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Abstract

Introduction Secretory phospholipase A, (sPLA,) and matrix
metalloproteinase (MMP) inhibitors are potent modulators of
inflammation with therapeutic potential, but have limited efficacy
in rheumatoid arthritis (RA). The objective of this study was to
understand the inhibitory mechanism of phospholipase inhibitor
from python (PIP)-18 peptide in cultured synovial fibroblasts
(SF), and to evaluate its therapeutic potential in a human tumor
necrosis factor ("TNF)-driven transgenic mouse (Tg197) model
of arthritis.

Methods Gene and protein expression of sPLA,-IIA;, MMP-1,
MMP-2, MMP-3, MMP-9, tissue inhibitor of metalloproteinase
(TIMP)-1, and TIMP-2 were analyzed by real time PCR and
ELISA respectively, in interleukin (IL)-1f stimulated rheumatoid
arthritis (RA) and osteoarthritis (OA) synovial fibroblasts cells
treated with or without inhibitors of sPLA2 (PIP-18, LY315920)
or MMPs (MMP Inhibitor Il). Phosphorylation status of mitogen-
activated protein kinase (MAPK) proteins was examined by cell-
based ELISA. The effect of PIP-18 was compared with that of
celecoxib, methotrexate, infliximab and antiflamin-2 in Tg197

mice after ip administration (thrice weekly for 5 weeks) at two
doses (10, 30 mg/kg), and histologic analysis of ankle joints.
Serum sPLA, and cytokines (tumor necrosis factor (TNF)a, IL-6)
were measured by Escherichia coli (E coli) assay and ELISA,
respectively.

Results PIP-18 inhibited sPLA,-lIA production and enzymatic
activity, and suppressed production of MMPs in IL-1f-induced
RA and OA SF cells. Treatment with PIP-18 blocked IL-1j-
induced p38 MAPK phosphorylation and resulted in attenuation
of sPLA,-IIA and MMP mRNA transcription in RA SF cells. The
disease modifying effect of PIP-18 was evidenced by significant
abrogation of synovitis, cartilage degradation and bone erosion
in hTNF Tg197 mice.

Conclusions Our results demonstrate the benefit that can be
gained from using sPLA, inhibitory peptide for RA treatment,
and validate PIP-18 as a potential therapeutic in a clinically
relevant animal model of human arthritis.

AF-2: antiflammin-2; ANOVA: analysis of variance; AS: arthritis score; BSA: bovine serum albumin; cPLA,: cytosolic phospholipase A,; cpm: counts
per minute; DMARD: disease-modifying anti-rheumatic drug; DMEM: Dulbecco's modified eagle medium; DMSO: dimethyl sulfoxide; ELISA: enzyme-
linked immunosorbent assay; ERK: extracellular signal-regulated kinase; FBS: fetal bovine serum; GAPDH: glyceraldehyde 3-phosphate dehydroge-
nase; hr: human recombinant; IL: interleukin; JNK: Jun N-terminal Kinase; MAPK: mitogen-activated protein kinase; MMP: matrix metalloproteinase;
MMP-II: matrix metalloproteinase inhibitor-Il; NF: nuclear factor; OA: osteoarthritis; PBS: phosphate-buffered saline; PGE: prostaglandin; PIP: phos-
pholipase inhibitor from python; PLA,: phospholipase A,; RT-PCR: real-time polymerase chain reaction; RA: rheumatoid arthritis; sPLA,-IlA: secretory
phospholipase A,-group lIA; SF: synovial fibroblast; TIMP: tissue inhibitor of metalloproteinase; TNF: tumor necrosis factor.
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory condition
that is considered to be one of the more common and difficult
to treat autoimmune diseases. Although the biologic agents
(e.g., monoclonal antibodies to TNF and IL-6 receptor, and
recombinant soluble TNFa receptor, etc.) can achieve signifi-
cant suppression of the complex inflammatory network and
ameliorate the disease, they are still subject to the general dis-
advantages associated with protein drugs, such as insufficient
immune response to infectious agents and autoimmunity [1,2].
Therefore, further development of molecular agents that target
the specific intracellular pathways that are activated in RA syn-
ovium would offer an attractive therapeutic option.

Besides cytokines, chemokines, adhesion molecules and
matrix degrading enzymes that are responsible for synovial
proliferation and joint destruction [3], phospholipase A,
(PLA,), a key enzyme in the production of diverse mediators of
inflammatory conditions, is also implicated in the pathophysiol-
ogy of RA [4]. Among the vast family of PLA, enzymes, which
includes three cellular (cPLA,) isoforms and 10 secretory
PLA, (sPLA,) isoforms (IB, lIA, lIC, IID, lIE, IIF, lII, V, X, and XII),
group lIA secretory phospholipase (sPLA,-IIA) is proinflamma-
tory in vivo [5]. It is an attractive target in RA because it
releases arachidonic acid from cell membranes under some
conditions, enhances cytokine induction of prostaglandin
(PGE) production, and is associated with enhanced release of
IL-6 [B]. Proinflammatory cytokines and sPLA, potentiate each
other's synthesis, thereby creating an amplification loop for
propagation of inflammatory responses [7]. Hence, inhibition
of sPLA, may logically block the formation of a wide variety of
secondary inflammatory mediators.

In our search for such an inhibitor, we designed a 17-residue
peptide (P-NT.ll) using the parent structure of the protein
termed Phospholipase Inhibitor from Python serum (PIP) [8,9].
We have already shown proof of the concept that this small
molecule sPLA, inhibitory peptide P-NT.II has a disease-mod-
ifying effect particularly evident on cartilage and bone erosion
with eventual protection against joint destruction [10]. In our
recent study, we designed several analogs of P-NT.Il and their
inhibitory activity was evaluated by in vitro inhibition assays
against a purified human synovial sPLA, enzyme. Using cell-
based assays, gene and protein expression analyses, along
with nuclear magnetic resonance and molecular modeling-
based investigations, we have demonstrated that a linear 18-
residue peptide PIP-18 potently inhibits IL-1B-induced secre-
tions of sPLA, and matrix metalloproteinases (MMPs; 1, 2, 3,
and 9) in RA synovial fibroblasts (SF), at protein and mRNA
levels [11].

As sPLA, [2,4] and MMPs [12] have been proposed to play a
significant role in RA etiology, such peptide inhibitors may be
effective and beneficial for the treatment of RA. However,
despite their potential utility in human diseases, both inhibitors
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have limited efficacy in RA to date [13-15]. Improvements in
therapeutic benefit may be achieved by targeting both sPLA,
and MMPs. Here, we extended our study to examine the ther-
apeutic efficacy of PIP-18 on a clinically relevant TNF-driven
transgenic mouse model of human RA [16], and to study the
possible mechanism of peptide inhibition of the inflammatory
pathway in human RA SF.

Materials and methods

Clinical specimens

Synovial tissues were collected from the knee joints of RA (n
= 5) or osteoarthritis (OA; n = 5) patients at total knee-
replacement surgery and used for primary cultures within one
hour after collection. Informed consent was taken from the
patients with RA or OA who were diagnosed according to the
1987 revised clinical criteria of the American College of Rheu-
matology [17]. All samples were collected at the National Uni-
versity Hospital, Department of Orthopaedic Surgery, National
University of Singapore, according to the guidelines of the
Institutional Review Board.

Synovial fibroblast cell cultures

SF cells were isolated from the tissues by enzymatic digestion
with 1 mg/ml of collagenase Il (Worthington Biochemical Cor-
poration, Lakewood, NJ, USA) for 20 minutes at 37°C, and cul-
tured under standard conditions (37°C/5% carbon dioxide
(CO,)) in DMEM supplemented with 10% FBS, 100 U/ml of
penicillin, and 100 mg/ml of streptomycin (Gibco-BRL prod-
ucts, Gaithersburg, MD, USA). Cells were passaged by
trypsin digestion and split at a ratio of 1:3. Confirmation of
more than 90% purity of SF cell populations at passages three
and onwards involved staining for prolyl 4 hydroxylase (5B5
antibody, Abcam, Cambridge, MA, USA) and fluorescence-
activated cell sorting analysis. Cells were washed and plated
in DMEM, and only passages three to five were used in our
cell-based studies. For experiments, confluent SF cells were
serum-starved overnight and the medium was then replaced
with fresh serum-free DMEM containing 0.5% sterile-filtered,
cell culture grade BSA (Sigma-Aldrich, St. Louis, MO, USA) as
a carrier protein. Three different doses (1, 5, or 10 uM) of PIP-
18 were examined to find the peptide concentration that
showed maximal inhibitory effect on IL-1B-induced sPLA, pro-
duction. SF cells were preincubated for one hour with 5 uM of
PIP-18, a selective sPLA, inhibitor LY315920 (Lilly Research
Laboratories, Indianapolis, IN, USA), MMP Inhibitor Il (Merck
Singapore Pte Ltd., Singapore), or with vehicle (0.56% dimethyl
sulfoxide (DMSO)), and then stimulated with 10 ng/ml of
human recombinant (hr)IL-18 (Chemicon, Temecula, CA,
USA) for 24 hours. SFs cultured without IL-1p or the peptide
served as controls.

Cell viability assays

XTT (Sodium 3'- [Phenyl amine carboxyl)-3, 4-tetrazoliuml-bis
(4-methoxy-nitro) benzene sulfonic acid hydrate) Cell Prolifer-
ation Kit Il (Roche Applied Science, Indianapolis, IN, USA) was



used to assess the possible cytotoxic effect of the peptides on
the human RA/OA SF cells.

Immunoassays and cell-based ELISA

RA/OA SF samples were centrifuged briefly, and supernatants
were stored at -20°C until used. To assess the concentration
of secreted proteins, supernatants of RA/OA SF primary cul-
tures were analyzed in triplicate, using commercially available
kits for sPLA, (sPLA, human type IIA enzyme-linked immu-
noassay kit, Cayman Chemical Co., Ann Arbor, Ml, USA),
MMP-1, MMP-2, MMP-3, MMP-9, tissue inhibitor of matrix
metalloproteinase (TIMP)-1 and -2 (RayBiotech, Inc., Nor-
cross, GA, USA). Analysis of serum levels of human TNFa and
murine IL-6 was undertaken using ELISA (R&D Systems, Min-
neapolis, MN, USA). Phosphorylation of mitogen-activated
protein kinase (MAPK) proteins was examined using SuperAr-
ray CASE™ cell-based ELISA kit [18], and specific MAPK
inhibitors (p38 inhibitor SB202190, Erk inhibitor PD98059,
and Jun N-terminal Kinase (JNK) inhibitor SP600125 (all from
SuperArray Bioscience Corporation, Frederick, MD, USA) as
positive controls.

Escherichia coli-based sPLA, assay

Mouse serum sPLA, levels were measured as described [10]
with minor modifications. Briefly, reaction mixtures (250 pl)
containing 256 mM CaCl,-100 mM Tris/HCI (pH 7.5) assay
buffer, [3H] arachidonate-labeled Escherichia coli membrane
(5.8 pCi/umol, PerkinElmer Life Sciences, Inc, MA, USA) sus-
pension in assay buffer (about 10,000 counts per minute
(cpm)) and 10 pl of the serum diluted (1:50) in assay buffer
containing 0.1% fatty-acid-free BSA (Sigma-Aldrich, St. Louis,
MO, USA) were incubated for one hour at 37°C. The reaction
was terminated with 750 pl of chilled PBS containing 0.1%
fatty-acid-free BSA. The undigested substrate was pelleted by
centrifugation at 12,000 g for five minutes, and aliquots (500
ul) of the supernatant taken for measurement of the amount of
[3H] arachidonate released from the E. coli membrane using
liquid scintillation counting (LS 6500 Scintillation Counter;
Beckman Inc., CA, USA). Standard assay conditions were set
up prior to sPLA, determination in mouse serum. The linear
range for sPLA,-containing mouse serum was first established
by serial dilution of pooled mouse serum, while that of the
standard curve was determined with the purified secreted
SPLA,-IIA human recombinant protein (GenWay Biotech, Inc.,
CA, USA). To find out any possible influence of the serum
components on sPLA, standard curve, a fixed volume of 1:50
diluted mouse serum was added into varying amounts (1 to
200 ng/ml) of purified sPLA, standard before the assay. Dilut-
ing the mouse serum samples by at least 50-fold with the
assay buffer containing 0.1% fatty-acid-free BSA attained a
linearity range of 1 to 80 ng/ml of sPLA,. The amount of sPLA,
present in the serum was calculated from the standard curve
(ng/ml sPLA, on X-axis versus cpm/ml on Y-axis) and is
expressed as ng/ml + standard error of the mean.
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Quantitative real-time RT-PCR

After removal of supernatants for protein assays, the remaining
SF cells were washed with cold PBS, and pooled (n = 3
flasks) for each group: - IL-1B, + IL-1B, IL-1B + PIP-18, IL-1B
+ LY315920, and IL-1 + MMP II. Total RNA was isolated
using RNeasy® mini kit (Qiagen, Inc., Valencia, CA, USA), sub-
sequently treated with RNase-free Dnase-l (Qiagen Inc.,
Valencia, CA, USA) at 25°C for 20 minutes, and stored at -
80°C until used. The quality (Aygo/Aggq ratio = 1.9 to 2.1) and
quantity of extracted RNA were determined by spectropho-
tometry (Bio-Rad Laboratories, Hercules, CA, USA). Reverse
transcription of RNA, amplification, detection of DNA, data
acquisition, primer design, and quantitative real-time PCR
analysis were all performed as described [19]. PCR primers
(forward/reverse) for sPLA,-IA, MMP-1, MMP-2, MMP-3,
MMP-9, TIMP-1, TIMP-2 and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH; 1stBASE Pvt. Ltd., Singapore) were
as follows: (5'-AAGGAAGCCGCACTCAGTTA-3")/(5'-GGCAG-
CAGCCTTATCACACT-3'); (5'-AC-AGCTTCCCAGCGACTCTA-3")/(5'-
CAGGGTTTCAGCATCTGGTT-3"); (5'-TTGACGGTAAGGACGGACTC-
3')/(5'-ACTTGCAGTACTCCCCATCG-3');  (5'-GAGGACACCAGCAT-
GAACCT-3')/(5'-CACCTCCAGAG-TGTCGGAGT-3'); 5'-CTCGAACTTT-
GACAGCGACA-3'/5'-CCCTCAGTGAAGCGGTACAT-3';  5'-TGACA-
TCCGGT TCGTCTACA-3'/5'-CACTGTGCATTCCTCACAGC-3'; 5'-GAT-
GCACATCACCCTCTGTG-3'/56'-GTGCCCGTTGATGTTCTTCT-3;  5'-
CAAGGTCATCCACGACCACT-3'/5'-CCAGTGAGTTTCCCGTTCAG-3'.
GAPDH expression was used as an internal calibrator for
equal RNA loading and to normalize relative expression data
for all other genes analyzed. The real-time PCR data were
quantified using relative quantification (2-4A4CT) method [20].

Experimental animals

Heterozygous human TNF-transgenic mice (strain Tg197; in a
mixed genetic background C57BL/6xCBA), bred and main-
tained in the animal facility at the Biomedical Sciences
Research Centre, Fleming, Greece, were used to evaluate the
effectiveness of the peptide PIP-18 as compared with other
drugs. In these mice, a chronic inflammatory and destructive
polyarthritis develops within three to four weeks after birth
[21]. All mouse procedures were conducted in compliance
with the institutional guidelines.

Drugs used in animal studies

Methotrexate (Sigma-Aldrich, St. Louis, MO, USA), infliximab
(Remicade, Schering-Plough Labo N.V., Belgium), celecoxib
(Pfizer Inc, New York, NY, USA), and antiflammin-2 (custom
synthetised peptide) were used as comparators to the lead
anti-inflammatory peptide P-NT.Il and optimized analog PIP-
18. All peptides were custom synthesized by AnaSpec, Inc,
San Jose, CA, USA, at a purity of more than 95%.

Drug treatment

Ten weight-matched groups of Tg197 mice (n = 8 per group;
statistically calculated with a power (1 - B) of 90% and a sig-
nificance level (o) of 5%) were injected intraperitoneally (three
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times a week for five weeks) with various drugs at age three
weeks (arthritis onset). Two different doses (10 and 30 mg/kg)
were used to examine the effect of peptides (P-NT.Il and PIP-
18) on experimental arthritis. Except for methotrexate, which
was used at a lower dose of 1 mg/kg due to its higher toxicity,
doses of 10 mg/kg were used for infliximab, celecoxib, and
antifammin-2 peptide (AF-2). These doses were selected
according to those prespecified in the available literature and
according to our studies of other rodents in in vivo models
[21-24].

Clinical and histopathologic assessments

Body weight and arthritic scores (AS) were recorded weekly
for each mouse. Evaluation of arthritis in ankle joints was
peformed in a blinded manner using a semiquantitative AS
ranging from O to 3 as described previously [10]. At eight
weeks of age all mice were killed by CO, inhalation, and the
hind ankle joints removed for histology. Histologic processing,
scoring and analytical assessments of ankle joints are carried
out basically, as previously described [10,21].

Statistical analysis

Unless otherwise indicated, the analysis of variance (ANOVA)
single-factor test was used to evaluate group means of contin-
uous variables. If the ANOVA single-factor test was significant,
a post hoc test was performed using a Bonferroni's correction.
Analyses were performed using Prism statistical software

Table 1

(GraphPad Prism version 4.01, GraphPad Software Inc., San
Diego, CA, USA).

Results

Composition of RA and OA synovial fibroblasts

Table 1 shows that an average of 75% of the RA and OA SF
cells at the first passage were fibroblasts (Prolyl-4-hydroxylase
+; mAb 5B5, Dianova, Hamburg, Germany) and 15% were
macrophages (CD14+; mAb Tyk4, Dako, Hamburg, Ger-
many), while T cells (CD-3+; mAb UCHT-1, ATCC, Manassas,
VA, USA) and B cells (CD 20+; mAb B-Ly1, Dako, Hamburg,
Germany) represent less than 1% of the SF cells. Starting
from the third passage and onwards, on average approxi-
mately 99% of the SF cells were fibroblasts, with very few (<
19%) contaminating macrophages, T cells and B-cells detected
by fluorescence-activated cell sorting analysis.

Suppression of secreted sPLA2 and MMPs

The suppressive effect of PIP-18, LY315920 [25] and MMP
inhibitor Il [26] on IL-1B-stimulated sPLA, and MMP protein
expression was examined in human RA and OA SF cultures.
The peptide used at 1 to 10 uM was nontoxic to the cells after
24 hours treatment, and hence 5 uM (IC5, of PIP-18) was
applied in our cell-based assays to study its effect. The release
of sPLA,-lIA in the medium by unstimulated cells was barely
detectable, but was markedly increased by nearly 10-fold and
8-fold by IL-stimulated RA and OA SF cells, respectively. Ele-

Percentage of fibroblasts and contaminating cells in primary cultures of RA and OA synovial fibroblast cells at various passages

Passage Cell type % positive cells (Mean £ SEM)*
RA SF OA SF

First Fibroblast (Prolyl-4-hydroxylase +)1 75+ 8.0 68 £ 5.0
Monocyte/macrophage (CD14+)2 15+ 2.0 21+35

T-cells (CD3+)3 0.8+0.2 1.2+03

B-cells (CD20+)4 0.9+ 0.3 0.8+ 0.2
Third Fibroblast (Prolyl-4-hydroxylase +) 99+ 0.5 98.5 1 0.6
Monocyte/macrophage (CD14+) 0.8+ 0.2 0.6 = 0.1

T-cells (CD3+) 0.5 £ 0.1 0.8+0.2

B-cells (CD20+) 0.6 £0.2 0.5+ 0.1
Fourth Fibroblast (Prolyl-4-hydroxylase +) 98+ 0.4 99.2 £ 04
Monocyte/macrophage (CD14+) 1.0+£0.5 0.95+0.3

T-cells (CD3+) 0.5+0.2 0.5%0.1

B-cells (CD20+) 0.9+ 0.1 0.8+ 0.1

* Total number = five rheumatoid arthritis (RA) and five osteoarthritis (OA) patients. Monoclonal antibodies used for flow cytometry: mAb 5B5 1;
mAb Tyk4 2; mAb UCHT-1 3; mAb B-Ly1 4. SEM = standard error of the mean; SF = synovial fluid.
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vated sPLA, production was significantly suppressed more by
PIP-18 (***P < 0.001) than LY315920 (**P < 0.01), while
MMP inhibitor Il was the least (*P < 0.05) effective (Figure 1a).
As compared with unstimulated controls, significantly aug-
mented sPLA, activity (P < 0.001) was detected in the culture
media of IL-stimulated cells recovered after 24 hours incuba-
tion. Pretreatment of those cells with PIP-18 or LY 315920
significantly (***P < 0.001, vs IL alone) reduced this elevated
activity, whereas no significant inhibition of sPLA, activity (P>
0.05) was noted in the cells pretreated with MMP-Il (Figure
1b). Consistent with the increased sPLA, secretion by IL-1-
stimulated SF cells, marked production of MMPs (MMP-1,
MMP-2, MMP-3 and MMP-9) was also observed at 24 hours
(Figure 2). This IL-induced MMP production was significantly
suppressed by one hour of pretreatment of SFs with PIP-18
(***P < 0.001), or to a lesser degree with LY315920 (**P <
0.01). None of the inhibitors had any effect on TIMP-1 and
TIMP-2 productions.

Suppression of sPLA2 and MMP transcription
Quantitative RT-PCR was used to assess relative mRNA
expression levels of IL-1B-induced human RA SF in the pres-
ence and absence of PIP-18 (Figure 3). More than a 1.5-fold
increase or decrease of each gene relative to GAPDH was
taken as a significant change [27]. Transcription of MMP-1
(8.4 fold), MMP-2 (2.1 fold), MMP-3 (2.9 fold), MMP-9 (2.13
fold), and sPLA, (2.73 fold) was significantly upregulated
except for TIMP-1 (-1.4 fold) and TIMP-2 (-1.23 fold), which
were downregulated to levels that were not statistically signif-
icant (< -1.5 fold) following stimulation with IL-1. Comparison
of the results between the PIP-18-treated and untreated SFs
indicates that significant inhibition of gene expression was evi-
dent in human RA SF for MMP-1, -2, -3, -9, and sPLA,, but not
for TIMP-1 and TIMP-2. In contrast, sPLA,-IIA expression in
LY315920-treated RA SF did not differ significantly from that
of untreated cells, indicating that it is not as robust as PIP-18
effect on sPLA, expression.

PIP-18-mediated inhibitory effect is signaled through
p38 MAPK

The phosphorylation status of MAPK proteins in IL-1p-stimu-
lated RA SF cells before and after treatment with the peptide
or specific MAPK inhibitors is shown in Figure 4a. Phosphor-
ylation of MAPK proteins (p38, Erk, and JNK) was significantly
increased to 5.7 * 0.55, 5.2 * 0.75, and 4.9 * 0.62 folds
(mean * standard error), respectively upon stimulation with IL-
1B (P < 0.05, vs unstimulated). Pretreatment of RA SF cells
with either of the specific inhibitors SB202190, PD98059, or
SP600125, significantly (*P < 0.05 vs IL) inhibited phosphor-
ylation of p38, Erk, and JNK, respectively. p38 phosphorylation
was specifically inhibited only by its specific inhibitor
SB202190 (P<0.05, vs IL), but not by Erk inhibitor PD98059
or JNK inhibitor SP600125. PIP-18 selectively and signifi-
cantly reduced IL-1B-induced p38 phosphorylation from 5.7 *
0.55 to 2.4 + 0.35-fold (*P < 0.05, vs IL). Erk phosphorylation
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Inhibition of sPLA,-lIA release into medium by PIP-18 in RA and OA SF
cultures. Confluent synovial fibroblast (SF) cells in 75 cm? flasks were
serum-starved for overnight (16 hours) before incubation for one hour
with 5 pM PIP-18, LY315920, matrix metalloproteinase inhibitor Il
(MMP-I1), or with vehicle (0.5% dimethyl sulfoxide final concentration in
medium), and stimulation with hrlL-1B (10 ng/ml) for 24 hours. Rheu-
matoid arthritis (RA)/osteoarthritis (OA) SFs cultured without IL-1p or
the inhibitors served as controls. (a) Immunoreactive secretory phos-
pholipase A, (sPLA,) released in the culture medium was determined
by sPLA, human type llA enzyme-linked immunoassay kit. (b) sPLA,
enzymatic activity was measured with an Escherichia coli membrane
assay as described [11]. Data shown are the mean * standard error of
the mean of the combined data of triplicate determination of triplicate
experiments performed on a pool of RA SF cultures from five RA
patients. One-way analysis of variance with post hoc test was done
using Bonferroni's correction. *P < 0.05, **£ < 0.001, **P < 0.001 for
pair-wise comparisons of each inhibitor type (IL without inhibitor versus
IL with inhibitor). PIP = phospholipase inhibitor from python.
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Figure 2
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Suppressive effects of PIP-18 versus sPLA, and MMP inhibitors on MMP secretion. Osteoarthritis (OA) and rheumatoid arthritis (RA) synovial
fibroblast (SF) cells were incubated for one hour with 5 uM phospholipase inhibitor from python (PIP)-18, matrix metalloproteinase (MMP)-Il inhibitor
or secretory phospholipase A,(sPLA,) inhibitor LY-315920, stimulated overnight with rhlL-1f (10 ng/ml), and supernatants assayed for MMP secre-
tions by ELISA: (a) MMP-1, (b) MMP-3, (c) MMP-2, (d) MMP-9, (e) tissue inhibitor of metalloproteinase (TIMP)-1, (f) TIMP-2. Results are the mean
+ standard error of the mean of the combined data of triplicate determination of triplicate experiments done on a pool of RA SF cultures from five RA
patients. Bonferroni's post hoc test was done only if the analysis of variance single-factor test was found significant. *P < 0.05, **P < 0.01, **P <
0.001 for pair-wise comparisons (IL without inhibitor versus IL with each of the inhibitor used in the study.

was only partially reduced from 5.2 + 0.75 to 4.2 + 0.65-fold
(P> 0.05, vs IL), while the peptide had little or no effect on
INK phosphorylation (P> 0.05, vs IL). These findings collec-
tively indicate that PIP-18 exerts its effect on the MAPK sign-
aling pathway via attenuation of p38 phosphorylation.
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The effects of sPLA, inhibitors (PIP-18 and LY315920) and
MAPK inhibitors (SB202190, PD98059, SP600125) on IL-
1B-induced MMP and sPLA, production by RA SF are shown
in Figure 4b. sPLA, inhibitors as well as inhibitors of p38 and
Erk, significantly suppressed MMP and sPLA, secretion. PIP-
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18 was more effective in suppressing MMP/sPLA, production
to less than 20% of the control levels (***P < 0.001 vs IL),
while LY315920, p38 and Erk inhibitors were relatively less
effective (*P < 0.05 vs IL). With the JNK inhibitor SP600125,
no significant (P > 0.05) effect was found on MMP or sPLA,
production.

Impact of PIP-18 on arthritis progression

The clinical effect was assessed based on the body weight
gain and the degree of swelling and deformation of the ankle
joints of Tg197 mice. As compared with untreated or vehicle-
treated mice, only the groups that received 30 mg/kg of PIP-
18 and 10 mg/kg of infliximab had significant increase (P <
0.05 relative to untreated animals) in body weights at eight
weeks of age, while the remaining groups of mice did not show
any significant weight gain during the five-week study course
(Figure 5a).

PIP-18 suppresses IL-stimulated p38 MAPK phosphorylation. (a)
Rheumatoid arthritis (RA) synovial fibroblast (SF) cells were preincu-
bated at 37°C for one hour with various inhibitors at optimal concentra-
tions: phospholipase inhibitor from python (PIP)-18 (5 uM), LY315920
(5 uM), SB202190 (10 pM), PD98059 (1 uM) or SP600125 (5 uM),
and stimulated with rhIL-1B (10 ng/ml) for 30 minutes before assaying
for p38, Erk and JNK phosphorylation, using cell-based ELISA. For con-
trol of systematic variation, blank control wells (without cells) as well as
experimental control wells (seeded cells without any treatment) were
included. Phosphorylation index (Pi) was calculated as relative levels of
the phosphorylated form of mitogen-activated protein kinase (MAPK)/
total MAPK levels. Values are mean * standard error of the mean
(SEM) of three separate experiments presented as fold increase of Pi of
experimentally treated cells relative to control cells without any treat-
ment. (b) RA SF from separate experiments were pretreated with inhib-
itors as in (a), followed by stimulation with hrlL-1f3 (10 ng/ml) for 16
hours, and supernatants analyzed for secretory phospholipase
A,(sPLA,) and matrix metalloproteinase (MMPs) as indicated. Values
expressed as % IL-1f stimulation are mean £ SEM for four experiments
for each condition. PIP-18 was more effective in suppressing MMP/
sPLA, production (***P < 0.001 vs IL), while LY315920, p38 and Erk
inhibitors were relatively less effective (*P < 0.05 vs IL). *P < 0.05, **P
< 0.01 (one-way analysis of variance with Bonferroni's post hoc test);
for pair-wise comparisons (IL without inhibitor versus IL with each of
the inhibitor used in the study).
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Figure 5
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Beneficial effects of PIP-18 on disease outcome. Intraperitoneal injec-
tions commenced at age three weeks and terminated at eight weeks.
Body weights were recorded before and weekly after injections. (a)
Tg197 mice injected with phospholipase inhibitor from python (PIP)-18
(30 mg/kg) or infliximab (10 mg/kg) significantly (*P < 0.05, vs
untreated) gained body weights at eight week. Drugs without effect are
not shown. (b) Low dose (10 mg/kg) of peptides shows effect at eight
weeks, while the higher dose of PIP-18 (30 mg/kg) or infliximab (10
mg/kg) effectively reduced arthritis score (AS) at six weeks. AS was
significantly reduced at eight weeks in the ankle joints of mice treated
with 10 mg/kg of P-NT.Il or PIP-18 (*P < 0.05 vs untreated), and 30
mg/kg of PIP-18 (**P < 0.01, vs untreated) or 10 mg/kg of infliximab
(***P < 0.001, vs untreated). Data are mean * standard error of the
mean of 16 joints per group (One-way analysis of variance with Bonfer-
roni's multiple comparison test).

AS obtained during the five-week-treatment period (Figure 5b)
showed a marked suppression of disease progression in mice
treated with the peptides (10 mg/kg P-NT.Il or 10 to 30 mg/kg
of PIP-18) or 10 mg/kg infliximab, but not in untreated Tg197
mice or those treated with vehicle (DMSQ), AF-2, methotrex-
ate, or celecoxib. AS taken at terminal point (Figure 5b) indi-
cated that PIP-18 (30 mg/kg) or infliximab (10 mg/kg) had the
maximal suppressive effect on disease progression (**P <
0.001, vs untreated or vehicle treated). Treatment with lower
doses of peptide (10 mg/kg of P-NT.Il or PIP-18) also signifi-
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cantly (*P < 0.01, vs untreated) reduced AS, but had less
impact on disease progression as compared with treatment
with a higher PIP-18 dose (30 mg/kg). Infliximab (10 mg/kg)
was significantly more effective than 30 mg/kg PIP-18 (**P <
0.01) in reducing AS (two-tailed paired t-test).

Histopathologic evidence of peptide-mediated disease
modulation

Synovitis and joint histopathology as shown in the representa-
tive tissue sections from Tg197 ankle joints (Figure 6) indicate
that the joints of the untreated, vehicle-treated or those treated
with methotrexate, celecoxib, or AF-2 were moderately to
severely damaged by the expansion of synovial pannus and
destruction of cartilage and bone structures (Figure 6a). The
beneficial effect of peptide treatment on synovial inflammation,
cartilage and bone erosions was evident at 10 mg/kg (Figure
6b), with the effect becoming more pronounced at a higher
dose of 30 mg/kg (Figure 6c). No marked difference was seen
in the histologic features between the joints of mice treated
with 30 mg/kg PIP-18 (Figure 6¢c) and 10 mg/kg infliximab
(Figure 6d), with joint pathology appears to be similar to that
of normal (wildtype) joint (Figure 6e) in both cases. As shown
in the graph (Figure 61), histopathologic score values obtained
for the two groups (30 mg/kg PIP-18 vs 10 mg/kg infliximab)
were not significantly different (P > 0.05, two-tailed paired -
test). There was a significant reduction in the mean histopatho-
logic score in joints of mice that received 30 mg/kg of PIP-18
or 10 mg/kg of infliximab (**P < 0.01), 10 mg/kg of P-NT.Il or
PIP-18 (**P < 0.01), 1 mg/kg of methotrexate, and 10 mg/kg
celecoxib or AF-2 (*P < 0.05) when compared with the joints
of the untreated control Tg197 (Figure 6f).

PIP-18 modulates joint inflammation and bone
destruction more favorably than DMARDs

Administration of PIP-18 at doses of 30 mg/kg three times per
week for five weeks in Tg197 mice resulted in a significant
reduction (**P < 0.01) in all three analytical histopathologic
scores (synovitis, cartilage destruction and bone erosion) as
compared with those of untreated Tg197 mice, which all
developed synovitis with severe articular cartilage degradation
and bone erosions (Figures 7a to 7¢). Comparative analyses
showed PIP-18 to be more potent than the disease-modifying
anti-rheumatic drugs (DMARDs; methotrexate and celecoxib)
or the anti-inflammatory peptide (AF-2) in suppressing synovi-
tis, cartilage degradation and bone erosion. Methotrexate and
celecoxib are the DMARDs that are presently used for arthritis
treatment. As compared with PIP-18, both drugs are less
effective in reducing synovitis (Figure 7a) or cartilage (Figure
7b) and bone (Figure 7c) components of arthritis in our trans-
genic mouse model. PIP-18 peptide was more potent than the
DMARDs (methotrexate and celecoxib) or the anti-inflamma-
tory peptide (one way ANOVA with Bonferroni's multiple com-
parison post test; *P < 0.01, **P < 0.001 vs untreated
control), and was as effective as infliximab in suppressing syn-
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Histopathologic evidence of peptide-mediated disease modulation. H&E-stained representative ankle sections from Tg197 mice (a) without treat-
ment, or after treatment with (b) 10 mg/kg and (c) 30 mg/kg of phospholipase inhibitor from python (PIP)-18, respectively for five weeks (n =16
joints/group). The extent of synovial hyperplasia (sh), cartilage degradation (cd), and bone erosion (be) was less marked in the joints of (b, c) pep-
tide-treated group than in (a) untreated joints, with histologic appearance more or less similar to that seen in the (d) infliximab treated or (e) normal
(wild type) joints. Note the less marked hyperplasia (arrow), cartilage destruction (*) and bone erosion (arrowhead) in the representative joint of (c)
30 mg/kg PIP-18-treated group compared with that of (b) 10 mg/kg PIP-18-treated group. b = bone; be = bone erosion; ¢ = cartilage; cd = carti-
lage degradation; jc = joint cavity; sh = synovial hyperplasia. (f) Mean histopathologic scores (HS) are shown for different treatment groups. Com-
pared with untreated mice, P-NT.II, PIP-18 and infliximab treatment significantly decreased HS (**P < 0.001) as did treatment with antiflammin-2,
methotrexate (Mtx), and celecoxib (Cxb), which were less effective (*P < 0.01). Higher dose (30 mg/kg) of PIP-18 was more effective than the lower
dose (10 mg/kg) (*P < 0.01). One-way analysis of variance with Bonferroni's multiple comparison post test. Bars = 500 um. Infliximab (10 mg/kg)
and 30 mg/kg PIP-18 had similar modulatory effect on HS (P> 0.05, two-tailed paired t-test).

ovitis, cartilage degradation and bone erosion (P > 0.05, two-
tailed paired t-test).

Serum levels of sPLA2 and proinflammatory cytokines

Compared with untreated or vehicle-treated Tg197 mice,
serum levels of murine sPLA, and IL-6, (msPLA,, mIL-6), and
human TNF (hTNF-a) decreased significantly (*P < 0.05 vs

untreated) at five-week post-treatment with 30 mg/kg PIP-18
(Figure 8). Infliximab (10 mg/kg) significantly reduced serum
hTNF-a ((**P < 0.01) and mlL-6 ((*P < 0.05) levels, but had
no significant (P> 0.05) effect on msPLA,,. In contrast, none
of the serum levels of msPLA,, mIL-6 and hTNF-a were signif-
icantly reduced in mice treated with celecoxib. Other peptides
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Figure 7
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PIP-18 modulates joint inflammation and bone destruction more favora-

bly than AF-2 peptide and DMARDs. Differential histologic scores (HS)
of ankle joints of untreated Tg197 mice or those treated with the pep-
tides (P-NT.Il and phospholipase inhibitor from python (PIP)-18) or

comparator drugs (methotrexate (Mtx); celecoxib (Cxb); infliximab (infx-

mab); antiflammin-2 (AF-2)) are shown. Compared with other drugs, inf-

liximab and the peptides P-NT.Il and PIP-18 significantly inhibited (a)

synovitis, (b) cartilage destruction and (c) bone erosion. DMARD = dis-

ease-modifying anti-rheumatic drug.
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(P-NT.Il or AF-2) or methotrexate that did not show any signif-
icant changes, were excluded from Figure 8 for clarity.

Discussion

Despite the initial success seen with the use of small molecule
inhibitors of sPLA, and MMPs in animal models [28,29], inter-
ests in their therapeutic potential have been mitigated by
undesirable side effects [30] and a lack of efficacy [13,14,31]
observed in later clinical trials. Compared with MMP inhibitors,
sPLA, inhibitors have a better safety profile, but have limited
efficacy in clinical studies [14,15]. One of the potential rea-
sons for the failure of LY333013 may be incomplete inactiva-
tion of sPLA, in the SF due to inadequate dose of the inhibitor
used in the trial [32]. As sPLA, and MMP inhibitors have lim-
ited efficacy in RA, the use of an inhibitor that can target both
sPLA, and MMP could be advantageous.

In our study, inhibition of sPLA, production and mRNA expres-
sion is reflected by a significant decrease of sPLA, enzymatic
activity in IL-induced RA SF cells pretreated with PIP-18. In
contrast to LY315920, a small molecule that binds directly to
the sPLA, active site for inhibition [33], a 2000 Dalton PIP-18
peptide is proposed to bind to the hydrophobic binding
pocket near the N-terminal helix of sPLA, [11]. PIP-18 has two
putative pharmacophores for binding more than one molecule
of sPLA,, and this may account for its relatively stronger sup-
pressive effect on sPLA, transcription and translation as com-
pared with that of LY315920. The strong inhibitory effect of
PIP-18 on enzymatic activity as well as protein and mRNA
expression of sPLA, may perhaps be a unique feature of this
peptide. It inhibited more than 70% of sPLA, secretion and
more than 90% of mRNA expression in IL-induced RA SF
cells, suggesting that the inhibitory effect of PIP-18 on sPLA,
occurs at transcriptional and post-transcriptional levels. To
provide a comprehensive picture of the inhibitory effect of dif-
ferent inhibitors on cytokine-stimulated expression of sPLA,
and MMP genes and secreted proteins in RA and OA SF cells,
we acknowledge here that part of the data previously pub-
lished elsewhere [11] have been incorporated in Figures 1 to
3 of this paper.

In normal human synoviocytes, sPLA,-lIA steady-state mRNA
is inducible by IL-1 [4], whereas in human RA SF, IL-1-f does
not appear to induce sPLA,-lIA protein and enzyme activity
[34]. The data on sPLA,-lIA steady-state mRNA reported
herein are conclusive because they are obtained with very sen-
sitive quantitative RT-PCR techniques, thus confirming our
finding that sPLA,-IIA mRNA is indeed inducible by IL-1 in cul-
tured human RA and OA SF cells. Although our data appears
to be at odds with the previous report [34], the relevance of
our data on IL-induced sPLA,-llA protein secretion in RA SF
cells may be supported by the fact that sPLA,-IlA protein is
detectable by immunofluorescence in synovial fibroblast cells
from RA patients [35].
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Serum levels of murine sPLA, and IL-6, and human TNF-a.. Tg197 mice
received either vehicle (0.5% dimethyl sulfoxide in phosphate-buffered
saline), peptides (P-NT.Il or PIP-18), or comparator drugs (antiflammin-
2, methotrexate, celecoxib and infliximab) at age three weeks (disease
onset), and blood samples collected by cardiac puncture at termination
(age eight weeks). Murine (m) serum secretory phospholipase A,
(sPLA,) levels were measured with an Escherichia coli membrane
assay. Analysis of murine TNF-a and IL-6 was done by ELISA. Values
are the mean * standard error of the mean of each group; *P < 0.05;
**P < 0.01 vs untreated or vehicle treated Tg197 mice.
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As sPLA, has previously been suggested as a regulator of
MMP activation [36], the effect of PIP-18 on MMPs seems
only secondary to sPLA, inhibition. The suppressive effect of
PIP-18 on sPLA, and MMP transcription found in IL-induced
RA SF (Figure 3) may likely be due to its interference on tran-
scription factors like MAPKs, one of the several potential tar-
gets for therapeutic intervention in RA [37]. As nuclear factor
(NF)-xB is also implicated in MMP transcription [12], its
involvement in PIP-18-mediated MMPs suppression, although
not reported herein, could not be ruled out. Compared with
INK and extracellular signal-regulated kinase (ERK), p38
MAPK is strongly activated by IL-1f stimulation, and is highly
susceptible to PIP-18 inhibition, suggesting that the effect of
peptide on MMP transcription is related to its ability to modu-
late the activation of the p38 MAPK pathway in RA SF cells.
Although JNK and ERK specific inhibitors are known to block
IL-1-B-induced MMP expression in cultured cells, we did not
find any significant inhibition of MMPs with SP 600125 or PD
98059 in our cell-based studies (Figure 4b). The failure to
block cytokine-induced expression of MMPs by SP 600125 or
PD 98059 inhibitors has also been reported in other studies
[38-40]. Because small molecule MMP inhibitors targeting
MMP enzymatic activity are known to cause side effects in clin-
ical trials [30], modulating MMP gene expression as an alter-
native to targeting MMP enzymes will offer a better strategy of
controlling inflammatory joint diseases such as RA.

Of note, some differences between PIP-18 and LY315920 are
evident with respect to their ability to suppress different MMPs
in IL-1B-induced RA SF (Figure 4b). The MMP inhibition
potency of PIP-18 is in the order,
MMP3>MMP1~MMP2~MMP9, whereas that of LY315920 is
MMP2>MMP9~MMP3>MMP1 (Figure 4b), suggesting that
the two sPLA, inhibitors may not be identical in their mode of
action. Differential regulation of MMP-3, MMP-2, and MMP-9
has been reported with respect to the ERK, JNK, and p38
MAPK pathways [41]. IL-1B-stimulated production of MMP-3
and -1 in RA SFs is suppressed by specific p38 MAPK inhibi-
tors [42,43]. MMP-2 expression is relatively less sensitive to
MAPK inhibition than MMP-3 and MMP-1, due to the absence
of binding sites for activator protein 1 (AP-1) transcription fac-
tor in the MMP-2 promoter [44]. Hence, it is likely that PIP-18
appears to mediate IL-1B-induced expression and synthesis,
particularly of MMP-3 and MMP-1, at the level of transcription
involving p38 MAPK and AP-1, while LY315920 may exert its
effect via mediation of different transcriptional pathways or
other regulatory mechanisms.

The possible mechanism by which PIP-18 peptide suppresses
cytokine-stimulated expression of sPLA, and MMP genes and
secreted proteins is depicted in Figure 9. In this proposed
model, PIP-18 binds sPLA, and inhibits its enzymatic activity,
leading to reduced PGE,production. sPLA,-IA enzymatic
activity is required to amplify cytokine-stimulated PGE, pro-
duction in cultured RA SF [4,35], and it has been reported that
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Figure 9
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Possible mechanism of PIP-18 suppression on IL-stimulated expression of sPLA, and MMPs. IL-1p and/or TNF initiate the expression of secretory
phospholipase A, (sPLA,)-lIA and matrix metalloproteinases (MMP) through activation of mitogen-activated protein kinase (MAPK) cascade. (1)
phospholipase inhibitor from python (PIP)-18 blocks p38 MAPK phosphorylation and reduces activation of transcription factors (activator protein-1
(AP-1), activating transcription factor 2 (ATF-2)), which regulate the transcription of sPLA,-IlA, MMPs (MMP-1, MMP-2, MMP-3, MMP-9) and proin-
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matic activity by PIP-18 contributes to reduced generation of arachidonic acid for prostaglandin production. MAPKKK = MAPK kinase kinase;
MAPKK = MAPK kinase; PGE2 = prostaglandin E2; sPLA,-IlA = secretory phospholipase A,-Group IIA; solid arrows, known pathways; , inhibition

(NF-xB pathway is not shown here).

sPLA, inhibitors, LY311727 [4] and a cyclic peptide [45],
effectively block sPLA,-IIA-mediated amplification of cytokine-
induced PGE, production in cultured RA SF through inhibition
of sPLA,-lIA enzymatic activity. Besides inhibiting sPLA, activ-
ity, PIP-18 also blocks p38 MAPK phosphorylation. These
results suggest that sPLA, inhibition and blocking of p38
MAPK activation by PIP-18 are independent functions, and
may support the view that PIP-18 is a dual-function inhibitor.

Based on well-known pathways (as indicated by solid lines in
Figure 9), IL-1B and/or TNF initiate the expression of sPLA,-IIA
and MMPs through activation of MAPK cascade involving
MAPKKK, MAPKK and MAPKs [37]. p38 MAPK contributes to
transcription of MMPs and sPLA,-IIA by promoting expression
of AP-1 genes [46,47]. According to our results, PIP-18
blocks mainly IL-induced p38 MAPK phosphorylation, which
may result in the diminished available pool of activated AP-1,
possibly leading to reduced mRNA expression and decreased
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secretion of sPLA,, MMPs, and cytokines [46-48]. The proin-
flammatory cytokines have the ability to stimulate all four p38
MAPK isoforms [49], but there are differences among the iso-
forms with respect to the mode of activation, substrate specif-
icity, and function [50]. As the present data do not provide
information on the differential effect of PIP-18 on p38 iso-
forms, it would be interesting to direct our future research on
that aspect.

Besides, it is also possible that blocking p38 MAPK activity by
PIP-18 may diminish cPLA,-a production, resulting in reduced
AA required for PGE generation. cPLA,-a. dependence of
PGE, production in IL-1B-stimulated RA SF has previously
been reported [34]. Studies in sPLA,-transfected HEK293
cells [51] and mesangial cells from cPLA,-a-deficient mice
[52] suggest that sPLA, can act along with cPLA,-o to maxi-
mize arachidonate release and increased PGE, synthesis. A
functional cross-talk between cPLA,-o and sPLA,-IIA in IL-



induced RA SF cells, such as that observed in other cell types
[51-563], may signify the importance of sPLA, relative to cPLA,
induction in cytokine-stimulated RA SF cells and its inhibition
by PIP-18 for RA treatment. Further work would be of benefit
to determine whether these mechanisms occur.

The hTNF Tg197 model [16] used in this study is a clinically
relevant model recommended by the US Food and Drug
Administration for screening potential RA candidate drugs
[54]. As compared with PIP-18, methotrexate and celecoxib
are less potent; being able to suppress only synovitis, but not
cartilage destruction and bone erosion to a significant extent.
Because the efficacy of methotrexate is influenced by genetic
factors, the reduced responsiveness of Tg197 mice to meth-
otrexate may be related to adaptive immunity in arthritis devel-
opment [21]. Ineffectiveness of methotrexate has previously
been reported for Tg197 mice [21] and other arthritis animal
models [22,55]. In contrast to the protective effect of
celecoxib seen in various murine arthritis models [24,56], we
did not find any reduction in the clinical scores of celecoxib-
treated Tg197 mice, which express high levels of TNF mRNA
and protein in their inflamed joints [16] and circulation [57].
Inhibition of COX-2 by celecoxib may exacerbate TNF produc-
tion as a result of an imbalanced rise in thromboxane A, rela-
tive to PGE, levels [68], and the corresponding surge in TNF
levels may provide an explanation for the reduced efficacy
seen in Tg197 mice with celecoxib treatment.

AF-2, a 9-mer PLA, inhibitory peptide derived from uteroglobin
and annexin-1 amino acid sequences, shows potent anti-
inflammatory activity in diverse animal models [59]. In Tg197
mice, it significantly (P < 0.05) moderates histopathologic
score of synovitis, cartilage destruction and bone erosion (Fig-
ure 7), but fails to show appreciable abrogation of AS (Figure
5b). As observed previously in other studies [21,60], infliximab
is also very effective in inhibiting inflammation and bone
destruction in our study. No significant difference established
between PIP-18 and infliximab for the total (Figure 6f) as well
as differential histopathologic score on synovitis, cartilage,
and bone (Figure 7) may seem to suggest equal efficacy
between the two treatments. However, when the two drugs
are compared in terms of molar basis, the efficacy of infliximab
would nevertheless outweigh that of PIP-18. A statistically sig-
nificant difference (P < 0.05, PIP-18 vs infliximab) noted
between the two treatments on the AS (Figure 5b) is sugges-
tive of the superior potency of infliximab relative to PIP-18 in
reducing the disease activity.

It has been reported that TNF stimulates sPLA,-IIA gene
expression and secretion by different transcriptional activation
pathways [61]. High levels of TNF expressed in the inflamed
joints of Tg197 mice [16] could facilitate sPLA, expression
and secretion, and amplify the available pool of sPLA, that is
highly expressed in the articular cartilage and chondrocytes of
RA joints [62,63]. However, it should be noted that this spec-
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ulation is based on the results obtained with murine mesangial
cells [61], and may not be directly related to human SF cells.
Besides stimulating sPLA,-IIA production, TNF is also capable
of inducing cartilage catabolism via increased MMP expres-
sion and activation [64]. In Tg197 mice, PIP-18 significantly
reduced serum levels of msPLA,, mIL-6, and hTNF-a as com-
pared with untreated or vehicle-treated control animals. Con-
sidering that PIP-18 significantly reduces serum TNF-a. levels
in Tg197 mice, the possibility that MMP gene expression
could also be an indirect effect of PIP-18 through suppression
of TNF production should also be taken into account. From the
data, it is plausible to suggest that PIP-18 suppresses p38
MAPK phosphorylation that in turn suppresses TNF produc-
tion because cytokine production is regulated significantly by
p38 MAPK, whereas MMP production is regulated both by
p38 MAPK and JNK. It has been reported that blockade of
TNF leads to a reduction of osteoclast numbers and enhanced
osteoblast numbers [65]. Hence, the PIP-18 peptide may be
a potential agent for preventing pathologic bone loss. Experi-
mental studies to verify whether the peptide directly affects
osteoclast precursor cells to suppress their differentiation to
mature osteoclasts are currently underway. Although
LY315920 and MMP-II inhibitors used in this study are well
defined [25,26] and have been extensively used in several
studies [29,30,66,67], the former is known for its varying
potency for several isoforms of sPLA, [28], while the latter is a
broad-spectrum metalloproteinase inhibitor [26]. Hence, data
obtained with such pharmacological agents should be inter-
preted with caution.

Conclusions

In conclusion, our data show that PIP-18 significantly inhibits
sPLA,-IIA enzymatic activity and downregulates sPLA,-lIA and
MMPs (MMP-1, MMP-2, MMP-3, MMP-9) at both the tran-
script and the protein level in IL1-B-induced RA SF cells via
attenuation of p38 MAPK phosphorylation. Treatment of TNF-
driven Tg197 transgenic mice with PIP-18 significantly modu-
lates disease progression by suppressing arthritis indicators
(synovitis, cartilage and bone erosion) as well as circulatory
levels of murine sPLA,, IL-6, and human TNF-o.. The in vitro
and in vivo preclinical data available from the present study
thus validate the potential of this peptide as RA therapeutics.
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