
Introduction

It is generally believed that once a cell has diff erentiated 

its fate is determined and stable. However, several experi-

ments have shown that a diff erentiated cell, in particular 

circumstances, can either proliferate to a terminal 

diff erentiated state or return to a less diff erentiated one, a 

process called dediff erentiation or ‘transdiff erentiation’ 

[1]. In fact, during dediff erentiation, cells undergo 

changes at diff erent levels: gene, protein, morphological 

and functional. Th is turnover in the cell cycle is probably 

orchestrated by signaling pathways, the involvement of 

certain of which during cell dediff erentiation has been 

reported [2]. Among these pathways, Notch signaling 

plays a crucial role during cell fate assignment and 

diff erentiation/proliferation events. In vertebrates, 

muta genesis and misexpression of Notch and its ligands 

have highlighted numerous roles of this pathway during 

embryogenesis and the early stages of development [3-5]. 

Notch signaling has been identifi ed in diff erent develop-

mental systems, especially neurogenesis [3,4] and hemato-

poeisis [5]. Th ese studies show that Notch signaling, in 

combination with other cellular factors, infl uences 

diff erentiation, proliferation and apoptosis.

Th e Notch signaling pathway is highly conserved, from 

worms to humans. It is considered an important pathway 

in the development and assignment of cell fates during 

embryogenesis and the early stages of development as 

well as in the maintenance of a stem cell population in 

many tissues throughout life [6,7]. Notch receptors are 

also responsible for the regulation of cell proliferation 

and diff erentiation, thus acting as on/off  switches that 

activate either proliferation or diff erentiation [6,7].

In this review, we focus on studies that investigated the 

expression pattern of Notch family members from 

immature to mature articular cartilage and the eventual 

involvement of the Notch pathway in the modulation of 

chondrocyte physiology in normal and damaged articular 

cartilage, particularly in ‘osteoarthritic conditions’. Recent 

studies revealed that Notch is expressed in murine 

chondrocytes during cartilage development and in 

chondrocytes from adult normal articular cartilage 

[8-10]. Th erefore, understanding the underlying mecha-

nisms of Notch signaling during these phenotypical 

changes in chondrocytes occurring during osteoarthritis 

(OA) may eventually allow scientists to temporally and/

or spatially modulate this signaling pathway in order to 

help the cells to synthesize a new functional extracellular 

matrix and restore the functional properties of the 

articular cartilage.

Historical background of the Notch gene and 

components of the pathway

Notch was fi rst discovered in Drosophila melanogaster as 

a mutant gene. Th e name ‘Notch’ derives from the 

mutations observed on the margins of the Drosophila

wings due to Notch mutations. Th e fi rst ‘Notch’ mutation 
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was found in 1914 by Dexter [11], who showed that the 

character was sex-linked, dominant in the female 

Drosophila, and lethal in the male. In 1917, Bridges [12] 

found a second mutation of this gene, and later several 

others were found [13]. ‘Notch’ refers either to the Notch 

genes, the Notch receptors or the Notch pathway, 

according to context.

Th e Notch genes encode Notch receptors. Th ese are 

300-kDa transmembrane proteins with a large extra-

cellular domain containing epidermal growth factor 

repeats essential for the ligand-receptor interaction and a 

cysteine rich region. Th e intracellular domain consists of 

ankyrin repeats, a glutamine-rich domain and a PEST 

(proline, glutamate, serine, threonine) domain [14,15]. 

Th e Notch genes diff er between species: Drosophila has 

one, and mammals four, expressing Notch receptors 1, 2, 

3 and 4.

Th e Notch family also includes genes encoding ligands 

of the Notch receptors, Delta and Serrate, which are 

similarly conserved in both invertebrates and vertebrates. 

Drosophila has only one gene for Serrate and one for 

Delta, whereas in mammals fi ve genes encode the Notch 

ligands: Serrate homologues called Jagged1 and 2, and 

Delta homologues called Delta like 1, 3 and 4. Th ese 

constitute the DSL (Delta/Serrate/Lag2) family (Figure 1).

Activation of the Notch pathway

Th e fi rst described Notch activation cascade consists of a 

series of cleavages leading to the release of the intra-

cellular domain of the receptor, which interacts in the 

nucleus with the transcription factor CSL (CBF 1 in 

humans, Suppressor of hairless in Drosophila, and LAG 

in Caenorhabditis elegans) to regulate the expression of 

the target genes [7]. However, recent studies suggest that 

the CSL-dependent [16,17] signaling pathway does not 

mediate all functions of Notch [18]. Th us, Notch may act 

by two distinct processes: CSL-dependent signaling (the 

canonical pathway) [15] and CSL-independent signaling.

Canonical activation via CSL

Maturation and activation of the Notch receptor are 

conserved between species. Th is process is initiated by 

cleavage in the trans-Golgi network by a furin convertase. 

Th e resulting two fragments are re-associated and 

proceed to the cell surface as a transmembrane receptor, 

consisting of an extracellular domain and a Notch 

tethered membrane. Th is complex interacts with a 

neighboring cell expressing the receptor’s ligand on its 

surface and the receptor becomes susceptible to a second 

cleavage by a metalloprotease from the ADAM (a desin-

tegrin and metalloprotease) family called TACE (tumor 

necrosis factor alpha converting enzyme). A third 

cleavage occurs within the transmembrane domain of the 

receptor and is carried out by γ-secretase, an enzyme 

that generally constitutively cleaves transmembrane 

proteins with short extracellular stubs. Th is fi nal cleavage 

liberates the intracellular domain of the Notch receptor, 

which translocates to the nucleus and interacts with its 

downstream transcription factor, CSL, and thereby 

activates transcription of its target genes [7,18-21] 

(Figure 2). To date, two major Notch primary target genes 

have been identifi ed, HES and HERP. Th ese Notch 

eff ectors belong to the basic helix-loop-helix family and 

negatively regulate the expression of downstream target 

genes in diff erent tissues [22-24].

Non-canonical activation (CSL-independent)

Several studies have provided evidence for CSL-

independent Notch signaling [25,26]. Weinmaster and 

colleagues [25,26] showed that CSL-independent signal-

ing can prevent diff erentiation of the myogenic cell line 

C2C12; diff erentiation was still blocked in cells expres-

sing truncated forms of the Notch intracellular domain, 

which prevents the activation of the CSL-dependent 

promoter. Th ese results were confi rmed by the co-culture 

of the C2C12 cell line with Jagged1-expressing cells. Th ey 

concluded that Notch signaling can inhibit myogenesis 

independently of CSL. However, the ligand-induced 

activation of Notch may lead to signaling through both 

the CSL-independent and CSL-dependent pathways [26]. 

In 2008, Maillard and colleagues [27] inhibited the 

canonical Notch pathway in murine hematopoietic stem 

cells. Th e abolishment of the CSL-dependent signal in 

these cells did not lead to any defect when allowed to 

compete with normal hematopoietic stem cells in vivo.

Figure 1. The main components of the Notch receptor and its 

ligands in mammals.
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Notch signaling independent of CSL has been reported 

to occur via Abl (Figure 2). Abl is a cytoplasmic tyrosine 

kinase that has been widely studied as a protein implicated 

in cell growth and fate guidance [28-33] and in the etiology 

of human cancer [34-36]. Interestingly, it has also been 

reported that mutations aff ecting Abl signaling result in 

small decreases in the effi  ciency of Notch function, 

aff ecting cell identity [37]. On the contrary, deletion of the 

CSL-dependent pathway does not result in deleterious 

eff ects on central nervous system longitudinal axon 

development in Drosophila embryos [38].

Th e Notch receptor may have diff erential abilities to 

trigger canonical and non-canonical signaling, which 

could eventually lead to reciprocal control of the two 

signaling pathways [39,40]. Th e two Notch signaling 

pathways may interact in concert or in a coordinated 

manner to provide the necessary regulation of nuclear 

genes encoding cytoskeletal and cell adhesion proteins.

Role of Notch during cartilage development and 

adulthood

In vivo, cartilage is formed in mesenchymal cell conden-

sations during the early stages of development. Previous 

studies showed that Notch family members were 

expressed in early mesenchymal cell condensations of 

murine limb rudiments as well as in developing avian 

cartilage [9,41]. It has also been reported that Notch 

signaling is involved in the maturation of chondrocytes 

during chick limb development. Crowe and colleagues 

[42] investigated the expression pattern of Notch family 

members during chick limb development; they found 

that neither Notch 1 nor Serrate 1 or 2 were expressed, 

while Delta 1 and Notch 2 were detected. Th ese authors 

induced the misexpression of Delta 1 in the presumptive 

limb region of stage 13 to 16 chick embryos. Th e results 

showed that Delta 1 was specifi cally expressed in 

hypertrophic chon dro cytes during their formation and 

Figure 2. Canonical and non-canonical (Abl) Notch signaling pathways. A, co-activator; CSL, CBF, Su(H), Lag3; DSL, Delta, Serrate, Lag2; 

R, co-repressor; S1, S2, S3 and S4, Notch cleavage sites in the canonical signaling pathway; TACE, tumor necrosis factor alpha converting enzyme.
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continues to be expressed in these cells. However, the 

Notch 2 receptor is ubiquitously expressed throughout 

the limb in all the chondrocytes. Moreover, Delta 1 

misexpression pre vented prehypertrophic chondrocytes 

in the chick limb from diff erentiating into hypertrophic 

chondro cytes, result ing in a dramatic shortening of the 

cartilage ele ments. In this context, the hypertrophic 

chondrocytes did eventually undergo programmed 

apoptosis and were replaced by osteoblasts and then 

osteocytes and fi nally formed the mature skeleton. In 

summary, according to these authors progression of 

chondrocytes from the prehypertrophic state to the 

hypertrophic state is negatively regulated by Notch/Delta 

signaling, which also controls the transition of 

chondrocytes to a terminally diff erentiated state [42-45]. 

In addition, Hayes and colleagues [46] showed that Notch 

receptor 1 was expressed in murine chondrocytes on the 

surface of articular cartilage before birth and that this 

expression becomes restricted to deeper layers after 

birth.

Th ese data suggest that the presence of the Notch 

receptor is needed for cell diff erentiation and prolifera-

tion before birth in order to form the cartilage elements. 

During the late stages of development and after birth the 

expression of the Notch receptor would instead allow the 

terminal diff erentiation and maturation of chondrocytes 

in the deeper layers of cartilage, thus promoting osteo-

chondral ossifi cation. One of the most relevant 

hypotheses is that Notch may act as an on/off  switch, 

either enabling maturation of the articular cartilage by 

promoting cell proliferation or acting as a terminal 

diff erentiation potential leading to bone formation (and 

bone elongation after birth).

In order to elucidate the role of Jagged, Oldershaw and 

colleagues [47] transduced human mesenchymal stem 

cells (hMSCs) with adenoviral Jagged1. Th e results of the 

chondrogenic cell aggregate culture showed a total 

inhibition of chondrogenesis versus normal chondro-

genesis in vector control transduced hMSCs. It has also 

been shown that long-term Notch/Jagged signaling main-

tains the progenitor cell state [47,48]. Taken together, the 

results of these studies suggest that Notch/Jagged 

signaling promotes the maintenance of the progenitor 

phenotype and even suppresses cell diff erentiation.

It was also reported that the activation of Notch signal-

ing during development is a matter of timing. Grogan 

and colleagues [49] showed that the over-expression of 

the Notch intracellular domain in hMSC pellet culture 

induced a reduction in type II collagen mRNA levels, 

suggesting an inhibition of chondrogenesis. However, 

inhibition of Notch activity by using a γ-secretase 

inhibitor (the enzyme responsible for Notch activation) 

at diff erent stages of chondrogenesis showed that Notch 

activation and signaling is only necessary during early 

chondrogenic diff er entiation. To further elucidate the 

mechanisms of the Notch repressive response during 

chondrogenesis, these authors over-expressed the Notch 

eff ectors HES-1/HEY-1 in hMSCs. Th e results showed an 

alteration in type II collagen and aggrecan expression, 

thus confi rming the essential role played by Notch during 

chondrocyte diff erentiation. In 2010, Oldershaw and 

colleagues [50] showed that inhibiting Notch activation 

for 14 days in hMSC aggregate culture was only as 

eff ective as blocking the pathway during the fi rst 5 days, 

confi rming previous reports by Grogan and colleagues 

[49]. Th ese results suggest that once Notch has been 

activated during chondrogenesis, further Notch signaling 

is not needed [49,50].

Recent studies showed that Notch family members are 

still expressed in articular cartilage subpopulations even 

after birth [51,52]. In this context, the continuous 

development of articular carti lage, as well as the presence 

of a chondroprogenitor subpopulation and its fate, might 

be regulated by the Notch pathway. Since chondrocyte 

diff erentiation and maturation continue into early stages 

of development, recent and current studies are more 

interested in the expression of Notch in post-birth and 

mature articular cartilage. Indeed, Dowthwaite and 

colleagues [51] showed that Notch receptor was 

expressed on the surface of articular cartilage of a 7-day-

old calf by a progenitor cell population; this matches 

previous results in developing mouse articular cartilage 

[8]. Th ese cells were shown to have increased colony 

forming effi  ciency compared with chondrocytes not 

expressing Notch receptor, suggesting a primordial role 

for the Notch receptor in controlling the clonality of 

surface zone chondrocytes [51]. In fact, in both species 

the Notch receptor is present in the chondrocytes of the 

surface zone of the articular cartilage. Consistent with 

these results, Grogan and colleagues showed that over 

70% of chondrocytes on the surface zone of adult human 

articular cartilage express Notch1 receptor [49,53]. 

Additionally, Karlsson and colleagues [10] cultured 

human articular chondrocytes for one passage with and 

without treatment by a Notch signaling inhibitor; the 

results showed that blocking Notch activation decreases 

chondrocyte proliferation compared with controls.

Although these data support the idea that Notch 

signaling is mainly involved in maintaining clonality and 

proliferation rather than diff erentiation, it has not been 

excluded that this pathway may also promote chondro-

cyte terminal diff erentiation [42]. Th us, the precise role 

of the Notch receptor in promoting proliferation or 

diff erentiation after birth remains unclear.

Notch and damaged articular cartilage

In normal conditions, the chondrocyte is responsible for 

the synthesis, maintenance and turnover of the 
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extra cellular matrix of articular cartilage. Th is matrix is 

primarily composed of type II collagen and aggrecans [54]. 

In normal articular cartilage, low turnover of extra cellular 

matrix components is maintained by a balance between 

anabolic and catabolic factors. In fact, metallo proteinases, 

especially matrix metalloproteinase (MMP)13, are pro-

duced by chondrocytes in order to ensure the continuous 

renewal of collagen fi brils. Th is production is regulated 

by the synthesis of tissue inhibitors of MMPs, commonly 

called TIMPs. During OA, degradation of the extra-

cellular matrix exceeds its synthesis, resulting in a net 

decrease in the amount of cartilage matrix and even the 

erosion of joint surfaces [55]. Additionally, chondrocytes 

undergo phenotypic modifi cations, including the 

acquisition of a fi broblast-like morphology, loss of the 

ability to express collagen II, and increased expression of 

fetal fi brillar collagen type I, usually known as chondro-

cyte dediff erentiation. Th ese phenotypical modifi  ca tions 

promote matrix degradation and unsuccessful cartilage 

repair [56,57]. Kouri and Lavalle [1] established a classifi -

cation scheme for chondrocytes present in OA cartilage 

based on their ultrastructural characteristics. Th ey 

identifi ed three types, ranging from normal chondrocytes 

on non-fi brillated regions to secretory chondrocytes with 

irregular shape, and apoptotic (chondroptotic) chondro-

cytes in the deeper fi brillated regions. Th us, they 

suggested that, following cartilage injury, the chondro-

cyte is activated and the types of molecules it secretes 

changes, called the transdiff er en tiation process. Th is 

mechanism is launched in an attempt to repair cartilage, 

and the failure of this repair results in apoptosis of 

chondrocytes [1].

In this context, the recently reported expression of 

Notch family members in adult and even OA cartilage 

raised the issue of the involvement of this pathway in the 

physiopathology of OA and especially in the changes that 

chondrocytes undergo during this process [51,52]. 

Experimental animal models of OA that have been 

developed, such as rabbit, rat and dog, have rather 

focused on the anatomopathology of the disease [58-63]. 

Th us, scientists have been interested in studying the 

relationship between morphology and chondrocyte 

behavior in vitro using monolayer cultures to induce 

dediff erentiation, although it has been realized that the 

monolayer expansion of chondrocytes can alter the 

diff er entiated phenotype [64]. Th is was confi rmed in a 

murine model of chondrocyte culture in which cells 

switched from expressing type II collagen to type I and 

III collagen starting from day 4 to 8 of culture. Th e switch 

in collagen synthesis occurred simultaneously with a loss 

of the chondrocyte matrix capsule and the emergence of 

a fi broblast-like morphology [64].

It has been reported that passaged articular chondro-

cytes in a murine model undergo morphological and 

structural changes similar to the changes observed in OA 

chondrocytes, notably a decrease in the expression of 

type II collagen and an increase in the expression of type 

I collagen [65]. Some studies have highlighted an eventual 

involvement of Notch signaling during the dediff erentia-

tion of murine chondrocytes: Blaise and colleagues [66] 

and our group [67] studied the expression pattern of 

Notch family members in passaged immature murine 

articular chondrocytes that had been treated or not with 

a γ-secretase inhibitor. Th e results show that the 

untreated chondrocytes had decreased expression of type 

II collagen during the passages but increased MMP13 

expression. However, cells treated with the inhibitor 

during the passages showed a less pronounced decrease 

in collagen II synthesis and a decrease in MMP13 expres-

sion [66]. Th ese authors also showed that transfecting 

chondrocytes with the active form of the Notch receptor 

resulted in reduction of MMP13 expression. Moreover, 

our group showed that the inhibition of this pathway not 

only slowed the dediff erentiation process, but also 

inhibited collagen I expression and even led to collagen II 

re-expression, suggesting eventual chondrocyte re-

diff erentiation [67].

Since Notch signaling is involved not only in diff eren-

tiation but also in proliferation and apoptosis in 

developing and mature articular cartilage, recent studies 

have focused on the involvement of this pathway in joint 

pathology. Several studies were interested in the 

interaction between Notch signaling and cartilage sub-

populations [68,69]. In 2004, Alsalameh and colleagues 

[70] showed that normal human articular cartilage may 

contain a mesenchymal progenitor population, and in 

2006, Hiraoka and colleagues [52] linked the expression 

of the Notch receptor 1 with the presence of a mesen-

chymal progenitor population.

Consistent with these results, Karlsson and colleagues 

[71] and Grogan and colleagues [72] showed that the 

frequency of cells expressing Notch1 is higher in fi bril-

lated OA cartilage compared to healthy cartilage. In the 

same context, Archer and colleagues [73], in a recent 

study, isolated and characterized the previously described 

chondroprogenitor population from human adult articu-

lar cartilage. Th ey described this subpopulation as retain-

ing a ‘stem cell-like phenotype’, and the activation of these 

cells probably depends on the physiological and patho-

logical parameters surrounding articular chondrocytes.

Th ere is a debate in the literature concerning the origin 

of this subpopulation. Functional studies were interested 

in the multilineage potential of these cells. Barbero and 

colleagues [74] used monolayer expansion of adult human 

chondrocytes to show that these cells exhibited diff er-

entiation plasticity toward chondrocytic, osteoblastic and 

adipocytic lineages, suggesting that monolayer expansion 

may induce selection for progenitor cells. Th is was later 
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confi rmed by Alsalameh and colleagues [70] using 

selected chontrocytes from OA patients. Diff erentiation 

assays performed by Grogan and colleagues [72] also 

showed that a subpopulation of chondrocytes represent-

ing 0.1% of the cartilage cells displayed a higher 

multilineage potential than the rest of the chondrocytes.

Other studies have studied chondrocyte surface 

markers in order to elucidate the origin of the chondro-

progenitor population. Diaz-Romero and colleagues [75] 

analyzed changes in surface immunologic markers during 

chondrocyte monolayer expansion and showed that the 

cell surface marker profi le of dediff erentiated chondro-

cytes has similarities to that previously described for 

hMSCs. For a better understanding of the origin of 

dediff erentiating chondrocytes, these authors [76] iso-

lated and cultured human articular chondrocytes and 

hMSCs and compared their cell surface immunomarker 

profi les. Th e results showed that the cartilage cells 

exhibiting changes in these markers are actually multi-

potent dediff erentiating chondrocytes rather than a 

subpopulation of hMSCs proliferating during monolayer 

expansion. Th ese results are in accordance with the 

hypothesis reported by De La Fuente and colleagues [77], 

who showed that dediff erentiated human articular 

chondrocytes should be considered as a multipotent 

primitive population.

In summary, whether they are dediff erentiated 

multipotent chondrocytes or a preexisting hMSC popu-

lation, these data confi rm the eventual involvement of 

this subpopulation in pathologic cartilage remodeling. 

Hiraoka and colleagues [52] showed by immunohisto-

chemistry that this chondroprogenitor population in 

adult human articular cartilage expresses Notch recep-

tors and their ligands Jagged and Delta, which may 

increase the clonality of these cells. Th is expression was 

increased in OA cartilage, which the authors suggested 

might be due to the large number of chondrocytes in the 

clusters observed during OA, which are thought to 

represent cells that hyperproliferated in response to 

tissue injury [52]. Th ese results suggest that articular 

cartilage cells (mature chondrocytes and/or mesen chy-

mal progenitor cells) expressing Notch family members 

may be activated during OA in order to achieve intrinsic 

cartilage repair.

Conclusion

OA is a multifactorial disease and the degradation of the 

articular cartilage is a complex process involving several 

actors, including signaling pathways like the Notch 

pathway. Further work is required to understand the 

complexity of Notch signaling during cartilage pathology 

and chondrocyte dediff erentiation, which is likely to 

become a new research focus because of its importance 

in the stem cell fi eld, regenerative medicine and aging 

biology. Understanding the underlying mechanisms of 

chondrocyte dediff erentiation is necessary to develop 

new therapeutic approaches for a better outcome for 

patients suff ering from joint diseases.
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