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Abstract

For many years the heterogeneity of CD4* T-helper (Th) cells has
been limited to Th1 and Th2 cells, which have been considered not
only to be responsible for different types of protective responses,
but also for the pathogenesis of many disorders. Th1 cells are
indeed protective against intracellular microbes and they are
thought to play a pathogenic role in organ-specific autoimmune
and other chronic inflammatory disorders. Th2 cells provide
protection against helminths, but are also responsible for the
pathogenesis of allergic diseases. The identification and cloning of
new cytokines has allowed one to enlarge the series of functional
subsets of CD4* Th effector cells. In particular, CD4* Th cells
producing IL-17 and IL-22, named Th17, have been initially
implicated in the pathogenesis of many chronic inflammatory
disorders instead of Th1 cells. However, the more recent studies in
both humans and mice suggest that Th17 cells exhibit a high
plasticity toward Th1 cells and that both Th17 and Th1 cells may
be pathogenic. More recently, another two subsets of effector
CD4* Th cells, named Th9 and Th22 cells, have been described,
even if their pathophysiological meaning is still unclear. Despite the
heterogeneity of CD4+ effector Th cells being higher than
previously thought and some of their subsets exhibiting high
plasticity, the Th1/Th2 paradigm still maintains a strong validity.

Introduction

CD4+ T-helper (Th) lymphocytes represent a heterogeneous
population of cells that play an essential role in adaptive
immunity. These cells include effector cells, which are
devoted to protection against pathogens, and regulatory
T cells (Tregs), which protect against effector responses to
autoantigens and also against responses to exogenous
antigens when they may become dangerous for the host. The
term Th derived from the observation that these cells were
critical for helping B cells to produce antibodies in the
primary response (humoral immunity). On the other hand,
CD4* T cells were also found to be responsible for the so-
called cell-mediated immunity, or delayed-type hypersensi-
tivity, which was characterized by the ability of these cells to
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induce inflammatory reactions mainly characterized by the
activation of macrophages. The prototypic cell-mediated
immune response was considered to be the skin papular
reaction induced by intradermal injection of tuberculin or
purified protein derivative (PPD) in animals infected with
tubercular bacilli or in humans naturally infected by Myco-
bacterium tuberculosis or vaccinated with Bacillus Calmette-
Guérin (BCG).

The first demonstration of the existence of at least two
different populations of CD4+ effector T cells was given in
1972 by Parish and Liew [1]. Injection of multiple doses of
flagellin in Wistar rats allowed them to demonstrate that
suppression of delayed-type hypersensitivity was observed
when enhancement of antibody response occurred, suggest-
ing an inverse relationship between humoral and cell-
mediated immune response. In 1986 Mosmann and his
coworkers showed that the functional heterogeneity of
murine CD4* T cells was due to their different profile of
cytokine production [2], a finding that was also confirmed in
humans [3,4]. Murine and human CD4* T cells were cate-
gorized into two main subsets, which were defined as Th type 1
(Th1) or Th type 2 (Th2) [2-4].

The T-helper type 1/T-helper type 2 paradigm

The reason for the heterogeneity of effector CD4* Th cells is
mainly related to their protective function, because it enables
the best type of response according to the nature of the
invading microorganism. Th1 cells produce high levels of
IFNy and are responsible for both phagocyte activation and
the production of opsonizing and complement-fixing anti-
bodies, thus playing an important role in protection against
intracellular pathogens. Th2 cells produce IL-4, IL-5, IL-9 and
IL-13, thus being mainly involved in the protection against
parasitic helminths [5]. IL-4 and IL-13 are the major mediator
of IgE class switching in B cells [6]. IgE binds to FceRI on

EAE = experimental autoimmune encephalomyelitis; GATA-3 = GATA-binding protein-3; IFN = interferon; IL = interleukin; ROR = retinoic acid-related
orphan receptor; STAT = signal transducer and activator of transcription; T-bet = T-box expressed in T cells; TGF} = transforming growth factor

beta; Th = T-helper; TNF = tumour necrosis factor; Treg = regulatory T cell.
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basophils and mast cells, and their interaction with a
multivalent ligand induces cross-linking of FceRl — which
leads to the secretion of active mediators such as histamine
and serotonin, and to the production of several cytokines and
chemokines, including IL-4, IL-13, TNFo. and eotaxins. IL-5
positively regulates a large number of eosinophil functions,
including eosinophilopoesis, bone marrow release, activation
and survival [7]. IL-9 production following infection by
helminths contributes to the general mast cell and IgE
response characteristic of these infections [8]. In addition to
its effect on mast cells and lymphocytes, IL-9 induces mucin
production in epithelial cells [9]. To say that Th1 cells are
responsible for cell-mediated immunity and Th2 cells are
responsible for humoral immunity, however, is not correct.
Indeed, Th1 cells allow the production of IgG,, antibodies in
mice and of IgM, IgA, IgG,, I1gG, and IgG; antibodies in
humans, whereas Th2 cells induce IgG, and IgE antibodies in
mice and IgM, IgG, and IgE in humans.

The mechanisms responsible for Th1 or Th2 polarization were
also discovered. Based on the observation that IL-12 and
IFNo, two cytokines produced by dendritic cells, acted as
powerful inducers of human Th1 polarization [10-12], | hypo-
thesized that the type of innate immunity response was the
main conditioning mechanism for the type of subsequent
adaptive immunity [13]. This hypothesis was found to be true
when the existence in dendritic cells of the so-called Toll-like
receptors was observed [14]. The Toll-like receptors are able
to interact with a group of highly conserved structures of
many bacteria and viruses, and this interaction usually results
in the production by dendritic cells of high amounts of IL-12
and/or IFNa, thus explaining the Th1 polarization usually
induced by microbial infections. Indeed, IFNo. produced by
dendritic cells and/or IFNy produced by natural killer cells
upon stimulation by IL-12 activates the signal transducer and
activator of transcription (STAT)-1 in the naive CD4 T cells.
Activated STAT-1 upregulates T-box expressed in T cells (T-
bet) expression, which in turn induces early T-cell IFNy
production and upregulates IL-12RB, expression. The IL-
12RpB,-expressing T cells can then directly respond to IL-12
that, through activation of STAT-4, induces high IFNy
production and sustains the expression of IL-12Rp, [15].

Collaboration between interferons and IL-12 therefore
induces full Th1 differentiation [15-18]. At later stages of Th1
differentiation, IL-18Ro. is also upregulated. IL-18Ro. upregu-
lation requires IL-12/STAT-4 signalling and is further
increased by IFNy. IL-12 and IL-18 jointly induce IFNy
production by Th1 cells in the absence of T-cell receptor
stimulation. Such antigen-independent cytokine production is
probably important for amplifying Th1 responses by recruiting
other pre-existing Th1 cells [19,20].

At that time it was also found that Th2 polarization was mainly
due to the early production of IL-4 during the primary
response [12]. The cell and the mechanisms responsible for
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this early IL-4 production, however, remained unclear for a
long time. Only recently was it found that IL-4 could be
produced by the naive Th cell itself, upon Notch triggering, as
a consequence of the expression by the dendritic cells of its
ligand Jagged-1 in both mice and humans [21-23]. Another
possibility is the production by other cell types, such as mast
cells and macrophages present in the gut of worm-infested
animals or lung epithelial cells, of a more recently discovered
cytokine, named IL-25. IL-25 can induce the early production
of IL-4 by a non-T, a non-B, c-kit*, a FceR1~ cell or by the Th
naive cell itself, thus allowing its Th2 polarization [24,25].

The interaction of the endogenous and/or exogenous IL-4
with its receptor results in the activation of STAT-6, which in
turn upregulates GATA-binding protein-3 (GATA-3) and c-
maf expression [26-30]. GATA-3 has been reported to
induce its own expression [31], probably when it reaches a
threshold level. GATA-3 binds to regions of the 114/1113 loci,
including DNasel hypersensitive site Va and conserved
noncoding sequence-1 sites. GATA-3 alone, however, is not
sufficient to induce IL-4 production. IL-2-mediated activation
of STAT-5 plays a critical role in inducing/maintaining acces-
sibility at the second intron HSIl and HSIII DNase |
hypersensitive sites of the 114 locus [32]. Indeed, STAT-5 is
bound to these two sites in Th2 cells, but not in Th1 cells.
The collaboration of STAT-5 and GATA-3 accounts for full
Th2 differentiation in vitro [33]. Of note, there is a mutual
regulation of Th1 and Th2 polarization induced not only by
IL-4 and IFNY, respectively, but also by the Th1-specific and
Th2-specific transcription factors. Accordingly, GATA-3 has
been reported to downregulate STAT-4 [34]. Strong STAT-5
activation inhibits T-bet expression [32]. On the other hand,
T-bet can suppress GATA-3 expression [35].

In addition to Th1 and Th2 cells, another series of CD4+
Tcells were identified as able to produce at the same
Th1-related and Th2-related cytokines, which were named Th
type O (ThO) cells [36]. Because of their functional differ-
ences, Th1 and Th2 cells — in addition to having different
protective functions against invading pathogens — also contri-
bute to the development of different human disorders: Th1
cells have been thought to be involved in the pathogenesis of
organ-specific autoimmune diseases, as well as other chronic
inflammatory disorders such as Crohn'’s disease, sarcoidosis
and atherosclerosis [37]; and Th2 cells certainly play a
central role in the development of allergic disorders [38].

Beyond the T-helper type 1/T-helper type 2
paradigm

The discovery of T-helper type 17 cells

The Th1/Th2 paradigm was maintained until some years ago
when a third subset of CD4* effector Th cells, named Th type
17 (Th17) cells, was identified [39,40]. Although the exis-
tence of IL-17 as a product of activated CD4* T cells has
been known for more than 10 years, only recently was the
existence of Th17 cells as a distinct subset recognized



[39,40]. The breakthrough leading to the discovery of the
Th17 lineage came from murine models of autoimmunity.
Experimental autoimmune encephalomyelitis (EAE), collagen-
induced arthritis and inflammatory bowel disorders have
historically been associated with unchecked Th1 responses,
largely based on studies in which disease development was
ablated by neutralizing the IL-12p40 chain or by targeting the
p40 or IL-12Rp, genes [41].

This initial concept of Th1 association with autoimmune dis-
orders, however, required an adjustment with the unexpected
discovery that mice deficient in IFNy or IFNy receptor were
not resistant to EAE but were actually more susceptible to
central nervous system autoimmunity [42-44]. Moreover, the
link with IL-12 in these diseases was called into question by
the discovery that a new IL-12 family member, IL-23, shares
with IL-12 the p40 subunit — the heterodimer of IL-12 being
composed of p40 and p35, and that of IL-23 being
composed of p40 and p19 [39]. IL-23 also shares with IL-12
a chain of its receptor — the IL-12 receptor being composed
of IL-12RpB, and IL-12RB, chains, and that of IL-23 being
composed of IL-12RB, and IL-238R chains. After this
discovery, it was found that EAE and collagen-induced
arthritis did not develop in mice deficient in the IL-23p19
subunit or the IL-23R chain, whereas the diseases could
develop in those deficient in the IL-12p35 subunit or the
IL-12RB, chain, suggesting that at least in these models
IL-23 but not IL-12 is critically linked to autoimmunity
[40,45,46].

Based on these and other findings, a new role for Th17 cells
in immunopathology and the distinct origin of Th1 cells and
Th17 cells under differential IL-12 or IL-23 conditioning was
proposed [40,45]. More recently, however, a completely
different pathway of murine Th17 origin has been described
[47-49]. Although IL-23 appeared to be required for Th17-
induced immunopathology, different groups independently
demonstrated that transforming growth factor beta (TGFp)
was required for initiation and that IL-6 was a critical co-factor
for Th17 differentiation [47-49]. Of note, the Th17-polarizing
cytokine TGFB was already known for its ability to promote
the development of Foxp3* Tregs, but only in the absence of
IL-6 [49]. Murine Th17 cells express a master transcription
factor different from Th1 and Th2 cells, an orphan receptor
known as retinoic acid-related orphan receptor (ROR)yt [50].
A second orphan receptor, named RORo, has also been
found to contribute to the development of murine Th17 cells
[51]. The STAT-3 transcription factor is also essential for the
murine Th17 development, although whether it acts directly
or through the activation of RORt is still unclear [52].

The distinctive cytokine of murine Th17 cells, IL-17A, is
involved in the recruitment, activation and migration of
neutrophil granulocytes by inducing the production of colony-
stimulatory factors and CXCL8 [53] by both macrophages
and tissue resident cells. The other cytokines produced by
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murine Th17 cells, such as IL-17F, IL-21 and IL-22, can also
contribute to the activation of mononuclear and/or resident
cells and therefore may induce and/or maintain a chronic
inflammatory process. Because of their unique ability to
recruit neutrophils, however, the main protective function of
Th17 cells appears to be the clearance of extracellular
pathogens, including fungi [54].

Nevertheless, the major emphasis on the pathophysiology of
murine Th17 cells was placed on their determinant or even
exclusive pathogenic role on models of autoimmunity. This
concept was immediately extrapolated to human disorders
that are considered equivalent to the above-mentioned murine
models, such as multiple sclerosis, rheumatoid arthritis and
inflammatory bowel disorders [565], but also to psoriasis,
contact dermatitis and atopic dermatitis [56]. Th17 cells were
therefore thought to be the pathogenic cells in virtually all
chronic inflammatory disorders, where the effect of Th1 cells —
which had been shown to be important in hundreds of
previous studies — was underscored or even seen as
protective against the Th17-mediated inflammation [57].

Human T-helper type 17 cells may be different from
murine T-helper type 17 cells

The studies in humans showed that Th17 cells express
RORC, CCR6, CCR4 and the IL-23R, but also CD161 [58]
the equivalent of murine NK1.1 [69], and they produce
IL-17A, IL-17F, IL-22, IL-26 and the chemokine CCL20
[60-63]. Of note, a substantial proportion of human Th17
cells produce IFNY in addition to IL-17A, and these cells were
named Th17/Th1 [61]. Both Th17 cells and Th17/Th1 cells
also expressed the IL-12RB, chain and the Th1-related
transcription factor T-bet [61]. Finally, stimulation of human
Th17 cells in the presence of IL-12 downregulated RORC
and upregulated T-bet, and enabled these cells to produce
IFNY in addition to IL-17A [61].

Another difference between murine and human Th17 cells
was found with regard to their origin. While murine Th17 cells
originate from a naive Th cell in the presence of TGFJ and
IL-6 [47-49], human Th17 cells exclusively originate in the
presence of IL-1B and IL-23 from a small subset of naive
CD4* Th cells that express CD161, which are present in the
umbilical cord blood and newborn thymus [568]. The role of
TGFp in the differentiation of human Th17 cells is contro-
versial, with some studies indicating that the addition in the
culture of exogenous TGFf is critical for the induction of
RORC expression [64-66], while other studies do not
[58,62,63,67]. Our studies demonstrate that the CD161+
precursors of human Th17 cells present in the umbilical cord
blood and thymus already express RORC and IL-23R ex vivo
[68], and that exogenous TGFP may only have an indirect role
in the development of Th17 cells, mainly due to its strong
suppressive activity on the proliferation of Th1 cells [68]. The
expression of CD161 by human Th17 cells has been recently
confirmed in both the circulation and the gut of subjects with
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Crohn's disease [69]. Circulating CD161* T cells migrate to
gut lymphoid tissue, where in normal subjects they require
the presence of IL-1B and IL-23 to become fully mature Th17
cells, whereas in the gut of subjects with Crohn’s disease the
presence of IL-23 is sufficient for this maturation [69].

Boniface and colleagues have recently shown that prosta-
glandin E, can act directly on both human and murine T cells
to enhance Th17 development [70]. In fact, prostaglandin E, —
acting via the prostaglandin receptor EP2-mediated and EP4-
mediated signalling and cAMP pathways — induces upregu-
lation of IL-23 and IL-1 receptor expression in human T cells.
Furthermore, prostaglandin E, synergizes with IL-13 and IL-
23 to drive RORC, IL-17, IL-17F, CCL20, and CCR6
expression. Similar results have been obtained by Napolitani
and colleagues, who showed that prostaglandin E, triggering
of the EP2 and EP4 receptors expressed on T cells led to a
rapid increase of RORC and a decrease of T-bet mRNA [71].
In addition, prostaglandin E, could favour the enrichment of
IL-17-producing cells at inflammatory sites by preferentially
inhibiting proliferation of CCR6~ T cells, which include Th1
cells, but not proliferation of CCR6* Th17 cells. Finally,
prostaglandin E, can directly act on T cells and promote
Th17 responses independently of the presence of IL-23 while
it synergized with IL-1 and IL-6 to favour IL-17 release.

The critical role for IL-1 signalling in the differentiation of
Th17 cells has recently been demonstrated even in mice, and
it has been shown that in presence of IL-1 the addition of
exogenous TGFp is not essential [72].

Another interesting point is the possible relationship between
human Th17 cells and Tregs. A transdifferentiation of Tregs
into Th17 cells has been described recently [73,74], as well
as the existence of cells coexpressing IL-17 and Foxp3
[75,76]. Our findings showing that Th17 cells derive from
CD161+ T-cell precursors and maintain CD161 expression
even at the stage of memory T cells, whereas Tregs were
never been shown to express this marker, apparently argue
against such a possibility.

Role of T-helper type 1 and T-helper type 17 cells in
pathogenicity

The demonstration of a potential plasticity of human Th17
cells to Th1 cells [61] was of great importance with regard to
the controversial issue of the respective roles of the two
effector cell types in the pathogenesis of murine and human
autoimmune disorders, as well as of other chronic
inflammatory disorders. An important clarification on the
pathogenicity of murine Th17 cells recently came from four
independent studies [77-80].

First, not only did the propagation of committed Th17 pre-
cursors in the presence of IL-23 without TGFP result in a
progressive extinction of IL-17A and IL-17F and promote the
emergence of IFNy-producing cells that lacked IL-17
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expression, but their stimulation with IL-12 induced a rapid,
STAT4-dependent and T-bet-dependent transition marked by
an extinction of RORyt, RORq, IL-17A and IL-17F and an
induction of a Th1-like expression signature [77]. Moreover,
the potential plasticity of Th17 to Th1 cells, but not of Th1 to
Th17 cells, has been reported [78]. These findings support
the substantial developmental plasticity of the Th17 lineage
already observed in humans [61], which identified a
mechanism for latent Th1-like responsiveness of Th17 cells
and provided the basis for understanding the relationship
between Th17-mediated and Th1-mediated pathophysiology.

Indeed, it has recently been shown that Th17 cells can
promote pancreatic inflammation, but can only induce type 1
insulin-dependent diabetes mellitus efficiently in lymphopenic
mice after conversion into Th1 cells [79]. Accordingly, highly
purified Th17 cells from BDC2.5NOD mice shift into Th1-like
cells in NOD/SCID recipient mice. The transferred Th17
cells, completely devoid of IFNy at the time of transfer, rapidly
converted to secrete IFNy in the NOD/SCID recipients. More
importantly, the development of insulin-dependent diabetes
mellitus was prevented by the treatment with anti-IFNy-
specific antibody but not with anti-IL17A-specific antibody
[80]. The plasticity of Th17 cells into Th1 cells initially
observed in humans [61] is therefore now confirmed in mice
and provides the basis for supporting again the major patho-
genic role of Th17-derived Th1 cells in murine autoimmune or
other chronic inflammatory disorders. The relationship between
the Th17-derived Th1 cells and the classic Th1 cells obtained
in response to IL-12-mediated polarization, however, is not
yet clear.

T-helper type 9 cells

An additional subset of CD4* effector T cells able to
produce IL-9 has been recently described [81,82]. IL-9 was
previously known as a Th2-derived cytokine [83], and was
found to be important in inducing the mucus hypersecretion
in asthmatic subjects [84] and to contribute to the
development of tuberculosis by reducing IFNy production in
peripheral blood mononuclear cells stimulated with M.
tuberculosis antigens [85]. When murine Th2 cells were
cultured in the presence of IL-4 and TGFp, they lost the
capacity to produce IL-4, IL-5 and IL-13, but they maintained
the ability to produce IL-9 in addition to IL-10 [81,82]. The
IL-9*IL-10* T cells demonstrated no regulatory properties
despite producing abundant IL-10. By contrast, their
adoptive transfer into recombination-activating gene 1-
deficient mice induced colitis and peripheral neuritis, the
severity of which aggravated whether these cells were
transferred with CD45RBbigh effector T cells. This novel Th
subset therefore lacks suppressive function and constitutes
a distinct population of effector T cells that promote tissue
inflammation [81].

More recently, it was found that IL-9 is produced in high
amounts not only by Th2 and Th9 cells but also by Th17 cells
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Main populations of CD4+ effector T cells. When the naive CD4* T-helper (Th) cell recognizes a given antigen on the surface of the antigen-
presenting cell (APC), the cytokines present in the microenvironment created by the response of the innate immunity play a critical role in dictating
the type of effector cell that is subsequently induced. In the presence of IL-2 and IL-4, the naive Th cell expresses the transcription factor GATA-
binding protein-3 (GATA-3) and differentiates into a Th2 cell that, because of its ability to produce IL-4, IL-5, IL-9 and IL-13, is protective against
extracellular parasites, but can also be responsible for allergic disorders. In the presence of IL-4 and transforming growth factor beta (TGFp), the
Th2 cell can further differentiate into a Th9 cell, which produces IL-9 and IL-10, whose pathophysiological meaning as well as the possibility that
they can also directly originate from the naive Th cell are still unclear. In the presence of interferons (IFNs) and IL-12, the naive Th cell expresses T-
box expressed in T cells (T-bet) and differentiates into a Th1 cell that, because of the production of IFNy and lymphotoxin-a. (LTa), induces delayed
type hypersensitivity (DTH) reactions that are protective against intracellular bacteria, fungi and protozoa, but can also be responsible for
autoimmune disorders such as experimental autoimmune encephalomyelitis (EAE), experimental autoimmune uveitis (EAU), and peptoglycan-
induced arthritis (PIA). In the presence of TNF and IL-6, the naive Th cells express aryl hydrocarbon receptor (AHR) and differentiate into a Th22
cell that, because of its production of IL-22 and the expression of skin homing chemokine receptors (CCR4 and CCR10), has been hypothesized
to be important in skin homeostasis and pathology. In the presence of TGF, IL-6 and IL-21 (in mice) or of IL-1 and IL-23 (in humans), the naive Th
cell expresses retinoic acid-related orphan receptor (ROR)yt and differentiates into a Th17 cell that, because of its production of IL-17A, IL-17F, IL-
21 and IL-22, is involved in the protection against extracellular bacteria and fungi, but can also be responsible for autoimmune disorders, such as
EAE, EAU and collagen-induced arthritis (CIA). The possibility that the Th17 cell is flexible and can shift in the presence of IL-12 to Th1 has been
observed in both humans and mice. NK, natural killer cell.

[86,87]. More importantly, IL-9 appeared to be a key
molecule that affects both differentiation of Th17 cells and
Treg function. IL-9 synergized with TGFB, to differentiate
naive CD4* T cells into Th17 cells, while IL-9 secretion by
Th17 cells was regulated by IL-23. Interestingly, IL-9 en-
hanced the suppressive function of Foxp3t*CD4* Tregs in
vitro and the absence of IL-9 signalling weakened the
suppressive activity of Tregs in vivo, leading to an increase in

effector cells and worsening of EAE. Accordingly, it has been
recently shown that both IL-9 neutralization and IL-9 receptor
deficiency attenuate EAE, and this effect correlates with
decreases of Th17 cells and IL-6-producing macrophages in
the central nervous system, as well as of mast cell numbers in
the regional lymph nodes [86]. These findings suggest a
novel role of IL-9 as a regulator of pathogenic versus protec-
tive mechanisms of immune responses [86,87].
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T-helper type 22 cells

IL-22 was originally described in mice and humans as a
cytokine characteristic of fully differentiated Th17 cells [60].
Recently, however, a distinct subset of human skin-homing
memory T cells has been shown to produce IL-22, but neither
IL-17 nor IFNy [88,89]. Differentiation of IL-22 producing T
cells, now named Th22 cells, could be promoted by
stimulation of naive T cells in the presence of IL-6 and TNF or
by the presence of plasmacytoid dendritic cells, and appears
to be independent of RORC but dependent upon the aryl
hydrocarbon receptor [88,89]. The human Th22 cell
population coexpresses the chemokine receptor CCR6 and
the skin-homing receptors CCR4 and CCR10, which led to
hypotheses that these cells may be important in skin
homeostasis and pathology [88,89].

Concluding remarks

Very recent studies demonstrate that CD4+ Th effector cells
represent a population much more heterogeneous than
previously suggested. Beyond Th1 cells and Th2 cells, Th17
cells, Th9 cells and Th11 cells have now been recognized.
These main populations of CD4+ effector T cells are depicted
in Figure 1. Moreover, CD4+ Th cells seem to exhibit a great
plasticity not only in the context of effector responses, but
also of regulatory responses. Th2 cells can shift to Th1 cells
or to Th9 cells, whereas Th17 cells can shift to Th1 cells.
Among different CD4+ effector T cells, the Th1 cells appear
to be the more stable. Although this complex situation makes
it more difficult to extrapolate the role of different subsets of
CD4+ effector cells, the validity of the Th1/Th2 paradigm
seems to maintain its validity. Indeed, there is no doubt
regarding the main and essential role of Th2 responses
against allergens in accounting for the great majority of
pathophysiological manifestations in allergic subjects. On the
other hand, even if Th17 cells certainly play a pathogenic role
in autoimmune disorders and other chronic inflammatory
disorders, classic Th1 cells or Th17-derived Th1 cells are
also co-pathogenic or even truly responsible for the
inflammatory processes that underlie these diseases.
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