
Introduction

Th e bony skeleton enables locomotive activity, the 

storage of calcium, and the harboring of hematopoietic 

stem cells (HSCs). Th is multifunctional organ is charac-

terized by calcifi ed hard tissue composed of type I 

collagen and highly organized deposits of calcium phos-

phate [1]. Although bone superfi cially seems to be 

metabolically inert, it is, in fact, restructured at such a 

high speed that approximately 10% of the total bone 

content is replaced each year in adult vertebrates. Th is 

process, called bone remodeling, is dependent on the 

dynamic balance of bone formation and resorption, 

which are mediated by osteoblasts and osteoclasts, 

respectively. A delicate regulation of this process is 

requisite for normal bone homeostasis, and an imbalance 

is often related to metabolic bone diseases in humans [2].

Accumulating evidence has indicated that the immune 

and skeletal systems share a number of regulatory 

molecules, including cytokines, receptors, signaling mole-

cules, and transcription factors. Furthermore, immune 

cells are formed and HSCs are maintained in the bone 

marrow, where they interact with bone cells. Th erefore, 

the evidence that the physiology and pathology of one 

system might aff ect those of the other is compelling and 

the term osteoimmunology was coined to cover these 

overlapping scientifi c fi elds. Th e most typical example of 

the interaction between the skeletal and immune systems 

is seen in the abnormal or prolonged activation of the 

immune system (or both) in autoimmune diseases such 

as rheumatoid arthritis (RA), which is characterized by 

progressive multiple joint destruction. Since autoreactive 

T lymphocytes are considered to play a key role in the 

pathogenesis of RA, attention must be paid to the 

relationship between osteoclast-mediated bone destruc-

tion and aberrant adoptive immune responses in order to 

develop eff ective therapeutic strategies against RA. Here, 

we summarize recent progress in the understanding of 

the relationship between bone and the adaptive immune 

system in arthritis by focusing mainly on osteoclasts and 

osteoclastogenic helper T cells, Th 17 cells.

Osteoclasts and bone destruction

The role of RANK/RANKL in osteoclastogenesis

Osteoclasts are large, multinucleated cells formed by the 

fusion of precursor cells of monocyte/macrophage lineage 

[2]. Mature osteoclasts degrade bone matrix proteins by 

secreting proteolytic enzymes, such as cathepsin K and 

matrix metalloproteinase, and decalcify the inorganic 

components of bone by releasing hydrochloric acid. In 

the late 1980s, an in vitro osteoclast formation system 

that uses a system of culturing bone marrow-derived 

cells of monocyte/macrophage lineage together with 

osteoclastogenesis-supporting cells such as osteoblasts 

was established [3,4]. Th ese supporting mesenchymal 

cells provide certain factors that are necessary for osteo-

clast diff erentiation [5]. Analysis of op/op mice with 

osteo petrosis revealed one of these essential factors to be 

macrophage colony-stimulating factor (M-CSF) [6]. M-

CSF stimulation alone, however, does not induce the 
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diff erentiation of osteoclasts. Forced expression of anti-

apoptotic molecule Bcl-2 partially rescues the osteo-

petrotic phenotype of the op/op mice [7], suggesting that 

M-CSF is a survival factor for osteoclast precursor cells. 

Ultimately, in 1998, Yasuda and colleagues [8] and Lacey 

and colleagues [9] did clone the long-sought ligand 

mediat ing the essential signal for osteoclast diff eren-

tiation; this ligand was called ODF and osteoprotegerin 

ligand, respectively. Interestingly, this cytokine, which 

belongs to the tumor necrosis factor (TNF) family, was 

shown to be identical to receptor activator of nuclear 

factor-κB ligand (RANKL) and TNF-related activation-

induced cytokine (TRANCE), both of which had been 

cloned in the immune system [10,11]. Th e cloning of 

ODF (RANKL, hereafter) enabled investi gation of the 

diff erentiation process in a sophisticated culture system 

employing recombinant RANKL and M-CSF [12].

Th e receptor for RANKL is RANK, a type I trans-

membrane protein that possesses a high homology with 

CD40. RANK is expressed on osteoclast precursor cells 

and mature osteoclasts, and the binding of RANKL to 

RANK is inhibited by the decoy receptor osteoprotegerin 

(OPG) [13,14]. In bone, RANKL is expressed by osteo-

clastogenesis-supporting cells, including osteoblasts, in 

response to osteoclastogenic factors, such as 1,25- 

dihydroxyvitamin D
3
, prostaglandin E

2
, and para thyroid 

hormone, and is a crucial determinant of the level of 

bone resorption in vivo [5,12]. Mice with a disruption of 

either Rank or Rankl exhibit severe osteopetrosis 

accompanied by a tooth eruption defect resulting from a 

complete lack of osteoclasts [15-17]. In contrast, mice 

lacking Opg exhibit a severe form of osteoporosis caused 

by both an increased number and enhanced activity of 

osteoclasts [18,19]. Th ese genetic fi ndings clearly 

demonstrate that RANK/RANKL signaling is essential 

for osteoclasto genesis in vivo. Furthermore, mutations in 

RANK, RANKL, and OPG have been identifi ed in human 

patients with bone disorders such as familial expansile 

osteolysis, autosomal recessive osteopetrosis, and 

juvenile Paget’s disease of bone, respectively [20-23].

RANKL signaling

Th e ligation of RANK with RANKL results in trimeri-

zation of RANK and recruitment of adaptor molecules 

such as the TNF receptor-associated factor (TRAF) 

family of proteins, among which TRAF6 has been shown 

to be the major adaptor molecule [24,25]. TRAF6 

trimerizes upon RANK stimulation and activates nuclear 

factor-κB (NF-κB) and mitogen-activated protein 

kinases, including Jun N-terminal kinase (JNK) and p38. 

RANK also activates the transcription-factor complex, 

activator protein 1 (AP-1), through the induction of its 

component c-Fos [26]. Th e induction mechanism of c-

Fos is dependent on the activation of Ca2+/

calmodulin-dependent protein kinase IV (CaMKIV) and 

cyclic adenosine mono phosphate responsive-element-

binding protein (CREB) [27] as well as the activation of 

NF-κB [28]. Importantly, RANKL specifi cally and 

potently induces nuclear factor of activated T cells 

cytoplasmic 1 (NFATc1), the master regulator of 

osteoclast diff eren tiation, and this induction is dependent 

on both the TRAF6 and c-Fos pathways [29]. Th e 

activation of NFAT is mediated by a specifi c phosphatase, 

calcineurin, which is activated by calcium-calmodulin 

signaling. Th e NFATc1 promoter contains NFAT-binding 

sites, and NFATc1 specifi cally autoregulates its own 

promoter during osteoclasto genesis, thus enabling the 

robust induc tion of NFATc1 [30]. Th e essential role of 

NFATc1 has been conclusively demonstrated by genetic 

experi ments [30-32]. NFATc1 regulates a number of 

osteoclast-specifi c genes, such as cathepsin K, tartrate-

resistant acid phosphatase (TRAP), calcitonin receptor, 

osteoclast-associated receptor (OSCAR), and β3 integrin, 

in cooperation with other transcription factors such as 

AP-1, PU.1, micro phthalmia-associated transcription 

factor (MITF), and CREB (Figure 1).

During osteoclastogenesis, activation of calcium signal-

ing is dependent on costimulatory receptors for RANK, 

which are immunoglobulin-like receptors, such as OSCAR 

and triggering receptor expressed in myeloid cells-2 

(TREM-2). Th ese receptors associate with the adaptor 

molecules Fc receptor common γ subunit (FcRγ) and 

DNAX-activating protein 12 (DAP12), transducing 

signals by the phosphorylation of immunoreceptor tyrosine-

based activation motifs (ITAMs) within the adaptor 

proteins, which, in turn, recruit the spleen tyrosine 

kinase (Syk) [33,34] (Figure  1). As shown recently, Tec 

family tyrosine kinases (Tec and Btk) activated by RANK 

cooperate with Syk to induce effi  cient phosphorylation of 

phospholipase Cγ (PLCγ), which induces the release of 

calcium from the endoplasmic reticulum through the 

generation of inositol trisphosphate [35]. Although a 

series of genetically modifi ed mice has clearly shown that 

ITAM-mediated signals are essential for osteoclasto-

genesis, the ligands for the costimulatory receptors remain 

to be identifi ed [33-35].

Mechanism of bone destruction in rheumatoid 

arthritis

The essential role of osteoclasts in bone destruction in 

rheumatoid arthritis

Th e bone destruction observed in the joints of patients 

with RA presents a challenging clinical problem. In the 

early 1980s, researchers observed osteoclast-like cells at 

the bone destruction sites [36], but it was not until 

RANKL was cloned that the importance of osteoclasts 

became generally accepted. We previously demonstrated 

effi  cient osteoclast formation in synovial cell cultures 
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obtained from patients with RA [37]. Moreover, the 

expression of RANKL was detected specifi cally in the 

synovium of patients with RA [38,39]. Recent studies 

have provided further direct genetic evidence: 

RANKL-defi cient mice, which lack osteoclasts, were 

protected from bone destruction in an arthritis model 

induced by serum transfer [40]. Bone erosion was not 

observed in osteopetrotic Fos−/− mice, even when they 

Figure 1. Signaling cascades during osteoclastogenesis. Receptor activator of nuclear factor-κB ligand (RANKL)-RANK binding results in the 

recruitment of tumor necrosis factor receptor-associated factor 6 (TRAF 6), which activates nuclear factor-κB (NF-κB) and mitogen-activated protein 

kinases. RANKL also stimulates the induction of c-Fos through NF-κB and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV). NF-κB and c-Fos 

are important for the robust induction of nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Several costimulatory receptors associate with 

the immunoreceptor tyrosine-based activation motif (ITAM)-harboring adaptors, Fc receptor common γ subunit (FcRγ), and DNAX-activating 

protein 12 (DAP12): osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells 2 (TREM2) associate with FcRγ, 

and signal-regulatory protein β1 (SIRPβ1) and paired immunoglobulin-like receptor-A (PIR-A) associate with DAP12. RANK signaling and ITAM 

signaling cooperate to phosphorylate phospholipase Cγ (PLCγ) and activate calcium signaling, the latter of which is critical for the activation and 

autoamplifi cation of NFATc1. Tec family tyrosine kinases (Tec and Btk) activated by RANK are important for the formation of the osteoclastogenic 

signaling complex composed of Tec kinases, B-cell linker (BLNK)/SH2 domain-containing leukocyte protein of 76 kDa (SLP76) (activated by ITAM-

spleen tyrosine kinase, or Syk), and PLCγ, all of which are essential for the effi  cient phosphorylation of PLCγ. AP-1, activator protein 1; CREB, cyclic 

adenosine monophosphate responsive-element-binding protein; MITF, microphthalmia-associated transcription factor; TRAP, tartrate-resistant acid 

phosphatase.
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were crossed with TNF-α transgenic mice, which develop 

erosive arthritis spontaneously [41]. In the two cases, a 

similar level of infl ammation was observed, indicating 

that RANKL and osteoclasts are indispensable for the 

bone loss but not the infl ammation. Consistent with this, 

anti-RANKL and anti-osteoclast therapies have been 

shown to be benefi cial in the treatment of bone damage 

in animal models of arthritis [42,43]. Infl ammatory cyto-

kines such as TNF-α, interleukin-1 (IL-1), and IL-6 have 

a potent capacity to induce RANKL expression on 

synovial fi broblasts/osteoblasts and to facilitate RANKL 

signaling, thus contributing directly to the bone 

destruction process. In particular, TNF-α is considered of 

special importance since anti-TNF therapy reduces bone 

erosion as well as infl ammation [44].

Eff ect of T cells on osteoclastogenesis

As infi ltration of T cells into the synovium is a patho-

logical hallmark of RA, it is vital to address how T-cell 

immunity is linked to the enhanced expression of 

RANKL and eventual osteoclastic bone resorption. More 

specifi cally, as RANKL is known to be expressed in 

activated T cells, it is important to determine whether 

this source of RANKL can directly induce osteoclast 

diff erentiation. In 1999, Kong and colleagues [42] showed 

that the RANKL expressed on activated T cells acts 

directly on osteoclast precursor cells and induces osteo-

clasto genesis in vitro. Horwood and colleagues [45] 

reported that osteoclastogenesis could be induced in 

vitro by activated T cells. However, it is important to note 

that T cells produce various cytokines, including inter-

feron-γ (IFN-γ), IL-4, and IL-10, which exert potent 

inhibitory eff ects on osteoclast diff erentiation [2]. In the 

former study, the T cells were fi xed by formaldehyde and 

thus were unable to release any humoral factors [42]. In 

the latter study, the T cells and osteoclast precursor cells 

were derived from diff erent species, suggesting that the 

eff ect of cytokines would, in all likelihood, be much lower 

than that on cells of the same species [45]. Th e question 

then arises as to how T-cell cytokines other than RANKL 

aff ect osteoclast diff erentiation.

Upon activation, naïve CD4+ T cells diff erentiate into 

diff erent lineages of helper T (Th ) cells, depending on the 

cytokine milieu [46]. Th 1 and Th 2 cells are traditionally 

thought to be the major subsets generated upon antigenic 

stimulation. Th 1 cells, which are induced by IL-12, 

produce mainly IFN-γ and are involved in cellular 

immunity; Th 2 cells produce mainly IL-4, IL-5, and IL-10 

and contribute to humoral immunity. RA was previously 

considered to be a disease in which the Th 1-Th 2 balance 

is skewed toward Th 1. However, IFN-γ is not highly 

expressed in the joints of patients with RA [47]. Notably, 

IFN-γ strongly inhibits osteoclastogenesis, even at minute 

concentrations, through ubiquitin-proteasome-mediated 

degradation of TRAF6 [48]. Moreover, the severity of 

collagen-induced arthritis was reported to be exaggerated 

in the absence of IFN-γ signaling [49,50], suggesting that 

Th 1 cells are not linked to bone damage in arthritis.

Th17 cells function as osteoclastogenic Th cells

It is worthwhile to defi ne what is believed to be a very 

rare but pathologically important Th  cell subset that is 

responsible for abnormal bone resorption as osteo clasto-

genic Th  cells. Previous investigations in our laboratory 

together with other studies on synovial T cell in RA have 

clarifi ed the characteristics of osteoclastogenic Th  cells in 

autoimmune arthritis [51]. First, osteoclastogenic Th  

cells do not produce a large amount of IFN-γ. Second, 

they trigger both local infl am mation and the production 

of infl ammatory cytokines that induce RANKL ex pres-

sion on synovial fi broblasts. Th ird, osteoclasto genic Th  

cells express RANKL and might thereby participate 

directly in accelerated osteo clastogenesis. Because these 

Th  cells have such osteoclastogenic characteristics, they 

can tip the balance in favor of osteoclastogenesis 

synergistically.

Th 17 cells have recently been identifi ed as a new 

eff ector Th  cell subset characterized by the production of 

proinfl ammatory cytokines, including IL-17, IL-17F, 

IL-21, and IL-22. Th 17 cell diff erentiation is induced by 

the combination of IL-6 and transforming growth factor-

β (TGF-β). IL-23 is dispensable for the lineage commit-

ment of Th 17 cells but is required for the growth, 

survival, and eff ector functions of Th 17 cells [52,53]. 

Importantly, this unique subset plays a critical role in 

host defense against certain extracellular pathogens and 

also contributes to the pathogenesis of various auto-

immune diseases [53]. Recent data from our laboratory 

indicate that Th 17 cells represent the long sought-after 

osteoclastogenic Th -cell subset, fulfi lling all of the criteria 

mentioned above [54]. IL-17 induces RANKL on 

osteoclastogenesis-supporting mesenchymal cells, such 

as osteoblasts and synovial fi broblasts [55]. IL-17 also 

enhances local infl ammation and increases the produc-

tion of infl ammatory cytokines, which further promote 

RANKL expression and activity. Th erefore, the infi ltra-

tion of Th 17 cells into the infl ammatory lesion is the link 

between the abnormal T-cell response and bone damage 

(Figure 2).

Eff ects of regulatory T cells on osteoclastogenesis

CD4+ CD25+ regulatory T (Treg) cells are a specialized 

T-cell subset that engages in the maintenance of 

immunological self-tolerance and immune homeostasis, 

as evidenced by the development of severe autoimmune 

disease, allergy, and immunopathology in humans and 

mice with a mutation of forkhead box P3 (Foxp3), a 

master regulator for the Treg cell lineage [56]. Treg cells 
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can be classifi ed into two main populations: FoxP3+ 

naturally occurring Treg cells generated in the thymus 

and FoxP3+ Treg cells induced by antigen stimulation in a 

milieu rich in TGF-β in the periphery. Although the 

diff erences and similarities between these two popu la-

tions are yet to be fully elucidated, both have been con-

sidered to be essential for immune homeostasis. Notably, 

Th 17 cells and Treg cells are reciprocally regulated during 

diff erentiation but exert the opposite eff ects on auto-

immunity, and the balance between these populations is 

associated with infl ammation and autoimmune diseases 

[53,56]. In many studies, Treg cells were found in high 

numbers within joint fl uid from patients with RA [57-59]. 

However, Treg cells in joint fl uid from patients with RA 

failed to suppress eff ector T-cell proliferation or cytokine 

production. Th is is because infl ammatory cytokines, 

includ ing IL-6 and TNF-α, attenuate Treg function. 

Eff ector T cells in joint fl uid were also reported to be 

resistant to suppression by Treg cells. In addition, serum 

markers of bone resorption such as C-terminal 

telo peptide of type I collagen inversely correlated with 

the number of CD4+CD25+ Treg cells in peripheral blood 

of healthy control and RA patients [60]. Th us, it is of key 

interest whether Treg cells aff ect infl ammatory-asso-

ciated bone destruction. Several groups have reported 

the inhibitory eff ect of Treg cells on osteoclastogenesis 

and bone resorp tion, but no consensus regarding their 

inhibitory mechanisms has been established. Kim and 

colleagues [61] reported that the human CD4+CD25+ 

Treg cells isolated from peripheral blood mononuclear 

cells (PBMCs) suppress osteoclast diff erentiation in a 

cytokine-dependent manner and proposed that TGF-β 

and IL-4 are required for the suppressive function of Treg 

cells. Zaiss and colleagues [62] demonstrated the inhi bi-

tory eff ect of CD4+CD25+ Treg cells purifi ed from mouse 

spleen on osteoclast diff erentiation. However, the authors 

showed that CD4+CD25+ Treg cells inhibit osteoclasto-

genesis partially via IL-4 and IL-10 production but mainly 

through cell-to-cell contact via cytotoxic T lympho cyte 

antigen 4. It is notable that wild-type Treg cells failed to 

Figure 2. Regulation of osteoclast diff erentiation by T cells in rheumatoid arthritis. Interleukin (IL)-17-producing helper T (Th17) cells have 

stimulatory eff ects on osteoclastogenesis and play an important role in the pathogenesis of rheumatoid arthritis through IL-17, whereas Th1 and 

Th2 cells have inhibitory eff ects on osteoclastogenesis through interferon-γ (IFN-γ) and IL-4, respectively. IL-17 not only induces receptor activator 

of nuclear factor-κB ligand (RANKL) on synovial fi broblasts of mesenchymal origin but also activates local infl ammation, leading to the upregulation 

of proinfl ammatory cytokines, such as tumor necrosis factor-α (TNF-α), IL-1, and IL-6. These cytokines activate osteoclastogenesis by either acting 

directly on osteoclast precursor cells or inducing RANKL on synovial fi broblasts. Th17 cells also express RANKL on their cellular membrane, and this 

partly contributes to the enhanced osteoclastogenesis. RANK, receptor activator of nuclear factor-κB.
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inhibit the diff erentiation of osteoclasts from CD80/86−/− 

monocytes [63]. A decrease in osteo clast number and 

bone resorption was observed after transfer of 

CD4+CD25+ Treg cells into Rag1-defi cient mice, indicat-

ing that Treg cells could directly block osteoclastogenesis 

without engaging eff ector T cells [63]. Furthermore, Luo 

and colleagues [64] recently reported that human PBMC-

derived CD4+CD25+ Treg cells suppress osteoclasto-

genesis and bone resorption in a TGF-β1 and IL-10 

cytokine-dependent manner. Since TGF-β, IL-10, and 

IL-4 are cytokines that are well known to inhibit osteo-

clastogenesis, these cytokines produced by Treg cells may 

be involved, at least partially, in the suppressive function 

of Treg cells on osteoclastogenesis. In all studies by these 

three groups, Treg cells were activated before coculture 

experiments, but their culture conditions varied, and this 

may cause the diff erence among their results. Zaiss and 

colleagues [63] also reported increased bone mass and 

partial protection from bone loss after ovariectomy in 

Foxp3 transgenic mice. Foxp3+ Treg cells have been 

shown to protect against local and systemic bone 

destruction in the mouse model of TNF-α-induced 

arthritis [60]. It is likely that, taken as a whole, Foxp3+ 

Treg cells exert inhibitory eff ects on infl ammatory-

associated bone destruction, but it is important to 

consider the possibility that the charac ter istics of Treg 

cells are aff ected by the specifi c micro environment such 

as autoimmune infl ammation, as described above. 

Additional studies would be needed to determine how 

Treg cells aff ect osteoclast-mediated bone destruction 

under infl ammatory conditions.

The involvement of B cells in bone destruction

B cells and antibodies make up the body’s humoral 

immune response. B cells develop within bone marrow 

with the support of the stromal cells and the osteoblast 

lineage cells via various growth factors and cytokines, 

and are released into the blood and lymphatic systems. In 

the sera of most patients with RA, a variety of auto-

antibodies such as rheumatoid factor and anti-cyclic 

citrullinated peptide antibodies can be detected [65]. Th e 

clinical benefi t of the treatment of anti-CD20 antibody, 

rituximab, supports the notion that B cell-mediated 

immune responses contribute to the pathogenesis of RA 

[65,66]. However, there are confl icting data on the role of 

B cells on bone remodeling: whereas some reported that 

activated B cells have the potential to promote osteo-

clastogenesis via RANKL expression [67,68], others 

insisted that B cells have an inhibitory eff ect on osteo-

clastogenesis through TGF-β or IFN-γ production 

[69,70]. Weitzmann and colleagues [71] reported that 

μMT heavy chain-defi cient mice, which lack mature B 

cells, are osteoporotic. Th e authors proposed that B cells 

are critical regulators of physiological bone turnover by 

secreting OPG and that T cells promote enhanced OPG 

secretion by activated B cells via CD40/CD40L costimu-

lation. Interestingly, T cell-defi cient nude mice, CD40-

defi cient mice, and CD40L-defi cient mice displayed 

osteo porosis and diminished bone marrow OPG produc-

tion [71]. However, the other group reported that neither 

μMT-defi cient mice nor Rag1-defi cient mice have an 

obvious bone phenotype [72]. Th us, the role of B-cell 

lineages in physiological bone remodeling has not been 

fi rmly established.

IL-7, a major growth factor for B cells, has been 

reported to be upregulated under infl ammatory condi-

tions and during estrogen defi ciency [73,74]. Suda and 

colleagues [75] reported that systemic administration of 

IL-7 induced bone loss, which was similar to that of 

ovariectomized mice, and that IL-7Ra-defi cient mice had 

increased bone mass. Th e authors proposed that 

increased B lymphopoiesis due to induction of IL-7 by 

estrogen defi ciency may be involved in the elevated 

osteoclastogenesis. On the other hand, Weitzmann and 

colleagues [76] reported the other eff ect of IL-7 on bone 

metabolism; IL-7 promotes osteoclastogenesis by up-

regu lating T cell-derived osteoclastogenic cytokines, 

including RANKL. Indeed, IL-7 administration did not 

induce bone loss in T cell-defi cient nude mice [77]. In 

contrast, Lorenzo and colleagues [78] reported that IL-7 

inhibited osteoclast formation in bone marrow culture 

and that IL-7 defi ciency caused increased osteoclasto-

genesis and decreased trabecular bone mass in vivo [79]. 

Wild-type and IL-7-defi cient mice lose similar amounts 

of trabecular bone mass after ovariectomy. Consideration 

of the various eff ects of IL-7 on diff erent target cells will 

be required to defi ne the precise role of IL-7-mediated B 

lymphopoiesis on bone remodeling.

Kawai and colleagues [80] reported that, in case of 

bone destruction in periodontal disease, RANKL was 

highly expressed by activated B cells isolated from 

gingival tissues of patients. Furthermore, it has been 

recently reported that, after injection of lipopolysac-

charide (LPS) into mouse gingival, alveolar bone destruc-

tion was more highly induced in B cell-reconstituted 

severe combined immunodefi ciency (SCID) mice than in 

SCID mice and that LPS-stimulated B cells enhanced 

osteoclast diff erentiation by producing TNF-α in vitro 

[81]. Th ese reports suggested that activated B cells have 

stimu latory eff ects on bone destruction under infl am-

matory conditions such as periodontitis, but further 

studies are needed to determine how B cell-mediated 

immune responses are directly involved in the osteoclast 

activation in RA.

Mechanisms involved in Th17 cell diff erentiation

Th e Th 17 cell subset has emerged as an attractive thera-

peutic target for both infl ammation and bone 
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destruc tion. It is therefore important to understand the 

molecular mechanism underlying Th 17 development in 

order to develop novel therapeutic strategies.

ROR nuclear receptors in Th17 development

Th  cell diff erentiation is initiated by the T-cell receptor 

signal in combination with other cytokine receptor signals. 

Th ese signals induce the activation of specifi c transcrip-

tion factors to promote lineage-specifi c cytokine produc-

tion [46]. For example, the T-box-containing protein 

expressed in T cells, which is activated by IL-12 and 

IFN-γ, is required for Th 1 cell diff erentiation. Th 2 cell 

diff erentiation requires the function of the GATA-

binding protein 3, which is induced by the IL-4-activated 

signal transducer and activator of transcription (Stat) 6.

Soon after the discovery of Th 17 cells, Littman and 

colleagues [82] reported that retinoid-related orphan 

receptor (ROR) γt is selectively expressed in Th 17 cells 

and is required for Th 17 cell diff erentiation. RORγt 

expression is induced by the combination of IL-6 and 

TGF-β through Stat3. Furthermore, RORγt defi ciency 

was shown to lead to an impairment of Th 17 cell 

diff erentiation both in vitro and in vivo. A subsequent 

study by Dong and colleagues [83] showed that another 

ROR family member, RORα, is highly induced during 

Th 17 cell diff erentiation in a Stat3-dependent manner. 

Although RORα deletion in mice had only a minimal 

eff ect on IL-17 production, the defi ciency of both RORα 

and RORγt completely abolished IL-17 production and 

protected mice from experimental autoimmune 

encephalo myelitis (EAE), a mouse model of multiple 

sclerosis. Th us, RORγt and RORα have redundant func-

tions, but RORγt seems to be the major player in Th 17 

cell diff erentiation. Although the mecha nisms by which 

the ROR nuclear receptors drive Th 17 development and 

production of Th 17-related cytokines such as IL-17 have 

not yet been fully elucidated, they are considered to be 

essential factors for Th 17 development.

A role of cathepsin K in autoimmunity

Cathepsin K is a lysosomal cysteine protease that plays a 

pivotal role in osteoclast-mediated degradation of the 

bone matrices [84]. Th us, cathepsin K has been 

considered a potential therapeutic target for the treat-

ment of bone diseases such as osteoporosis. We 

developed a new orally active cathepsin K inhibitor, 

NC-2300, and examined the eff ect of the inhibitor in 

osteoporosis as well as arthritis models [85]. We observed 

unexpected results that cathepsin K suppression leads to 

the reduction of infl ammation in the latter model. 

Cathepsin K, despite a low expression level in dendritic 

cells, plays an important role in the activation of Toll-like 

receptor (TLR) 9 signaling. CpG (cytosine followed by 

guanine) DNA (a TLR9 ligand)-induced production of 

cytokines such as IL-6 and IL-23 was found to be 

impaired in cathepsin K inhibitor-treated or cathepsin K-

defi cient dendritic cells. Th e immune function of 

cathepsin K was further analyzed in EAE, and the severity 

of the disease was markedly suppressed in cathepsin K-

defi cient mice. Th e suppression of infl ammation was 

associated with the reduced induction of Th 17 cells, 

indicating that cathepsin K contributes to autoimmune 

infl ammation by inducing Th 17 cells, possibly through 

cytokines such as IL-6 and IL-23 in dendritic cells.

Th e detailed mechanism by which cathepsin K 

regulates TLR9 signaling remains elusive, but it has been 

reported that functional maturation of TLR9 requires its 

proteolytic cleavage [86,87], to which cathepsin K might 

contribute. As cathepsin K is now known to be expressed 

by other cell types, including synovial cells [88], we 

cannot exclude the possibility that NC-2300 exerted an 

anti-arthritic eff ect through other cells. However, 

cathepsin K is an interesting example of a molecule that 

was originally found in bone and subsequently shown to 

regulate the immune system. Our study identifi ed 

cathepsin K as a novel dendritic cell-specifi c regulator of 

TLR9 signaling and as a potential target of therapeutic 

intervention into infl ammation-associated bone loss.

Regulation of Th17 development by IκBζ

We found that a nuclear IκB family member, IκBζ, was 

most highly expressed in Th 17 cells among the Th  cell 

subsets [89]. IκBζ is a nuclear protein highly homologous 

to Bcl-3, which interacts with the NF-κB subunit via the 

ankyrin repeat domain [90]. Its expression is rapidly 

induced by TLR ligands or IL-1 stimulation in peritoneal 

macrophages. Yamamoto and colleagues [91], using IκBζ-

defi cient mice, demonstrated that IκBζ is essential for the 

LPS induction of a subset of secondary response genes, 

including IL-6 and the IL-12 p40 subunit, in macro-

phages. However, no attempt to determine the function 

of IκBζ in T cells was reported in their study.

IκBζ expression was shown to be upregulated by the 

combination of IL-6 and TGF-β. IκBζ induction was 

mediated by Stat3, but not by RORγt, in Th 17 cells. 

Importantly, not only IκBζ-defi cient mice but also Rag2-

defi cient mice transferred with IκBζ-defi cient CD4+ 

T cells were shown to be highly resistant to EAE. When 

naïve CD4+ T cells were activated in vitro under Th 1- and 

Th 2-polarizing conditions, IκBζ-defi cient naïve CD4+ 

T  cells normally produced IFN-γ and IL-4, respectively. 

On the other hand, when activated under Th 17-

polarizing conditions, IL-17 production in IκBζ-defi cient 

T cells was markedly reduced compared with wild-type 

T  cells. Since the expression of RORγt and RORα was 

shown to be normal in IκBζ-defi cient T cells, it is unlikely 

that ROR nuclear receptors function downstream of IκBζ 

or vice versa.
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Although ROR nuclear receptors have been proposed 

as essential regulators for Th 17 development as described 

above, several groups have reported that the ectopic 

expression of RORγt or RORα leads to only modest IL-17 

production in the absence of IL-6 and TGF-β [83,92]. Th e 

ectopic expression of IκBζ in naïve CD4+ T cells did not 

induce IL-17 production in the absence of IL-6 and 

TGF-β. Interestingly, however, even in the absence of 

IL-6 and TGF-β, the ectopic expression of IκBζ, together 

with RORγt or RORα, potently induced IL-17 production. 

A reporter assay system showed that IκBζ moderately 

activated the promoter of the mouse Il17 gene as well as 

RORγt and RORα. When the ROR nuclear receptor was 

expressed, IκBζ highly activated the Il17 promoter. 

Previous studies showed that an evolutionarily conserved 

noncoding sequence 2 (CNS2) region in the Il17 locus is 

associated with histone H3 acetylation in a Th 17 lineage-

specifi c manner and that the ROR nuclear receptor is 

recruited to the CNS2 region during Th 17 development 

[83,93,94]. In combination with RORγt and RORα, IκBζ 

potently induced the CNS2 enhancer activity. IκBζ was 

recruited to the CNS2 region in Th 17 cells, and recruit-

ment of IκBζ to the CNS2 region was dependent on 

RORγt function (Figure 3). Moreover, the expression of 

IL-17F, IL-21, and IL-23 receptor was decreased in 

IκBζ-defi cient T cells. IκBζ also bound to the promoter or 

the enhancer region of these genes in Th 17 cells. 

Collectively, these fi ndings indicate that IκBζ is critical 

for the transcriptional program in Th 17 cell lineage 

commitment [89].

Conclusions

Th e new fi eld of osteoimmunology originated from 

studies on bone destruction in RA. Increasing evidence 

has made it evident that the skeletal and immune systems 

are connected in complex ways; in fact, it would be 

diffi  cult to understand either system in depth without the 

insights aff orded by studying their interaction in an 

osteo immunological context [44]. Th e fi ndings in RA 

might be applicable to numerous infl am ma tory or 

neoplastic diseases, such as periodontitis, infec tious 

diseases, and primary or metastatic bone tumors.

Clearly, the Th 17 cell subset is an auspicious target for 

future therapeutic investigation, and cytokines related to 

Th 17 cell diff erentiation and function will be of great 

clinical importance. Antibodies against IL-17 or IL-23 

would be expected to exert benefi cial eff ects in auto-

immune diseases, and antibodies targeting the IL-6 

receptor might not only inhibit Th 17 development in RA 

but also eff ect a direct inhibition of local infl ammation 

Figure 3. IκBζ and ROR nuclear receptors synergistically promote Th17 development. Interleukin (IL)-6 and transforming growth factor-β 

(TGF-β) induce Th17 cell diff erentiation, in which the ROR nuclear receptors, RORγt and RORα, have an indispensable role. The expression of IκBζ 

is induced by the combination of IL-6 and TGF-β. IκBζ induction is mediated by signal transducer and activator of transcription 3 (Stat3), but not 

RORγt. IκBζ and ROR nuclear receptor bind directly to the CNS2 region of the Il17 promoter and cooperatively activate the Il17 promoter. Notably, 

recruitment of IκBζ to the CNS2 region was dependent on RORγt, suggesting that the binding of both IκBζ and ROR nuclear receptors to the Il17 

promoter leads to an effi  cient recruitment of transcriptional coactivators having histone acetylase activity. CNS2, conserved noncoding sequence 2; 

MHC II, major histocompatibility complex class II; ROR, retinoid-related orphan receptor; TCR, T-cell receptor; Th, helper T.
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and osteoclastogenesis [95,96]. Th e mechanism of Th 17 

development is currently one of the most important 

subjects in immunology. In recent years, several trans-

criptional regulators of Th 17 development, including 

IRF4, BATF, Ahr, and Runx1, have been reported 

[92,93,97-99]. Although further studies will be required 

to determine whether or how IκBζ synergizes with other 

transcriptional regulators of Th 17 cells, our results raise 

the possibility that the targeting of IκBζ may prove 

eff ective in the treatment of autoimmune diseases.

Importantly, Th 17 cells are also implicated in host 

defense against a number of microorganisms. Inhibition 

of Th 17 cells might thus carry a risk of increasing the 

susceptibility to infection. Th erefore, great care will be 

required to eff ectively treat autoimmune diseases without 

compromising the host defense system. Understanding 

the precise role of Th 17 cells in human autoimmune 

disorders therefore will be required for the development 

of eff ective therapeutic applications.
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