
Introduction

Osteoarthritis (OA) is the joint disease with the highest 

incidence. Th e disease is in general divided into primary 

OA and secondary OA. Primary OA has no obvious 

trigger, while secondary OA is the result of an evident 

underlying affl  iction. Th e main features of this disease are 

cartilage erosion, synovial fi brosis, osteophyte formation 

at the joint margins and sclerosis of the subchondral 

bone. Patients with OA suff er from joint pain and tender-

ness, occasional eff usions and, in the long run, loss of 

joint function.

Th e etiology of primary OA is not known but several 

risk factors have been detected. Systemic risk factors 

include genetic background, ethnicity, gender and obesity, 

but the main risk factor for the initiation and progression 

of primary OA is ageing. Functional articular cartilage is 

maintained by the cartilage cells, chondrocytes. Changes 

in chondrocytes, leading to the inability of these cells to 

maintain the homeostasis of articular cartilage, can be 

expected to be at the root of OA development. In view of 

the fact that the principal risk factor of OA is ageing, age-

related changes in chondrocytes are likely to be involved 

in OA development.

Changes in osteoarthritic chondrocytes

Cartilage is, on a weight basis, mainly composed of colla-

gens and proteoglycans. Collagens – for the most part type 

II, type IX and type XI – provide tensile strength, while the 

proteoglycan aggrecan retains water in the matrix. In 

humans, cartilage is composed of three zones: superfi cial 

zone, middle zone and deep zone. Th e superfi cial zone 

contains disc-shaped chondrocytes, the cells in the middle 

zone cells are more spherical and the deep zone contains 

spherical chondrocytes arranged in columns.

Cartilage damage in OA has several characteristics. At 

the initial stages of OA the cartilage surface is intact but 

focal edema and minor fi brillations can be observed. 

Subse quently the superfi cial zone becomes fi brillated 

and chondrocytes are lost from this zone. Finally, 

fi brillations progress into fi ssures – a process that is 

followed by cartilage erosion, denudation of bone and 

joint deformation.

At the initial stages of OA, chondrocytes start to 

multiply and form multicellular clusters. In addition, 

chondro  cytes expressing markers of hypertrophic 
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chondro cytes are found in OA cartilage. A subpopulation 

of OA chondrocytes synthesizes molecules that, under 

normal conditions, are only expressed by terminally 

diff er entiated (hypertrophic) chondrocytes, normally 

found in growth plates. Expression of osteocalcin, alka-

line phosphatase, c-maf, Runx2 and type X collagen has 

been demonstrated in OA chondrocytes [1-5]. Moreover, 

chondrocytes in OA cartilage express high levels of 

matrix metalloproteinase 13 (MMP-13), the enzyme 

most potently degrading type II collagen [6]. Th is under-

scores the hypertrophy-like character of OA chondro cytes 

since MMP-13 is highly upregulated during chondrocyte 

terminal diff erentiation, and defi ciency of MMP-13 even 

results in impaired endochondral ossifi cation [7,8].

During OA, cartilage matrix degradation exceeds 

matrix deposition resulting in net matrix loss. In contrast 

to what is observed in infl ammatory arthritis, mRNA 

expression and synthesis of a number of matrix molecules 

is increased instead of decreased compared with normal 

cartilage [9,10]. Only in the very late stages of OA does 

synthesis of matrix molecules drop below control levels. 

Th e synthesis of the main structural component of carti-

lage, type II collagen, is clearly enhanced in OA cartilage 

[11,12]. In OA cartilage, both catabolism (for example, 

MMP-13 synthesis) and anabolism (type II collagen 

synthesis) are high. It is unclear whether elevated 

catabolism and enhanced anabolism is achieved by the 

same cells or by diff erent chondrocyte subpopulations.

Catabolic cytokines

Catabolic cytokines have been suggested to play a 

dominant role in OA. Chondrocytes can be stimulated by 

catabolic cytokines to release cartilage degradation 

products, ultimately leading to damage. A cytokine that 

is suggested to be a principle mediator of joint damage in 

OA is IL-1. Chondrocytes from OA cartilage display high 

levels of IL-1α and IL-1β and have elevated expression of 

the plasma membrane-bound IL-1 receptor I, while the 

decoy IL-1 receptor II is downregulated in OA chondro-

cytes [13]. Not only do fi brillated areas show these 

expression patterns, but also cartilage proximal to 

macroscopic OA lesions demon strates a higher binding 

of TNFα and IL-1β com pared with chondrocytes from 

morphologically normal cartilage in the same joint [14]. 

Th is indicates not only that the levels of IL-1 are 

increased in OA joints, but also that OA chondro cytes 

are more sensitive to IL-1.

IL-1 is considered a principle mediator of joint damage 

in OA. IL-1 has the ability to stimulate chondrocytes to 

degrade both aggrecan and collagen [15]. Th is cytokine 

causes destruction of cartilage by increasing enzyme 

activity while decreasing the synthesis of enzyme inhibi-

tors [16]. IL-1 can stimulate chondrocytes to produce nitric 

oxide [17], matrix metalloproteinases [18] and aggrecanases 

(ADAMTS) [19], and suppresses the synthesis of aggrecan 

and collagen type II [20-22].

Th e latter is remarkable if IL-1 plays a dominant role in 

OA pathophysiology. IL-1 is a potent inhibitor of chondro-

cyte type II collagen synthesis, but type II collagen 

synthesis is increased during OA as discussed above. Th is 

discrepancy points to alternative players that are involved 

in OA. IL-1 might play a role in the induction of enzyme 

expression but is unlikely to be the only factor that deter-

mines development and progression of OA.

Osteoarthritic chondrocytes also express, besides cata-

bolic factors, anabolic factors such as transforming 

growth factor beta (TGFβ) [23,24]. Increased synthetic 

activity in early OA has been found to be accompanied 

with an upregulation of TGFβ expression [25,26]. We 

propose a role for TGFβ not only as a cartilage protective 

agent but also as a mediator of cartilage degeneration 

during ageing and OA development.

Transforming growth factor beta

Th e TGFβ superfamily is composed of over 35 members. 

Th e family members play fundamental roles in develop-

ment and homeostasis. In mammals, three isotypes of 

TGFβ are found: β
1
, β

2
 and β

3
. Expression of these three 

isoforms is diff erently regulated at the transcriptional 

level due to dissimilar promoter sequences [27].

TGFβ is secreted as an inactive complex and requires 

activation before it is able to bind to its receptor [28]. 

Activated TGFβ binds to the TGFβ type II receptor and 

forms a complex that recruits the TGFβ type I receptor, 

ALK5. TGFβ has also recently been shown, however, to 

have the ability to signal via the alternative TGFβ type I 

receptor ALK1 in chondrocytes. In endothelial cells, but 

also in chondro cytes, activation of the ALK5 route is 

followed by Smad2 or Smad3 phosphorylation while 

ALK1 has been found to result in phosphorylation of 

Smad1, Smad5, or Smad8 [29-31]. Th e activated 

receptor Smads form a complex with the co-Smad, 

Smad4 – this complex translocates to the nucleus and 

modifi es gene expression. Interestingly, signaling via 

either ALK5 or ALK1 can determine the response of 

cells to TGFβ stimulation, which can be totally contrary 

[32,33]. For example, in endothelial cells ALK5 inhibits 

migration whereas ALK1 stimulates migration and 

proliferation [34].

Signaling via the Smad pathway appears to be the most 

important signaling pathway for TGFβ, but this is not the 

only pathway. Mitogen-activated protein kinase, Rho-like 

GTPase and phopshatidylinositol-3-kinase pathways are 

involved in TGFβ signaling (reviewed in [35]). Activation 

of TGFβ activated kinase 1 occurs independent of ALK5 

kinase activity and results in P38 and JNK signaling [36]. 

Th at TGFβ activates diff erent pathways calls attention to 

the fact that one has to take into account the diff erences 
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in management of the TGFβ signal in diff erent cell types 

and the subsequent variation in TGFβ eff ects.

Transforming growth factor beta and osteoarthritis

Family studies have indicated a relation between TGFβ 

and a disease related to OA. In Japanese women a poly-

morphism of TGFβ
1
 on position 29 (T to C, amino acid 10) 

positioned in the signal sequence region of TGFβ
1
 is 

related to an elevated prevalence of spinal osteophytosis and 

ossifi cation of the posterior longitudinal ligament [37,38].

Asporin inhibits TGFβ-mediated expression of cartilage 

matrix genes such as collagen type II and aggrecan, and 

inhibits accumulation of proteoglycan [39]. Kizawa and 

colleagues found an asporin polymorphism that showed 

a signifi cantly higher frequency in OA [39]. Th e D-14 

polymorphism had a stronger inhibitory eff ect on TGFβ 

than the common D-13 repeat. Th is indicates that 

expression of D-14 results in strong TGFβ inhibition and 

that this is associated with OA development. When this 

study was repeated in a Spanish Caucasian population by 

Rodriguez-Lopez and colleagues, however, the higher 

susceptibility to OA of people with the D-14 polymor-

phism was not found [40]. In a subset of UK Caucasians, 

a trend was seen towards a higher degree of D-14 poly-

morphism in OA. In a diff erent ethnic group of Asian 

origin, Han Chinese, the OA susceptibility was again 

found [41]. Th ese studies indicate that reduced TGFβ 

signal ing can result in OA development.

Mice defi cient for Smad3 developed degenerative joint 

disease resembling human OA. Chondrocytes present in 

the articular cartilage of Smad3-defi cient mice showed 

enhanced chondrocyte hypertrophy indicated by increased 

expression of type X collagen. Th ese data indicate that 

Smad3 signaling is essential for repressing chondrocyte 

terminal diff erentiation. Th is observation is supported by 

studies in mice that overexpress a dominant-negative 

TGFβ type II receptor in skeletal tissues [42]. Th ese mice 

developed progressive skeletal degeneration that strongly 

resembles human OA. In addition, mice that lack latent 

TGFβ binding protein 3 also show altered chondrocyte 

diff erentiation and early OA development [43,44]. 

Interference with normal TGFβ signaling apparently 

results in aberrations in chondrocyte diff erentiation and 

enhanced OA develop ment.

Th e eff ects of TGFβ on chondrocytes seem to be 

context related. Serum factors can modulate the eff ect of 

TGFβ on chondrocyte proliferation. Growth of cultured 

rabbit chondrocytes decreased after TGFβ stimulation in 

the presence of a low serum concentration, while the cell 

number increased in the presence of high serum levels 

[45,46]. Th e rabbit chondrocytes demonstrated diff er-

ences in TGFβ receptor expression as a function of cell 

cycle progression [47-49]. Moreover, expression of TGFβ 

receptors appeared to be changed by nitric oxide and 

ROS levels and OA chondrocytes became insensitive to 

TGFβ, which was concomitant with loss of the expression 

of TGFβ type II receptor on these chondrocytes [50,51]. 

A loss of the TGFβ type II receptor has also been 

observed by our own group during ageing and OA in 

murine models [52,53]. Moreover, proteoglycan synthesis 

is also diff erentially regulated by TGFβ in rabbit and 

bovine chondrocytes depending on the diff erentiation 

stage of the chondrocytes [54,55]. In calf cartilage 

explants, proteoglycan synthesis is stimulated by TGFβ in 

a dose-dependent manner [56,57]. From these obser va-

tions it can be concluded that, in general, TGFβ maintains 

chondrocyte and cartilage homeostasis but that changes 

in diff erentiation stage and associated alterations in 

receptor expression modify the eff ect of TGFβ on 

chondrocyte function.

We have shown in young mice that TGFβ has favorable 

eff ects on cartilage, such as stimulation of proteoglycan 

synthesis in cartilage [58]. In old mice, however, stimu-

lation of aggrecan synthesis by TGFβ is reduced – and 

this is associated with a loss in ALK5 expression, and 

TGFβ type II receptor expression, on articular chondro-

cytes [59]. Livne and colleagues showed in mandibular 

chondrocytes a strong age-related decrease in stimulation 

of proteo glycan synthesis by TGFβ in young mice 

(1 month old, +120%) and old mice (18 months old, +7%) 

[59,60]. Nonchondrocytic cells have also been shown to 

display a diminished response to TGFβ during ageing. 

Smooth muscle cells derived from old rats produce 

normal levels of TGFβ but fail to respond to the 

inhibitory eff ects of this growth factor in contrast to 

young cells [61]. Th e response to TGFβ appears to be age 

related and a change in TGFβ signaling can play a role in 

age-related diseases such as OA.

Control of chondrocyte diff erentiation by SMADs

Activation of the Smad1/5/8 route in chondrocytes is 

strongly associated with chondrocyte terminal diff eren-

tiation and hypertrophy [62]. Bone morphogenetic protein 

itself or activation of the bone morphogenetic protein 

pathway (Smad1/5/8) leads, both in the growth plate and 

in articular chondrocytes, to expression of terminal 

diff er entiation markers [63-65]. Signaling via Smad1 

cooperates with the transcription factor Runx2 (CBFA1) 

to induce chondrocyte terminal diff erentiation. Th is 

cross-talk between the bone morphogenetic protein-

associated Smads and Runx2 is essential to stimulate the 

expression of hypertrophy markers in diff erentiating 

chondrocytes [66]. Blocking the Smad1/5/8 route by 

overexpression of Smad6 reduced the expression of both 

type X collagen and alkaline phosphatase activity in 

chondro  cytes, while using Smad6 antisense had an 

opposite eff ect [67]. Moreover, in vivo inhibition of 

Smad1/5/8 phosphory lation, as observed in Smad6 
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transgenic mice, was associated with delayed chondro-

cyte hypertrophy [68]. In articular chondrocytes treated 

with azacytidine, reduced Smad2 and Smad3 expression 

and signaling and increased Smad1/5 expression 

correlated with elevated synthesis of type X collagen and 

alkaline phosphatase. Th ese observations clearly demon-

strate that terminal diff erentiation of articular chondro-

cytes is associated with dominant signaling via the 

Smad1/5/8 pathway [69].

Th e latter observation shows not only that activation of 

the Smad1/5/8 route leads to terminal diff erentiation but 

also that loss of Smad2/3 can lead to induction of 

chondrocyte terminal diff erentiation. Th e inhibitory 

eff ects of TGFβ on chondrocyte maturation is mediated 

by the Smad2/3 pathway, as has been shown by 

overexpression of dominant negative Smad2 and Smad3 

in chondrocytes. Mutant mice defi cient for functional 

Smad3 show abnormally increased numbers of type X 

collagen-expressing chondrocytes in articular cartilage. 

Overexpression of both Smad2 and Smad3 blocked 

spontaneous maturation in Smad3-defi cient chondro-

cytes [70,71]. Smad2 and Smad3 are key mediators of the 

inhibitory eff ect of TGFβ on chondrocyte terminal diff er-

entiation [72]. Without Smad2/3 signaling, chondrocytes 

break their quiescent state and undergo anomalous 

terminal diff erentiation. Apparently the balance between 

Smad1/5/8 signaling and Smad2/3 signaling controls 

chondrocyte diff erentiation.

Th e wnt signaling pathways are involved in chondro-

cyte diff erentiation and OA development [73]. Enhanced 

and decreased wnt signaling both result in cartilage loss 

[74,75]. Furthermore, the wnt inhibitor dickkopf1 stimu-

lated chondrocyte apoptosis in OA joints [76]. Increased 

wnt signaling can have a direct eff ect on chondrocyte 

diff erentiation but it can also alter diff erentiation by 

variable modulation of the Smad2/3 and Smad1/5/8 

pathways. wnt signaling leads to inhibition of the activity 

of the GSK3 kinase, which resulted in Xenopus embryos 

in prolonged duration of the Smad1 signal [77]. If a 

similar mechanism takes place in chondrocytes, enhanced 

wnt signaling will result in augmented terminal 

diff er entiation.

Chondrocyte diff erentiation is regulated by Sox9, and 

additional Sox molecules, but chondrocyte terminal 

diff erentiation is rigorously controlled by the transcrip-

tion factor Runx2 [78,79]. Mice lacking Runx2 do not 

show chondrocyte terminal diff erentiation, and bone 

formation via this pathway is totally blocked [80]. Smad 

pathways are integrated via Runx2 to control chondrocyte 

terminal diff er entiation. Interaction of Runx2 with 

Smad1 facili tates the function of Runx2 in stimulating 

terminal diff erentiation, while Smad3 blocks Runx2 

function [81-83]. Th e Smad2/3 and Smad1/5/8 balance 

controls the Runx2 function and terminal diff erentiation.

Change in transforming growth factor beta 

signaling in ageing chondrocytes and osteoarthritis

We have demonstrated an age-related loss of TGFβ type I 

receptor ALK5 and phosphorylation of Smad2/3 in 

murine articular cartilage [84]. Expression of non phos-

phorylated Smad2 was not altered during ageing. 

Moreover, in two experimental models of OA – the 

DMM (meniscus destabilization) model and STR/ORT 

mice (spontaneous OA) – development of the disease 

was correlated with a loss of ALK5 expression. Expression 

of the alternative TGFβ receptor, ALK1, did not decrease 

to a similar extent as ALK5 [85]. As a result, the ratio of 

ALK1/ALK5 expressing cells strongly increased in OA 

articular chondrocytes. During ageing of C57Bl mice, the 

ratio ALK1/ALK5 increased up to sixfold. In the DMM 

model, OA develops on the medial tibial side while the 

lateral side is relatively protected. A more than threefold 

increase in the ALK1/ALK5 ratio was observed on the 

medial side while the ratio on the lateral side was 

unaff ected. STR/ORT mice develop OA starting at the 

medial tibia from an age of 2 to 3 months. Th e ALK1/

ALK5 ratio was 5 on the medial tibia at an age of 3 

months and was 18 in 1-year-old animals. Th e lateral 

tibia showed a ratio increase from 1 to 5 in the same 

period. Clearly an increased ALK1/ALK5 ratio in 

chondrocytes is associated with ageing and OA 

development [85].

We postulate that the loss of ALK5 expression and the 

concomitant elevated ratio of ALK1/ALK5 will have 

profound eff ects on chondrocyte behavior. Th e eff ect of 

TGFβ on chondrocytes will be governed by the ALK1/

ALK5 ratio. A prevailing expression of ALK5 will result 

in a dominance of the Smad2/3 signaling route, while 

ALK1 dominance will result in a stronger Smad1/5/8 

pathway. Th e balance of these routes has been shown to 

control chondrocyte diff erentiation (see above).

We and others have shown that TGFβ signals in 

chondro cytes not only via ALK5 but also via ALK1 [86]. 

Exposure of chondrocytes to TGFβ results in both 

Smad2/3 and Smad1/5/8 phosphorylation within 15 to 30 

minutes [85]. In addition, overexpression of constitutive 

active ALK5 (Smad2/3) results in increased expression of 

aggrecan while constitutive ALK1 (Smad1/5/8) expres-

sion leads to elevated expression of MMP-13. Blocking 

ALK5 expression using siRNA resulted in elevated 

expression of MMP-13 [85]. Th e ALK1 (Smad1/5/8) and 

ALK5 (Smad3) signaling balance in chondrocytes 

apparently determines MMP-13 expression. In addition, 

a clear trend towards elevated type II collagen and 

aggrecan expression was observed in cells with constitu-

tive active ALK1. Noticeably, human osteoarthritic 

cartilage demonstrated a signifi cant correlation between 

ALK1 and MMP-13 mRNA expression and a trend 

(P  =  0.05 to 0.1) with type II collagen and aggrecan 
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expression. Th ese observations indicate that ALK1 signal-

ing can induce a chondrocyte phenotype similar to that 

found in OA cartilage, a phenotype with simultaneous 

enhanced expression of matrix molecules and MMP-13.

We hypothesize that articular chondrocytes reside in a 

quiescent state in young healthy cartilage due to the 

inhibitory eff ect of TGFβ, via Smad2/3, on the progres-

sion of chondrocyte diff erentiation. During ageing of 

chondro cytes and OA development, signaling through 

ALK1 and Smad1/5/8 is increased in favor of signaling 

via ALK5 and Smad2/3. Th e dominant Smad1/5/8 

signaling triggers the articular chondrocytes to leave their 

quies cent state (Figure  1). Th is leads to a chondrocyte 

phenotype with characteristics analogous to terminal 

diff erentiated growth plate chondrocytes – a chondrocyte 

with an autolytic phenotype typifi ed by degradation of its 

surrounding cartilage matrix, as can be found in OA 

cartilage.

Th is hypothesis can explain the often enigmatic eff ects 

of TGFβ on articular cartilage. Th e eff ect of TGFβ on 

chondrocytes will be determined by the relative expres-

sion of ALK5 and ALK1. In general, we have observed in 

young animals that TGFβ is protective for articular 

cartilage [84,87-90]. Prolonged exposure of cartilage to 

high TGFβ levels, however, induces osteoarthritic lesions 

in murine knee joints, starting in the deep zones [91]. We 

have observed that the chondrocytes in the deep zone, 

just above the tidemark, show high ALK1 expression 

(personal observation). In old animals, showing a 

decrease in the ALK5/ALK1 ratio, the protective eff ect of 

TGFβ is lost and TGFβ can act as an OA-inducing factor 

[85,92,93] (Table 1).

In conclusion, loss of the Smad2/3 signaling and 

relatively enhanced Smad1/5/8 signaling can explain the 

enigmatic observation in OA cartilage of elevated 

expression of both matrix molecules and proteolytic 

enzymes, like MMP-13. Moreover, the age-related loss of 

ALK5 signaling in chondrocytes can give a clue to the 

high correlation between ageing and OA development. 

Interestingly, a remarkable relationship has been reported 

between reduced TGFβ signaling and another, highly age-

related affl  iction, Alzheimer’s disease [94,95]. Alzheimer’s 

disease is characterized by progressive neurodegeneration 

and cerebral accumulation of the β-amyloid peptide. 

Reduced TGFβ type II receptor expres sion and signaling 

has been demonstrated in Alzheimer’s disease. Over-

expression of dominant negative Smad3 causes neuro-

degeneration in cell cultures, indicat ing that loss of 

Figure 1. Alterations in transforming growth factor beta signaling cause changes in chondrocyte diff erentiation and osteoarthritis 

development. Transforming growth factor beta (TGFβ) can either signal by the Smad2/3 route (canonical) or the Smad1/5/8 route. Smad2/3 and 

Smad1/5/8 form a complex with Smad4 that enters the nucleus and modulates gene expression and Runx2 function. The signaling by Smad2/3 

and Smad1/5/8 is diff erentially modifi ed by a number of intracellular molecules. Both Smad routes are blocked by Smad7, while Smad6 blocks 

preferentially the Smad1/5/8 pathway [100,101]. wnt signaling modifi es these pathways by stabilization of Smad1/5/8 [102]. Smurf1 and Smurf2 

are E3 ubiquitin ligases that inhibit Smad signaling. Smurf1 triggers the degradation of Smad1/5/8 while Smurf2 stimulates mainly the degradation 

of Smad2/3 [103]. Mitogen-activated protein kinases (MAPKs) modulate the stability and degradation of the Smads by phosphorylation of these 

molecules [102].
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Smad2/3 signaling is involved. Reducing neuronal TGFβ 

signaling via the Smad2/3 pathway in mice resulted in age-

dependent neurodegeneration. Th ese fi ndings show that 

reduced TGFβ Smad3-dependent signaling in neuronal 

cells increases age-dependent neuro degeneration and 

Alzheimer’s disease-like symp toms. Th is observation 

points to a striking similarity between authentic Alzheimer’s 

disease and Alzheimer’s disease of the joint – OA.

Targets for therapy

We postulate that the OA process is driven by the loss of 

the Smad2/3 block on diff erentiation in articular 

chondrocytes, leading to progression of chondrocyte 

diff erentiation and an autolytic phenotype. In the early 

stages of OA – bearing in mind that OA is initially a focal 

process – not all chondrocytes will be at the same stage 

of diff erentiation. A mixture of cell populations will be 

present in OA cartilage. Some chondrocytes will have 

progressed in their diff erentiation to an OA chondrocyte 

phenotype, triggered by a loss of the Smad2/3 block. 

Other cells will still be in a quiescent, healthy state of 

diff erentiation. Th e latter cells can be targets for therapy 

to block further progression of the OA process. Blocking 

the progression of chondrocyte diff erentiation will block 

further expansion of the OA process in remaining healthy 

cartilage.

Loss of Smad2/3 signaling is at the root of the OA 

process in our view. To inhibit articular chondrocytes in 

their deviant diff erentiation, this pathway has to be 

stimulated at the same time as circumventing the role of 

the ALK1 receptor. Compounds specifi cally stimulating 

the Smad2/3 route should be developed. A similar 

strategy, using TGFβ mimetics, has been proposed to 

treat Alzheimer’s disease [96]. TGFβ mimetics have 

already been developed that can mimic TGFβ eff ects on 

cells [97].

An alternative therapy could be stimulation of one of 

the other Smad2/3 routes in chondrocytes. Signaling via 

the activin ALK4 and ALK7 receptors leads to activation 

of the Smad2/3 pathway [98]. Little is known about the 

expression of these receptors in old chondrocytes, but 

potentially these receptors could be targets to enhance 

Smad2/3 signaling in chondrocytes in OA.

An alternative strategy would be blocking ALK1 or the 

Smad1/5/8 pathway in chondrocytes to block the trigger 

that stimulates progression of chondrocyte diff erentia-

tion. Since ALK1 is involved in vessel formation, blocking 

ALK1 can interfere with this process [99]. As blockers of 

ALK1 to treat OA will be mainly applied in middle-aged 

and older people, additional eff ects of this treatment are 

expected to be limited. General blocking of the 

Smad1/5/8 pathway using kinase blockers that inhibit the 

activity of ALK1, ALK2, ALK3 and ALK6 is an alternative 

option to stop chondro cyte aberrant diff erentiation.

Th e potential side eff ects of the above therapies are 

unclear. Eff ects on growth plate chondrocytes will be absent 

since the growth plates are not present in elderly humans. 

Th e eff ects of stimulating the Smad2/3 pathway using TGFβ 

mimetics or the ALK4/7 pathway could result in side eff ects, 

such as induction of fi brosis. Block ing ALK1 will have few 

side eff ects due to the restricted eff ect of ALK1 in vessel 

formation, which is anticipated to be relatively unimportant 

in elderly people. Th e eff ects of general inhibition of the 

Smad1/5/8 pathway in elderly people are hard to predict but 

this might interfere with bone metabolism. Bone 

morphogenetic protein signaling is known to be involved in 

both bone formation and bone degradation, the latter by 

stimulation of osteoclast maturation.

Table 1. Arguments implying a role for alterations in TGFβ signaling in osteoarthritis development

Genetic studies point to a role for TGFβ in osteoarthritis

Mice that express a dominant negative TGFβ type II receptor in skeletal tissues showed enhanced chondrocyte hypertrophy and osteoarthritis

Mice defi cient for Smad3 or latent TGFβ binding protein 3 demonstrated enhanced chondrocyte hypertrophy and osteoarthritis

Cartilage protective eff ects of TGFβ are lost in ageing mice

ALK1/ALK5 expression ratio is increased in cartilage in ageing mice and experimental osteoarthritis

ALK1 overexpression results in MMP-13 upregulation in chondrocytes

Blocking ALK5 expression, using siRNA, leads to elevated expression of MMP-13

In human osteoarthritis cartilage, ALK1 expression and MMP-13 expression signifi cantly correlate

Smad2/3 signaling inhibits, while Smad1/5/8 signaling stimulates, progression of chondrocyte diff erentiation 

In osteoarthritis, synthesis of matrix molecules (type II collagen) is increased – indicating no dominant role for catabolic cytokines

Alterations in TGFβ signaling in osteoarthritis can provide an explanation for the enigmatic observation of concomitant increased synthesis of matrix molecules 

(type II collagen) and increased MMP-13 production

MMP-13, matrix metalloproteinase 13; TGFβ, transforming growth factor beta.
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Conclusion

Until now no eff ective therapy has been developed for 

OA that interferes with disease progression. Painkilling 

and joint replacement are the only options at this 

moment. Th e proposed treatment attacks the OA process 

at its core, blocking the generation of chondrocytes with 

an autolytic phenotype. Th e proposed OA mechanism 

and potential therapies open the venue to new strategies 

to treat this common crippling joint disease.
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