbers of cir-
culating DCs detected in the blood of SLE patients [28,29] as
well as for the increased numbers found in affected organs
[30,31]. DC maturation also results in downregulation of anti-
gen uptake machinery and diminished phagocytic capacity.

Our findings of decreased FD uptake by moDCs from SLE
patients are therefore consistent with an overactivated pheno-
type. This impaired uptake capability, however, is not exclu-
sively a function of maturation status, as FD uptake did not
correlate with expression of maturation markers in SLE DCs,
whereas it did in control DCs. There thus appears to be a lec-
tin phagocytosis abnormality by lupus DCs that is independent
of the maturation status.

FD uptake by moDCs has been shown to occur primarily via
the MR, although fluid phase pinocytosis also contributes [32].
We demonstrated that SLE moDCs exhibit decreased expres-
sion of MR compared with control DCs. As expected,
decreased MR expression correlated with low FD uptake.
Additionally, these deficits appear to be associated with active
disease activity. Whether low MR expression and associated
diminished lectin uptake capacity are pathogenic in active
lupus and/or the result of other systemic abnormalities present
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during disease activity is unclear and warrants further
investigation.

We also found downregulation of an additional CTLR, DC-
SIGN, indicating a more global defect in expression of mem-
bers of this family. Interestingly, we detected no decrease in
surface expression of CR3 or any of the Fcy receptors. This is
not necessarily surprising; although common variants of these
genes alter lupus susceptibility in large population studies
[20], specific quantitative or functional receptor deficits asso-
ciated with these allelic variants have yet to be identified.

A number of exogenous factors of potential relevance in lupus
can affect MR expression. In particular, medications used to
treat SLE could contribute to the phenotypic differences
observed in circulating DCs and monocytes. MoDCs cultured
in the presence of dexamethasone exhibit upregulated MR
expression, a more globally immature phenotype, and higher
endocytic activity [33]. We might therefore expect steroid
treatment to result in increased MR expression. No association
between steroid use and MR expression could be detected,
however, either by analysis of patient steroid use or with in
vitro treatment of control DCs. Additionally, exposure to other
immunosuppressive agents could not account for the down-
regulation observed in CTLRs.

IFNy downregulates transcription [34] and surface expression
[35] of the MR. As peripheral blood IFNy levels are elevated in
SLE patients and have been shown to correlate with nephritis
[25], this could be of potential relevance. Indeed, we did doc-
ument lower MR expression on DCs from patients with high
serum levels of IFNy. Therefore, while clearly there exists an
intrinsic deficit in receptor expression by lupus DCs, IFNy may
contribute to aberrant MR expression in the subset of patients
with high serum levels.

The functional consequences of decreased MR expression in
SLE DCs are unclear, particularly with regards to susceptibility
to infection. In vitro transfection studies have found the MR to
be sufficient for uptake of various pathogens such as Candida
sp., Pneumocystis, and others [36,37]. Studies with MR
knockout mice, however, reveal no evidence of increased pre-
disposition towards infections such as Pneumocystis [38],
Candida albicans [39], and Leishmania sp. [40] — although a
recent study has found hastened mortality from cryptococcal
infections [41]. This may be due to considerable redundancy
in receptor-mediated uptake of pathogens, with various other
receptors able to perform similar phagocytic functions as the
MR. We were unable to demonstrate any significant differ-
ences between lupus DCs and control DCs in ability to uptake
zymosan, an MR ligand — probably for that reason. Decreased
MR expression in combination with the other receptor deficits
and immunologic aberrancies seen in SLE, however, could still
contribute to the overall increased susceptibility of patients to
assorted infections.



MR deficiency results in increased circulating lysosomal
hydrolases, which indicates that these molecules may be nec-
essary for certain aspects of glycoprotein homeostasis [11].
Surface glycoprotein rearrangement is an important step in
normal cellular apoptosis/necrosis [42]. Dysregulated apopto-
sis has been strongly correlated with the development and
perpetuation of autoimmunity in SLE [43]. Additionally, anti-
bodies against glycoproteins have pathologic relevance in
SLE [44]. Aberrant glycoprotein processing could therefore
have implications in lupus pathogenesis, and future studies
will assess this possibility.

Conclusion

We have demonstrated that monocyte-derived DCs from
patients with SLE have diminished phagocytic capacity asso-
ciated with decreased expression of specific CTLRs. This is an
important addition to our understanding of the many pivotal
roles DCs play in lupus immunopathogenesis. Decreased
phagocytosis of apoptotic material and other normally harm-
less self-antigens could result in an autoimmunity-promoting
milieu with loss of tolerance, inappropriate autoantigen pres-
entation and, ultimately, the serologic and clinical manifesta-
tions characteristic of SLE. Additionally, while individual
receptors may not be exclusively responsible for clearance of
individual pathogens, aberrant phagocytic machinery and
uptake capacity could still contribute to inadequate responses
to harmful pathogens.
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