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Abstract
Diseases such as degenerative or rheumatoid arthritis are accom-
panied by joint destruction. Clinically applied tissue engineering
technologies like autologous chondrocyte implantation, matrix-
assisted chondrocyte implantation, or in situ recruitment of bone
marrow mesenchymal stem cells target the treatment of traumatic
defects or of early osteoarthritis. Inflammatory conditions in the
joint hamper the application of tissue engineering during chronic
joint diseases. Here, most likely, cartilage formation is impaired and
engineered neocartilage will be degraded. Based on the
observations that mesenchymal stem cells (a) develop into joint
tissues and (b) in vitro and in vivo show immunosuppressive and
anti-inflammatory qualities indicating a transplant-protecting
activity, these cells are prominent candidates for future tissue
engineering approaches for the treatment of rheumatic diseases.
Tissue engineering also provides highly organized three-dimen-
sional in vitro culture models of human cells and their extracellular
matrix for arthritis research.

Introduction
Diseases like rheumatoid arthritis (RA) or degenerative
arthritis (osteoarthritis, OA) are accompanied by a progres-
sive reduction of extracellular matrices (ECMs) in joint
cartilage and bone and, eventually, loss of joint function and
excessive morbidity. Current pharmacological treatment of
RA focuses on alleviating symptoms and/or modifying the
disease process. Despite recent success in controlling pain
and inflammation, marginal cartilage regeneration has been
observed. Obviously, suppression of inflammation is not
sufficient to restore joint structure and function. Probably,
cartilage repair may be achieved only by triggering local
cartilage tissue responses leading to recovery of chondrocyte
remodelling. An imbalance in joint cartilage, subchondral
bone, and synovial membrane remodelling is one important
characteristic of OA. Despite many OA research efforts,
treatment strategies are poor and restricted to relieving the
symptoms, to different surgical procedures (including tech-

niques stimulating self-repair of the joint) [1,2], or to endo-
prothetic joint replacement.

In the last decade, tissue engineering approaches for the
repair of joint cartilage and bone defects have reached the
clinic. Here, autologous cells are transplanted as cell sus-
pension or in combination with supportive scaffolds into the
defect site or, since 2007, are in situ recruited to the defect
site due to the implantation of scaffolds combined with cell
attractants. Meanwhile, the scope of clinical application for
tissue engineering was expanded to OA diseased joint
cartilage [3,4].

Besides clinically applied tissue-specific chondrocytes, un-
differentiated mesenchymal stem cells (MSCs) are of special
interest as cell candidates. In particular, bone marrow MSCs
are comprehensively characterized and represent promising
candidates [5]. They are easy to isolate and expand, they
differentiate into various tissues like cartilage [6] and bone
[7], and therefore they are able to regenerate osteochondral
defects. Additionally, as they target diseased organs and
secrete many bioactive factors, such as immunosuppressives
for T cells facilitating their allogeneic use, they serve as
vehicles capable of presenting proteins with therapeutic
effects. In this regard, secreted bioactive factors provide a
regenerative environment, referred to as trophic activity,
stimulating, for instance, mitosis and differentiation of tissue-
intrinsic repair or stem cells (reviewed in [8]). Because of
their anti-inflammatory and immunosuppressive properties,
MSCs have been used as agents in autoimmune diseases
(ADs) and have been applied in arthritis animal models
(reviewed in [9]). The applicability of further cell types, such
as joint-inherent cells, embryonic stem cells (ESCs), or
recently described induced pluripotent stem cells (iPSs), is
under vigorous investigation.
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Another important tissue engineering branch focuses on
three-dimensional (3D) in vitro models. Here, highly organized
3D in vitro cultures of cells and their ECMs reflect the human
situation under well-defined and reproducible conditions.
Recently, 3D in vitro models to study destructive patho-
physiological processes leading to cartilage breakdown in
OA and RA [10,11] and for high-throughput screening of
antirheumatic drugs have been established [12].

Joint tissue engineering: clinical applications
The first entry for the key word ‘tissue engineering’, also
termed ‘regenerative medicine’, in the National Center for
Biotechnology Information database PubMed was in 1984
(Figure 1a). Ten years later, in 1994, about 20 entries were
added, and in 1999, the first year of publication of Arthritis
Research & Therapy, 250 were added. In 2008, more than
2,700 manuscripts with ‘tissue engineering’ in the title or
abstract were added to PubMed, indicating how dynamic this
rapidly emerging field is. Furthermore, about 700 entries for
the key word ‘regenerative medicine’ can be found. Since the
first two PubMed entries for ‘cartilage’ and ‘bone tissue engi-
neering’ were published in 1991 (accounting for 22% of all
‘tissue engineering’ and ‘regenerative medicine’ entries),
values vary between roughly 15% and 30% (Figure 1b).
Strikingly, although immunologically mediated rheumatic
diseases and degenerative joint diseases cause a severe
economic burden, the number of PubMed entries for ‘tissue
engineering’ and ‘regenerative medicine’ and ‘arthritis’ (36
entries in 2007, which accounted for 1% of all ‘tissue
engineering’ and ‘regenerative medicine’ entries) or ‘osteo-
arthritis’ (30 entries in 2007 or 0.9%) is very low (Figure 1b)
and in recent years has not increased to a degree worth
mentioning. This may be due to a lack of knowledge of the
characteristics of cells from patients with such diseases and
possibly due to the destruction of newly engineered tissue in
the inflammatory environment.

Autologous chondrocyte implantation for the repair of
local cartilage defects
Joint cartilage is a complex structure consisting of chondro-
cytes and cartilage-specific ECMs. Today, for cell-based
repair, autologous chondrocytes are harvested from
unaffected cartilage biopsies, culture-expanded, and injected
as a cell suspension or in combination with biomaterials.
Autologous chondrocyte implantation (ACI) into human
cartilage defects, covered by a periosteal flap to prevent
chondrocyte leakage, was described in 1994 [13]. Currently,
more than 12,000 ACIs are documented. Different studies
showed a permanence of clinical results that were gained in a
period of about 10 years [14-16]. Despite good clinical
results, some disadvantages hamper the prevalence of ACI:
(a) the nonuniform spatial distribution of chondrocytes and
the lack of initial mechanical stability, (b) the suture of the
periosteal flap into the surrounding healthy cartilage and the
necessity of a perifocal solid cartilage shoulder that limits ACI
to the treatment of small defects and excludes the treatment

of OA diseased cartilage, and (c) the arthrotomic surgery.
Today, collagen sheets have been introduced as one
alternative for periosteal flaps [17]. Finally, it should be
mentioned that ACI treatment is still controversial. In a
prospective randomized controlled trial (level of evidence:
therapeutic level I), no significant advantage for the complex
ACI compared with standard self-repair-stimulating micro-
fracture could be measured after 2 and 5 years [18]. In
contrast, also in a prospective randomized controlled trial
(level of evidence: therapeutic level I), Saris and colleagues
[19] found that ACI results in better structural repair than
microfracture alone when treating symptomatic cartilage
defects of the knee.

Matrix-assisted autologous chondrocyte implantation
Several ACI drawbacks are avoided in advanced matrix-
assisted autologous chondrocyte implantation (MACI). Here,
3D constructs of chondrocytes and a carrier scaffold are
transplanted into a defect site. Biomaterials are crucial for the
temporary stability of transplants, simplify surgical handling,
and, just as important, serve as templates for spatial cell
growth. Chondrocytes ensure the formation of cartilage
tissue through ECM synthesis and are therefore responsible
for the long-term stability. Different resorbable transplants
based on chondrocytes and collagen [20], hyaluronic acid
[3,21], or poly(DL-lactic acid-co-glycolic acid) (PLGA) poly-
mers [4,22] have already reached the clinic. Their fixation
depends on the biomechanical properties of the implant and
defect localization/size and is ensured by adhesion forces,
fibrin glue, or transosseous fixation [23]. In particular, poly-
mers like PLGA allow stable fixation in vast defects, without
requiring a perifocal solid cartilage shoulder, one of the major
drawbacks of ACI [22]. Thus, they can be directly fixed onto
subchondral bone and have the potential for the repair of OA
or arthritic diseased joints. Depending on the material, stable
matrices allow the arthroscopic implantation of chondrocytes.
In contrast, arthrotomic surgery during ACI causes approxi-
mately 25% of its specific side effects like fibroarthrosis [14],
scar formation, postoperative pain, and limited mobility.

Clinical results of MACI for up to 5 years are very promising
and are comparable to ACI [3,4,20,21,24]. Bartlett and
colleagues [24] have performed a prospective randomized
comparison of ACI (collagen type I/type III sheet covered) and
MACI (collagen transplant) for the treatment of symptomatic
chondral defects of the knee in 91 patients, of whom 44 were
treated with ACI and 47 with MACI [24]. Based on an
increased modified Cincinnati knee score (ACI = 17.6 and
MACI = 19.6), good to excellent International Cartilage Repair
Society score in 79.2% of patients treated by ACI and 66.6%
treated by MACI, hyaline-like cartilage formation (ACI = 43.9%
and MACI = 36.4%), rate of hypertrophy of the grafts (9% in
the ACI group and 6% in the MACI group), and frequency of
reoperation (9% in both groups), the authors concluded that
after 1 year the clinical, arthroscopic, and histological
outcomes are similar for both ACI and MACI. Marcacci and
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colleagues [21] presented clinical results for patients with
cartilage lesions of the knee who had been treated in a
multicenter study (level of evidence: therapeutic study, level III-
2; retrospective cohort study) with autologous chondrocytes
seeded on hyaluronan-based (HYAFF 11) scaffolds. Clinical
results of 141 patients with follow-up assessments ranging

from 2 to 5 years (average of 38 months) are reported. At
follow-up, 92% of patients improved according to the
International Knee Documentation Committee subjective
score, 76% of patients had no pain, and 88% had no mobility
problems. Furthermore, 96% of the patients had their treated
knee in normal or nearly normal condition as assessed by the
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Figure 1

PubMed entries for tissue engineering in the rheumatic diseases. (a) The first entry for the key word ‘tissue engineering’, also called ‘regenerative
medicine’, in the National Center for Biotechnology database PubMed was in 1984. In 1994, 23 manuscripts were added, and 10 years later,
1,605 were added. In 2008, 2,706 entries for ‘tissue engineering’ and 688 for ‘regenerative medicine’ were introduced into PubMed. (b) The first
two entries for both ‘cartilage’ and ‘tissue engineering’ or ‘bone’ and ‘tissue engineering’ were in 1991, accounting for 22% of all ‘tissue
engineering’ and ‘regenerative medicine’ entries. Since that year, both values varied between approximately 15% and 30%. Surprisingly, the
number of PubMed entries for ‘tissue engineering’ or ‘regenerative medicine’ and ‘arthritis’ (36 entries in 2007, which accounted for 1% of all
‘tissue engineering’ and ‘regenerative medicine’ entries) or ‘osteoarthritis’ (30 entries in 2007 or 0.9%) is very low and in recent years has not
increased to a degree worth mentioning. (c) The number of entries for the key word ‘mesenchymal stem cells’ has also increased dramatically from
1 in 1991 to 1,140 in the first 7 months of 2008. From these 1,140 entries, only 25 were for ‘arthritis’ and ‘mesenchymal stem cells’ and 18 were
for ‘osteoarthritis’ and ‘mesenchymal stem cells’.



surgeon, cartilage repair was graded arthroscopically as
normal or nearly normal in 96.4% of the scored knees, and the
majority of performed second-look biopsies of the grafted site
were assessed histologically as hyaline-like cartilage. A very
limited complication rate was recorded. More interestingly for
patients with degenerative arthritis, MACI was used in OA
patients. Hollander and colleagues [3] reported the maturation
of tissue-engineered cartilage implanted in injured and OA
human knees. In more detail, they analyzed the influence of
pre-existing OA on the regeneration process of knee injury
patients after treatment with hyaluronan-based (HYAFF 11)
scaffolds. Twenty-three patients, among them 9 with OA, with
defect areas of 1.5 to 11.25 cm2 were treated with MACI. A
second-look biopsy was taken from each patient after 6 to
30 months (average of 16 months). Standard histological
analysis and biochemical analyses involving digestion with
trypsin and specific quantitative assays for collagen type I/type
II, proteoglycan, and mature and immature collagen crosslinks
were performed. In 10 out of 23 patients, hyaline cartilage
regeneration was observed after 11 months. In another 10
patients, fibrocartilage was found, and in the remaining
patients, three mixed tissues were found. Tissue regeneration
was found even when implants were placed in joints that had
already progressed to OA. The authors concluded that carti-
lage injuries can be repaired using tissue engineering and that
OA does not inhibit the regeneration process. Furthermore,
Ossendorf and colleagues [4] reported the transplantation of
autologous chondrocytes embedded in fibrinogen PLGA. The
aim of the ongoing prospective observational case report
study was to evaluate the efficacy of such transplants for the
treatment of post-traumatic and degenerative cartilage
defects. Clinical outcome was assessed in 40 patients with a
2-year clinical follow-up prior to implantation and up to
24 months after implantation on the basis of the modified
Cincinnati knee score, Lysholm score, Knee Injury and
Osteoarthritis Outcome score, and histological analysis of
biopsies. Significant improvement of the evaluated scores was
observed after 1 and/or 2 years, and histological staining
showed integration of the transplants and formation of hyaline
cartilage. The Knee Injury and Osteoarthritis Outcome score
showed significant improvement in the subclasses of pain,
other symptoms, and knee-related quality of life 2 years after
treatment in focal OA defects. The results suggest that MACI
could be a treatment option for the regeneration of OA
defects of the knee.

However, long-term trials of patients with progressed OA are
still lacking. Some studies revealed an increased expression
of the hypertrophic marker collagen type X and of the
dedifferentiation markers collagen type I and type III in
chondrocytes from OA patients, whereas the expression of
cartilage ECM markers like aggrecan was decreased [25,26].
One major question is whether OA chondrocytes are
irreversibly altered. Based on cellular and molecular data, we
found that human chondrocytes can be expanded and
redifferentiated independently of OA etiology [27].

Although most of the objective and subjective MACI outcome
data, such as the formation of a hyaline-like cartilage matrix
and reduction of pain and mobility problems, were positive,
current tissue engineering applications clearly do not result in
true native tissues. As indicated, for instance, in the study by
Hollander and colleagues [3], besides hyaline cartilage,
fibrocartilage sometimes is formed. Probably the most
important point to improve tissue quality will be the
application of advanced transplants. It is known that the ECM
milieu surrounding the cells has physical and structural
features in the nanometer scale and that this arrangement
effects parameters like cell morphology, adhesion, and
cytoskeletal organization [28]. Therefore, first materials with
nanometer scale structures to simulate the matrix environment
were produced and transplanted and, hopefully, will improve
neo-tissue quality in the future (reviewed in [29]).
Furthermore, the addition of bioactive factors like ECM
components or growth and differentiation factors to the
advanced scaffolds has the potential to induce, support, or
enhance growth and differentiation of cell types toward joint
tissues and to orchestrate tissue repair effectively (reviewed
in [30]).

Mesenchymal stem cells for joint tissue
engineering
As with the key word ‘tissue engineering’, the number of
PubMed entries for the key word ‘mesenchymal stem cells’
has increased dramatically (Figure 1c). Since Caplan pub-
lished his paper ‘Mesenchymal stem cells’ in 1991 [31], more
than 5,200 manuscripts have been added. Starting from 135
publications in 2000, the number increased to 733 in 2005
and to approximately 1,100 during the first 7 months of 2008.

Preclinical and clinical applications of mesenchymal
stem cells
MSCs derived from various tissues have been preclinically
tested for their ability to substitute chondrocytes (reviewed in
[32]). Bone marrow MSCs suppress T-cell activity and
therefore avoid allogeneic rejection, and because of their
plasticity, they are able to form new joint tissues and secrete
bioactive factors providing a regenerative environment
(trophic activity) that stimulates tissue-intrinsic repair cells or
stem cells (reviewed in [8]).

Conflicting data about whether functionally normal MSCs can
be isolated from patients with advanced OA have been
published. Murphy and colleagues [33] reported that cells
from such patients show a decreased proliferative and
chondrogenic capacity but that their osteogenic potential is
unchanged. In contrast, Scharstuhl and colleagues [34]
showed that the chondrogenic potential of human MSCs is
independent of age or OA etiology. Similarly, Kafienah and
colleagues [35] have studied whether it is possible to
engineer hyaline cartilage using bone marrow MSCs derived
from patients with hip OA. MSCs were seeded onto poly-
glycolic acid scaffolds and were chondrogenically stimulated
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using transforming growth factor-beta-3 (TGF-β3). Based on
mRNA, histological, and biochemical analyses of the
constructs, transplants showed extensive synthesis of carti-
lage proteoglycans and collagen type II. Expression of the
dedifferentiation marker collagen type I was low. The authors
found a protein content almost identical to that of cartilage
engineered from bovine nasal chondrocytes and concluded
that hyaline cartilage can be engineered using MSCs from
OA patients. We also found no negative effects and have
used MSCs from OA joints for in vitro cartilage tissue
engineering (Figure 2). MSCs were isolated, expanded in
human serum, combined with fibrinogen PLGA (Figure 2a),
and TGF-β3-induced. At day 28, cell viability was high
(Figure 2b) and proteoglycans and cartilage-specific collagen
type II were secreted (Figure 2c,e). However, all transplants
were also positive for the dedifferentiation marker collagen
type I (Figure 2d), suggesting that the newly formed tissue
had both hyaline and fibrocartilage contents. We found very
similar results for all five OA MSC donors tested.
Chondrogenesis was also shown on the mRNA level using
genome-wide microarrays. In OA cultures, we identified
crucial elements of the respective molecular machinery of
chondrogenesis known from healthy donors [36].

In a goat OA model, OA was induced unilaterally in the knee
joint by complete excision of the medial meniscus and
resection of the anterior cruciate ligament and then treated by
intra-articular injection of MSC/hyaluronic acid suspensions
[37]. The outcome was an incipient regeneration of the
medial meniscus and a significant reduction of joint cartilage
degeneration, osteophytic remodelling, and subchondral
sclerosis during OA. Based on these encouraging results, a
multicenter phase I/II trial for the treatment of knee injuries by
stem cell injection has been launched [38]. Furthermore, in a
case report study, Centeno and colleagues [39] recently
reported a significantly increased cartilage and meniscus
volume in OA using percutaneously injected MSCs.

Besides stem cell injection, matrix-assisted MSC therapies
are of special interest. Here, the regenerative potential of
MSCs is combined with the advantages of MACI over ACI. In
clinical approaches, Wakitani and colleagues have trans-
planted collagens combined with autologous human MSCs in
human OA knees [40] and in cartilage defects of the
patellofemoral joint [41]. Although the transplantation of
MSCs resulted in enhanced cartilage tissue formation, these
approaches are preliminary and, from a clinical point of view,
are far from established ACI or MACI. For bone repair, in a
clinical pilot study, human MSCs were combined with
hydroxyapatite ceramic scaffolds and transplanted into large
bone defects [42]. No major complications occurred and
complete fusion between implant and host bone occurred 5
to 7 months after surgery. Six to seven years of follow-up
revealed good implant integration, and no late fractures in the
implant zone were observed. Another interesting therapeutic
approach for the future regeneration of osteochondral

defects relies on biphasic constructs, consisting, for instance,
of plugs made of chondrocytes or MSCs embedded in a
collagen gel (for cartilage repair), overlying a tricalcium
phosphate block (for bone repair) [43].

In situ regeneration: next generation of tissue
engineering
Cell expansion in clean rooms is time-consuming and
expensive. Moreover, biopsy is stressful for the patient, cells
are not immediately available, and in most cases, ex vivo
incubation of transplants is less efficient than in vivo
incubation. So, the next generation of tissue engineering
focuses on in situ approaches [44]. Here, for joint repair,
scaffolds combined with chemotactic molecules and joint
tissue formation-stimulating factors are transplanted, resulting
in the in situ recruitment of bone marrow MSCs to the defect
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Figure 2

Cartilage tissue engineering with mesenchymal stem cells (MSCs)
derived from osteoarthritis (OA) patients. Human MSCs were isolated
and expanded from femoral heads of five OA patients undergoing
endoprothetic joint replacement. (a) Two and a half million MSCs per
100 μL were embedded in fibrinogen PLGA fleeces and
chondrogenically induced with transforming growth factor-beta-3.
(b) At day 14, propidium iodide/fluorescein diacetate staining revealed
a high cell viability (green cells) and homogenous cell distribution.
Remaining PLGA fibers appeared red. (c) After 4 weeks, matrix
formation was demonstrated by alcian blue staining of cartilage
proteoglycans and by antibody staining of (d) collagen type I and
(e) cartilage-specific collagen type II. (f) Negative IgG control. In
summary, we found no differences between MSCs derived from
healthy donors and those from patients with OA. PLGA, poly(DL-lactic
acid-co-glycolic acid).



sites of degenerated cartilage and bone and their subsequent
use for factor-guided joint repair.

For MSCs, their potential to home to the bone marrow, to
migrate, and to engraft into several tissues following systemic
infusion has been observed in animal studies (reviewed in
[45]). Microfracture or Pridie drilling, each of which is a
technique to stimulate cartilage self-repair (reviewed in [1]), is
based on the migration of bone marrow MSCs to the injured
site and results in the formation of a fibrocartilage repair
tissue. Transplantation of a cell-free implant consisting of
polyglycolic acid combined with serum as a chemotactic
factor and HA as a chondroinductor in a full-thickness
cartilage defect pretreated with microfracture resulted in the
migration of ovine MSCs into the implant and in the formation
of cartilage-like repair tissue. Controls treated with
microfracture showed no formation of repair tissue [46]. Very
recently, these results were translated into a clinically applied
in situ tissue engineering product [47].

Although MSC migration factors and their mechanisms are
not known yet, molecules such as chemokines [48], bone
morphogenetic proteins and platelet-derived growth factor
[49], and hyaluronan [50] have been shown to have a dose-
dependent chemotactic effect. In the context of arthritis, it is
worth mentioning that synovial fluids from the joint of normal
donors and OA patients comparably recruit normal donor
MSCs, whereas synovial fluid from RA patients showed
significantly reduced migratory activity on these cells [50].
We have identified a chemokine-dependent migratory
potential of OA patient-derived MSCs [36].

Mesenchymal stem cells, in vivo immune
suppression, arthritis, and tissue engineering
Identification of immunosuppressive cells, targeting cells that
are abnormal in ADs, recently has generated high interest for
their clinical use (reviewed in [51]). Here, since they have
immunosuppressive and anti-inflammatory characteristics,
MSCs are of high interest. The cellular and molecular bases
for this effect have been reviewed by others [9,51]. Briefly,
the effect is dose-dependent and is exerted on T-cell
responses to polyclonal stimuli or their cognate peptide [51].
Inhibition seems not to be antigen-specific and targets
primary and secondary T-cell responses. T-cell suppression is
not cognate-dependent since it can be observed applying
major histocompatibility complex (MHC) class I-negative
MSCs and it can be exerted by MSCs of an MHC origin that
is different from that of the target T cells. First of all, the
immunosuppressive effect of MSCs is directed on the
proliferation level as a result of an increased expression of the
cell cycle inhibitor p27 and a repressed expression of the cell
cycle regulatory gene cyclin D2, and it also affects other
immune cells. The mechanisms underlying the
immunosuppressive effect are still not clear, but in the context
of trophic activity, secreted soluble factors such as interleukin
(IL)-10, IDO (indoleamine 2,3-dioxygenase), hepatocyte

growth factor, TGF-β, prostaglandins, and nitric oxide provide
an environment that stimulates immunosuppression. Further-
more, cell-cell contacts are of importance. The immuno-
suppressive activity is not a standard MSC feature. It requires
MSCs that are ‘licensed’ in an appropriate environment [51].
Interferon-γ or IL-1β represents an inductor of such an
activity, and tumor necrosis factor-alpha (TNF-α) can reverse
this activity of MSCs in vivo.

These characteristics and their tissue formation potential
make MSCs appropriate cells for tissue engineering in AD.
Here, degenerated joint tissues will be substituted by MSC-
based tissue engineering approaches described above, and
simultaneously neo-tissue will be protected. Clearly, this is
not state of the art but a promising strategy for further
research. In regard to tissue protection, Bartholomew and
colleagues [52] reported that intravenous injection of MSCs
extended the survival of an allogeneic skin graft in baboons.
Additionally, Zappia and colleagues [53] demonstrated the
therapeutic efficacy of MSCs in the murine model of multiple
sclerosis. Here, MSC injection decreased the clinical signs of
demyelinization when injected before or at the very early
stage of the disease. Injection of allogeneic MSCs has also
been suggested as a treatment strategy for collagen-induced
arthritis, a mouse model of human RA [54]. In this model,
mice were immunized with type II collagen and received a
single intraperitoneal injection of allogeneic MSCs. This
prevented the outcome of damage to joint cartilage and bone.
Moreover, this reduced the proliferation of T lymphocytes and
modulated the expression of inflammatory cytokines. Thus, in
vivo models indicated the protective activity and allogeneic
use of MSCs for tissue engineering in AD. Moderating these
findings about allogeneic use, in a murine model of allogeneic
hematopoietic stem cell transplantation (HSCT), coinjection
of autologous MSCs has improved the allograft survival,
whereas injection of allogeneic MSCs resulted in a significant
increase in cell rejection [55]. Moreover, in a mouse model of
graft versus host disease (GvHD), injection of allogeneic
MSCs had no beneficial effect on the GvHD [56]. Finally,
Djouad and colleagues [57] reported that the addition of
TNF-α was sufficient to reverse the immunosuppressive
effect of MSCs on T-cell proliferation. This indicates that
parameters related to inflammation influence the immuno-
suppressive properties and that tissue engineering applica-
tions in AD should be associated with anti-TNF-α therapy.

Human MSCs have been tested in the clinical setting of
HSCT, whereby a patient with severe GvHD of the gut and
liver showed transiently improved liver values and intestinal
function promptly after infusion of allogeneic MSCs from a
haplo-identical donor [58]. However, before the use of MSCs
for tissue engineering in AD, several open questions have to
be solved. So far it is not known whether MSCs from patients
with different ADs display normal functions. MSCs from RA,
systemic lupus erythematosus, and systemic sclerosis
patients exhibit features of early senescence [59,60]. We
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reported that MSCs from RA patients showed a reduced
clonogenic and proliferative activity but were normal in
differentiation capacity [60]. However, in patients with sys-
temic sclerosis, the adipogenic and osteogenic potential was
impaired [61]. Importantly, MSCs from AD patients have
retained their immunosuppressive activity [62]. Therefore,
they hopefully can be applied as autologous cells, which has
become important following the demonstration in non-
myeloablated mice that allogeneic MSCs are immunogenic
and can be rejected [55].

Cell sources for tissue engineering in
rheumatic diseases
Today, autologous chondrocytes represent the only cell type
routinely used for joint cartilage repair. In the future, autolo-
gous or allogeneic bone marrow MSCs most likely will serve
as an additional cell source, for example, for the repair of
osteochondral defects. Adult MSCs and progenitor cells from
adipose tissue, placenta, amniotic fluid, periosteum, umbilical
cord blood and vein, cartilage, bone, skeletal muscle, and
synovium have been described and show properties similar to
bone marrow MSCs [63]. Therefore, they also represent
possible candidates for tissue engineering in rheumatic
diseases. However, the vast amount of data describing their
proliferation capacity, their joint cartilage and bone regenera-
tion potential, their migratory behavior for in situ approaches,
their allogeneic use, and so on is sometimes confusing and,
as described for bone marrow MSCs, contradictory. Clearly,
a ‘gold standard’ cell type has not yet been extracted from the
in vitro and in vivo data. Besides bone marrow MSCs,
cartilage-inherent MSCs or MSCs from joint synovium seem
to be very interesting candidates, especially for in situ
applications. Cartilage of healthy donors and of patients with
OA contains MSCs that can develop into chondrocytes and
osteoblasts [64]. In addition, several studies have demon-
strated that synovium-derived MSCs of healthy donors and
OA patients show a high expansion capacity and a
multilineage differentiation potential, display the same
phenotype as bone marrow MSCs in terms of surface marker
expression, suppress T-cell response, and have a more
pronounced chondrogenic capacity than bone marrow MSCs
[9,65]. However, unlike chondrocytes, in vitro differentiated
MSCs from the synovium failed to form ectopic stable
cartilage in vivo [66].

Besides MSCs, human ESCs may represent promising
candidates for joint repair. In vitro and in vivo studies have
demonstrated their osteogenic and chondrogenic potential
[67,68]. Political, ethical, and practical problems, such as
teratoma formation, hamper their clinical use. Very recently, in
two independent and pathbreaking studies, human adult skin
fibroblasts were induced to pluripotent stem cells (iPSs) with
ESC character [69,70]. This may pave the way for cell-based
joint repair. In detail, the ectopic expression of a selected
group of important ESC genes in somatic cells, like normal
human skin fibroblasts, enables these cells to exhibit many of

the specific characteristics of ESCs. Given the abundance
and ease with which autologous skin fibroblasts can be
harvested, it seems only a question of time until such an
approach will be used to provide patients, including OA and
RA patients, with autologous-specific cell types that are
needed for tissue regeneration. Clearly, problems in the
handling of iPSs, such as the use of viral vectors, teratoma
formation, and lack of appropriate differentiation protocols,
have to be solved before thinking about clinical applications.
Moreover, as for all alternative new cell sources, the open
question is whether their possible advantages justify the labor
and cost-intensive launch of a new clinical product.

Tissue engineering and advanced three-
dimensional models
Tissue engineering also offers the opportunity to establish
complex 3D cell-matrix cultures that mimic the cellular
environment and thus to provide an important tool to study
tissue development, remodeling, and repair. Although so far
they do not reach the quality of native tissues, highly orga-
nized 3D in vitro cultures of human cells and ECMs facilitate
the establishment of physiological ex vivo models reflecting
human significance under well-defined and reproducible
conditions. Three-dimensional in vitro models also offer
advantages compared with animal models, including low
complexity and cost, fewer ethical concerns, easy data
processability and reproducibility, and automatization and
standardization [12].

The increasing prevalence of cartilage destruction in OA and
RA has entailed an intensified demand for cartilage in vitro
models for the analysis of the destructive pathophysiological
processes leading to cartilage breakdown in RA and OA. For
this purpose, 3D in vitro high-density chondrocyte pellet and
alginate cultures help to preserve/regain the chondrocyte
phenotype following monolayer expansion by offering cell-cell
and cell-matrix interactions [71,72]. Chondrocyte 3D pellet
and alginate cultures show similar responses to IL-1β like
native cartilage explants, indicating the relevance of both in
vitro systems to study chondrocyte biology on proinflam-
matory stimuli [10,73]. For the in vitro analysis of cartilage
destruction in RA, interactions between (a) chondrocytes as
a single cell type entirely conducting the cartilage remodelling
process and (b) synovial fibroblasts as the key player of RA-
related cartilage destruction [74,75] are of immense impor-
tance. An interactive in vitro coculture model of cartilage
pellets and RA synovial fibroblasts (RASFs) that offered
direct cell contact between both cell types (Figure 3) showed
that RASF aggressively invaded the cartilage and caused
erosion of the chondrocyte pellet as described in vivo [76].
Although the attachment of RASF to cartilage is a prominent
feature of RA-related cartilage destruction, direct cell contact
between chondrocytes and RASF does not necessarily seem
to be required for the destructive modulation of the
chondrocyte phenotype. Recent studies using an interactive
alginate-based in vitro model composed of human
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chondrocytes and conditioned supernatants of RASF
showed that soluble mediators released from RASF shift the
chondrocyte gene expression toward catabolism and thus led
to chondrocyte dysfunction [11]. This study provided
comprehensive insight into the molecular mechanisms in
chondrocytes that are associated with RA-related cartilage
destruction involving marker genes of inflammation/nuclear
factor-kappa-B signalling, cytokines/chemokines and
receptors, matrix degradation, and suppressed matrix
synthesis and thus revealed potential molecular targets of
RA-related cartilage destruction. The respective in vitro
models may serve as human disease models of RA-related
cartilage destruction and may help to elucidate the molecular
effects of antirheumatic drugs on human chondrocytes. For
this purpose, human chondrocytes were cultured in alginate
beads and stimulated with the supernatant of RASF and
normal donor synovial fibroblasts and antirheumatic drug-
treated RASF (like methotrexate). Microarray analysis and
enzyme-linked immunosorbent assay were performed to
determine RA-relevant chondrocyte gene expression,
antirheumatic drug response signatures, and potential new
molecular targets [77].

Conclusions
At present, tissue engineering is applied mostly for the
clinical treatment of traumatic joint cartilage defects and uses
autologous chondrocytes or in situ recruited bone marrow
MSCs. Beyond that, clinical applications for the treatment of
degenerative arthritis (OA), based on chondrocytes or MSCs
combined with resorbable transplants (allowing a stable
fixation in defects without perifocal solid cartilage shoulder),

are on the way. Here, from a clinical point of view, MSC
approaches are far from established ACI or MACI. Pro-
spectively, joint tissue engineering will be of utmost
importance if it can be used for patients with advanced
rheumatism. Since chronic joint diseases are accompanied
by inflammatory conditions in the joint, which presumably will
impair tissue formation and degrade tissue-engineered neo-
joint structures, anti-inflammatory treatment will be of crucial
importance. Screening for factors relevant to arthritis can be
performed in tissue-engineered 3D models reflecting the
human environment. Such factors can be applied separately,
can be released from the transplant itself, or can be released
by cells. Here, MSCs are of special interest since, besides
their plasticity, they show immunosuppressive and anti-
inflammatory characteristics in vitro and in both preclinical
and clinical studies. Thus, they fulfill the two basic require-
ments for tissue engineering in rheumatic diseases, namely to
generate tissue and to protect it. However, it should be
clearly stated that, despite more than 15 years of tissue
engineering research, such applications are still in a rather
early phase. For instance, characteristics of MSCs from
patients with different diseases are not well known, and even
the question of whether allogeneic or autologous MSC use is
preferable is still controversial. Moreover, recently, most of
the research community has been focused on bone marrow
MSCs. Prospectively, MSCs from other tissue sources or
pluripotent stem cells may be additional appropriate cell
candidates. For in situ therapies using cell-free biomaterials
combined with cell-recruiting factors, synovium-derived
MSCs with characteristics similar to bone marrow MSCs
represent promising candidates.
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Figure 3

Three-dimensional (3D) in vitro pannus model for rheumatoid arthritis. During rheumatoid arthritis (RA), formation of an invasive pannus tissue in the
synovial joints occurs. The pannus tissue ultimately leads to erosion of the underlying cartilage and even bone. Key players in pannus formation are
the RA synovial fibroblasts (RASFs), showing an aggressive invasive behavior. For simulation of RA in the 3D in vitro pannus model, human
chondrocytes are harvested from healthy donors and cultured for 2 weeks as high-density micromasses in 96-well plates. During this period,
cartilage matrix formation occurs. Subsequently, micromasses are coated with human RASFs. After 14 days of coculture allowing intensive
interactions of both cell types, the model can be used for the high-throughput screening of antirheumatic drugs. For automation, the CyBi™-Disk
workstation (CyBio Inc., Jena, Germany) for parallel liquid handling is used.
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