
Introduction

Anti-neutrophil cytoplasmic autoantibody (ANCA)-

associated vasculitides (AAV) constitutes a group of 

disorders characterized by autoimmune necrotizing in-

fl ammation of small blood vessels, which leads to 

systemic organ damage [1]. Th is group of systemic 

vasculitides includes Wegener’s granulomatosis (WG), 

microscopic polyangiitis (MPA), and Churg–Strauss 

syndrome (CSS). Th ese disorders are predominantly 

associated with the presence of circulating ANCAs that 

are directed against proteins in the cytoplasmic granules 

of neutrophils. ANCAs with specifi city for proteinase-3 

(PR3-ANCA) are associated with WG to a high degree, 

whereas ANCAs with specifi city for myeloperoxidase 

(MPO-ANCA) are predominant in MPA and to a lesser 

degree in CSS [2]. Although it remains unknown how 

these conditions develop, it has been postulated that 

ANCA in vivo bind to surface-expressed autoantigens 

(PR3 or MPO) on primed neutrophils, which enhances 

neutrophil degranulation and the release of toxic products 

that cause endothelial damage, ultimately leading to 

necrotizing vasculitis [2].

In vivo experimental studies have clearly demonstrated 

that MPO-ANCAs are pathogenic factors. Xiao and 

colleagues have shown that immunization of MPO-

defi cient mice with mouse MPO results in an MPO-

directed immune response, and transfer of splenocytes 

from these mice into immune-defi cient mice leads to 

development of pauci-immune necrotizing crescentic 

glomerulonephritis and systemic necrotizing vasculitis 

reminiscent of MPA [3]. Further support for the patho-

genicity of ANCA comes from a recent study by van 

Timmeren and coworkers [4]. Th ey observed that ad-

minis tration of anti-MPO antibodies hydrolyzed by the 

bacterial enzyme endoglycosidase S, which abolishes IgG 

binding to Fcγ receptors, attenuated both neutrophil 

infl ux and formation of glomerular crescents in the above-

described model of MPO-ANCA-induced glomerulo-

nephritis. An immunopathogenic role for MPO-ANCA 

has also been strongly suggested by the occurrence of 

neonatal MPA in a child born to a mother with a history of 

MPO-ANCA-associated pulmonary renal syndrome [5].

In contrast to MPO-ANCA, in vivo evidence is still 

lacking for a direct vasculitic pathogenicity of PR3-

ANCA. So far only PR3-induced and PR3-ANCA-induced 

enhancement of infl ammation has been demonstrated in 

an animal model [6,7]. Recent fi ndings by Primo and 

colleagues suggest that, under certain conditions, anti-

PR3 antibodies can be pathogenic in rodents [8]. Th ey 

showed that adoptive transfer of splenocytes from PR3-

immunized mice into NOD-SCID mice resulted in the 

appearance of circulating anti-PR3 antibodies and cres-

centic glomerulo nephritis in the recipient mice. However, 

it is unclear whether glomerulonephritis in recipient 

mice is mediated by the humoral or the cellular arm of 

the anti-PR3 response.

Of note, infi ltrating T cells in granulomatous lesions as 

well as persistent T-cell activation have been reported in 

AAV patients [9-12]. Interestingly, T-cell-depleting therapy 

with anti-CD52 antibodies (alemtuzumab) and 
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anti-thymocyte globulin can induce remission in 

refractory AAV patients [13,14]. Moreover, the IgG 

subclass distribution of ANCA, predominantly consisting 

of IgG
1
 and IgG

4
, implies isotype switching of ANCA for 

which CD4 T-helper cells are required [15]. T-cell-

mediated immunity is thus thought to contribute to the 

patho genesis of ANCA-associated vasculitis. In the 

present review we will summarize the currently available 

data on the role of T cells in AAV. We shall fi rst discuss 

current thoughts about the contribution of T cells to 

tissue injury in AAV. Th e main emphasis will then be on 

the plasticity of regulatory T cells (T
Regs

), their transition 

into Th 17 cells, and the involvement of Th 17 cells in 

granuloma formation and disease progression.

Involvement of CD4 T cells in AAV

Unlike other autoantibody-mediated diseases, AAV is 

characterized by an absence of deposited antibodies in 

aff ected tissue, in particular in glomeruli, designated as 

pauci-immune glomerular lesions [16]. Otherwise, 

immune eff ector cells such as CD4+ T cells, macrophages 

and granulocytes are enriched in granulomatous lesions 

[9,10,17-20]. Th is suggests a primary role of cell-mediated 

immunity in initiating granuloma formation. Studies in 

mice and humans have demonstrated a key role of CD4+ 

T cells in the generation of a granulomatous response. 

For instance, Saunders and colleagues have shown that 

CD4-defi cient mice did not generate the typical mono-

nuclear granulomatous lesions following Mycobacterium 

tuberculosis infection [21]. In humans, the extent of 

granuloma formation was correlated with peripheral 

CD4 T-cell counts in HIV patients with mycobacterial 

infection [22,23]. Th e important role of CD4 T cells in 

the expression of crescentic glomerulo nephritis has been 

demonstrated by Ruth and colleagues [24]. Th ey induced 

experimental anti-MPO-associated crescentic glomerulo-

nephritis by immunizing C57BL/6 mice with human 

MPO followed by subsequent challenge with anti-

glomerular basement membrane antibodies. Mice 

depleted of CD4+ T cells at the time of adminis tration of 

anti-mouse glomerular basement membrane developed 

signifi cantly less glomerular crescent forma tion and less 

cell infl ux when compared with control mice. Th ese data 

provide convincing evidence that CD4+ T cells are crucial 

in granuloma formation and glomerulo nephritis.

Studies in AAV patients also support this notion. 

Proliferation of CD4+ T cells in response to the auto-

antigens PR3 and MPO have been reported in patients 

with AAV, although CD4+ T cells from healthy controls 

also proliferated in response to PR3 and MPO, albeit to a 

lesser extent [25]. Persistent CD4 T-cell activation has 

also been observed in peripheral blood from AAV 

patients [26-28]. Importantly, Marinaki and colleagues 

observed an association between persistent CD4+ T-cell 

activation and disease severity in both WG patients and 

MPA patients [29]. Recently, Seta and colleagues 

evaluated the eff ect of depleting CD4 or CD8 T cells on 

the proliferative response to MPO fragments of peri-

pheral blood mononuclear cells isolated from MPA 

patients [30]. Strikingly, proliferation was completely lost 

after the depletion of CD4+ T cells, but not after depletion 

of CD8+ T cells. In our studies in WG patients, we 

observed a persistent expansion of a subset of memory 

CD4+ T cells, termed eff ector memory T cells (T
EM

), with 

a reciprocal decrease in naïve CD4+ T cells [11]. More-

over, the CD8+ T-cell compartment also appears to be 

altered [31,32]. In accordance, infi ltrating T cells in lung 

lesions and glomeruli were shown to consist mainly of 

CD4+ T cells with a memory phenotype [9,33,34]. Also in 

CSS patients, given the allergic background and hyper-

eosinophilia in this disease, activated CD4+ T cells 

producing Th 2 cytokines are believed to be the disease 

inducer [35]. Taken together, these fi ndings indicate that 

CD4 T cells can serve as eff ector cells in the pathogenesis 

of AAV.

CD4+ eff ector memory T cells: a key player in tissue 

injury in AAV

As mentioned above, several observations support the 

involvement of CD4+ T cells in the pathogenesis of AAV. 

Important evidence regarding their role in disease mani-

festations came also from the clinical observation that 

remission could be induced in WG patients by antibodies 

directed at T cells [36]. Indeed, an altered phenotype of 

CD4+ T cells has been found in AAV patients. An 

increased proportion of CD45RCLowCD4+ memory T cells 

was reported in peripheral blood of AAV patients [37]. In 

addition, an expanded population of CD4+ T cells lacking 

the co-stimulatory molecule CD28 was observed in 

peripheral blood and in granulomatous lesions of patients 

with WG [9,38]. Th ese CD28–CD4+ T cells display up-

regulation of the T-cell diff erentiation marker CD57 and 

show intracytoplasmic perforin expression, indicating the 

cytotoxic potential of these cells [9]. Based on phenotype 

and functional characteristics, CD28– T cells have been 

classifi ed as a T
EM

 population that lacks the chemokine 

receptor CCR7 [39].

Consistent with these fi ndings, we observed a 

signifi cant increase in the frequency of circulating CD4+ 

T
EM

 (CD45RO+CCR7–) in WG patients in remission com-

pared with healthy individuals [11]. In addition, we have 

shown that the number of these circulating CD4+ T
EM

 

decreases during active disease compared with that 

during complete remission, which is consistent with their 

migration towards infl amed tissues [11]. Indeed, our 

cross-sectional and follow-up studies confi rmed 

migration of CD4+ T
EM

 during active renal disease into 

the diseased organs [40]. We observed a remarkable 
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increase in CD4+ T
EM

 in the urinary sediment with a 

concomitant decrease of circulating CD4+ T
EM

 of WG 

patients with active renal involvement [40]. Th ese urinary 

CD4+ T
EM

 decreased or disappeared from the urine 

during remission, which might refl ect their role in renal 

injury. In accordance with these fi ndings, Wilde and 

colleagues demonstrated that CD4+ T
EM

 expressing 

CD134 are expanded in peripheral blood of patients with 

WG [41]. CD134 is thought to contribute to T-cell migra-

tion and tissue infi ltration through its interaction with 

OX40L on vascular endothelial cells [42]. Indeed, Wilde 

and coworkers have shown that CD134-expressing T cells 

were localized within the infl ammatory lesions of WG 

patients, supporting our hypothesis on migration of this 

T-cell subset to infl amed sites [41].

As mentioned, CD4+ T
EM

 display natural killer (NK)-

like features such as cytotoxicity [39]. Th ey also mimic 

NK cells by their surface expression of the NKG2D mole-

cule. NKG2D is an activating C-type lectin-like homo-

dimeric receptor, which diff ers from other NKG2 members 

as it apparently lacks an antagonist and substitutes for 

CD28-mediated co-stimulatory signaling in CD28– T
EM

 

[43]. One of the NKG2D ligands is the major histo com-

patibility complex class-I chain-related molecule A 

(MICA), which is expressed upon cellular injury and 

stress on target cells such as fi broblasts and epithelial 

cells [43]. Proof of concept for NKG2D-mediated tissue 

destruction was provided by Allez and colleagues [44], 

who demonstrated that NKG2D+CD4+ T-cell clones from 

patients with Crohn’s disease kill target cells that express 

MICA via NKG2D–MICA interaction. Importantly, 

MICA is upregulated in peritubular endothelium and 

glomerular epithelial cells in AAV patients during active 

renal disease [45]. Strikingly, Capraru and colleagues 

have shown that NKG2D is preferentially expressed on 

expanded CD28–CD4+ T cells in the peripheral blood of 

WG patients [31]. Next, they showed that both NKG2D 

and MICA are expressed in granulomatous lesions in 

WG, but not in disease controls. Killing mechanisms via 

NKG2D–MICA interaction therefore probably contri-

bute to vessel injury and disease progression in AAV 

patients (Figure 1). Accordingly, selective targeting of 

NKG2D+CD4+ T
EM

 or inhibiting MICA expression with-

out impairing other parts of cellular immunity might 

have value in the treatment of AAV [46].

Th1/Th2/Th17 paradigm in AAV

Aberrant T-helper cell polarization has been described in 

AAV. Analysis of soluble markers for T-helper cell subsets 

in patient sera reveals a predominance of the Th 1 pattern 

with expression of IFNγ and sCD26 in patients with 

localized WG and in patients with MPA, whereas a shift 

towards a Th 2 pattern, with expression of IL-4, IL-5, 

IL-10, IL-13, sCD23, and sCD30, was observed in active 

generalized WG and CSS [47,48]. Th e same results were 

obtained from analysis of nasal granulomatous lesions in 

which abundant Th 1-associated markers (IFNγ, sCD26, 

CCR5) were seen during localized WG, whereas Th 1-

associated and Th 2-associated markers (IL-4 and CCR3) 

are found in generalized WG [20,49]. Besides the balance 

between Th 1 and Th 2, a recent breakthrough has 

revealed that IL-17-secreting T cells (Th 17) are another 

major pathogenic eff ector subset involved in the 

induction of infl ammation and autoimmunity [50,51]. It 

has been reported that induction of experimental auto-

immune encephalomyelitis (EAE) was blocked in mice 

defi cient in either IL-17 or the Th 17 polarizing cytokine 

IL-23, whereas mice defi cient in either IFNγ or the Th 1 

polarizing cytokine IL-12 show increased susceptibility 

to EAE [50,52,53]. Interestingly, Th 17 cells in EAE 

infi ltrate the brain prior to the onset of clinical symp-

toms, whereas Th 1 cells dominate the cellular infi ltrate 

thereafter when clinical disease develops [54]. It seems 

that T-cell-mediated disease manifestations are linked to 

Th 17 cells and not primarily to Th 1 responses.

Th e physiological role of Th 17 cells lies in bacterial 

defense – for example, against Staphylococcus aureus – 

as shown in experimental pneumonia and the hyper-IgE 

syndrome [55,56]. Peptidoglycans as well as super-

antigens from S. aureus might have an immunomodu-

latory eff ect on dendritic cells by imprinting of a strong 

Th 17 polarizing capacity [57]. In addition, S. aureus 

α-toxin was shown to induce IL-17A secretion in CD4 

T  cells [58]. Intriguingly, nasal S. aureus co-localization 

has been reported to be related to relapse and correlates 

with endonasal activity in WG [59,60]. Infection with 

S. aureus might therefore drive a Th 17 response in AAV 

patients. Indeed, in patients with AAV we observed a 

skewing towards Th 17 cells following in vitro stimulation 

of peripheral blood samples [61]. In line with this 

observation, Ordonez and coworkers have shown that 

the expanded CD4+ memory T cells in AAV patients are a 

source of IL-17 [37]. Most importantly, we found a 

relative increase in autoantigen-specifi c Th 17 cells in 

ANCA-positive patients in com parison with ANCA-

negative patients and controls [61]. Th is observation 

suggests involvement of Th 17 cells in the process of 

autoantibody production in AAV. Th ese results were 

corroborated by Nogueira and colleagues, who reported 

elevated levels of serum IL-17A and increased auto-

antigen-specifi c Th 17 cells in AAV patients during 

disease convalescence compared with healthy controls 

[62]. In addition, Saito and colleagues observed an 

increased frequency of circulating Th 17 cells in patients 

with active CSS compared with in patients with inactive 

disease and healthy controls [63].

IL-17 has been reported to promote the release of pro-

infl ammatory cytokines, which are essential for triggering 
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the expression of PR3 and MPO on the surface of 

neutrophils (priming of neutrophils), and also to induce 

CXC chemokine release and expression of adhesion 

molecules responsible for the recruitment of neutrophils 

to the site of infl ammation [64-66]. Indeed, WG granulo-

mata (site of infl ammation) are rich in neutrophils [20]. 

On the other hand, IL-17 has been shown crucial for the 

formation of an autoreactive germinal center in 

autoimmune BXD2 mice [67]. IL-17-producing T cells 

and B cells expressing the IL-17 receptor have also been 

reported to localize together in germinal centers [67]. 

Th is observation suggests that IL-17 not only induces 

tissue infl ammation but also could function on B cells to 

promote the germinal center reaction. Th e lymphocyte 

clusters in granuloma struc tures can resemble germinal 

center-like structures that might be induced by IL-17 and 

may provide a place for ANCA production. IL-17 thus 

seems to be an important player in disease development 

in AAV and in early granuloma formation in WG, 

whereas Th 1 and Th 2 cells might prevail in later stages 

[20,49]. Of note, Th 17 cells have not so far been demon-

strated at infl amed sites in AAV.

Disturbance in the frequency and/or function of 

regulatory T cells in AAV

Natural T
Regs

, a subset of thymus-derived CD4+ T cells 

expressing a high level of IL-2Rα (CD25) and a unique 

transcription factor FoxP3, have been shown critical for 

preventing autoimmune responses. Defects in T
Reg

 func-

tion or reduced numbers of T
Regs

 have been documented 

in several autoimmune diseases [68]. Indeed, we found 

that the suppressive function of T
Regs

 was defective in 

WG patients as compared with healthy controls [69]. In 

this group of patients, however, we observed a signifi cant 

increase of memory FoxP3+CD25High T
Regs

. In line with 

these fi ndings, Klapa and colleagues demonstrated an 

increased number of FoxP3+ T cells as well as pheno-

typical and functional alterations of T
Regs

 in WG patients 

[70]. Th ey reported an increased number of interferon 

receptor I-positive T
Regs 

in the peripheral blood of WG 

patients [70]. In addition, they showed that IFNα 

exaggerates functional T
Reg

 impair ment ex vivo in res-

ponse to the autoantigen PR3 [70]. T
Regs

 in WG patients 

might thus display functional anergy in the context of an 

infl ammatory cytokine milieu.

Altered T
Reg

 function in WG patients has also been 

reported by Morgan and coworkers [71]. Th ey observed 

that T
Regs

 from healthy controls and from ANCA-negative 

patients were able to suppress T-cell proliferation to PR3, 

whereas T
Regs

 from ANCA-positive patients failed to 

suppress this autoimmune response [71]. Dysfunction of 

T
Regs

 is thus believed to play a role in the development of 

WG. In contrast, T
Reg

 function in MPA patients was 

comparable with that in healthy controls, but FoxP3 

levels were diminished in MPA patients [72]. MPA seems 

to be associated with a numerical defi ciency rather than a 

functional defi ciency of T
Regs

. More over, studies in CSS 

patients showed that both patients and controls have a 

similar number of CD25+CD4+ T cells with an equal 

percentage of FoxP3-expressing cells. However, the 

suppressive function of T
Regs

 in CSS patients still needs to 

be investigated [63,73].

Plasticity of T
Regs

 in AAV: conversion towards Th17 

eff ector cells within an infl ammatory milieu

A reciprocal relationship in the development of T
Regs

 and 

Th 17 cells has recently been described. Th is may underlie 

the propensity of T
Regs

 to convert to Th 17 cells in the 

context of proinfl ammatory stimuli, a phenomenon that 

has only recently been recognized [74-76]. Under neutral 

conditions in vitro, transforming growth factor beta can 

shift the balance towards functional FoxP3+ T
Regs

 – 

whereas in the context of an infl ammatory cytokine 

milieu (IL-1β, IL-2, IL-6, IL-15, IL-21, IL-23), functional 

T
Regs

 convert towards IL-17-producing, nonfunctional 

T
Regs

. Th e rela tively novel notion of T-cell lineage plas-

ticity is of interest in relation to many papers describing 

nonfunctional T
Regs

 in several autoimmune conditions, 

including AAV. Our hypothesis is that these nonfunc-

tional FoxP3+ T cells have lost their suppressive function 

due to co-expression of a second Th 17 lineage-associated 

transcription factor RORγt that interferes with Foxp3 

activity [77]. Recently, diff erent isoforms of FoxP3 have 

been investigated in human T
Regs

 that have been shown to 

impact T
Reg

 function and lineage commitment. More 

specifi cally, the full-length isoform (FoxP3fl ) – but not 

the isoform lacking exon 2 (FoxP3Δ2) – interacts with 

RoRγt and inhibits the expression of genes that defi ne 

Th 17 cells [78-80]. Based on the aforementioned data, 

the putative nonfunctional T
Regs

 described in AAV may 

lack their suppressive function due to upregulation of the 

FoxP3Δ2 isoform that fails to inhibit RORγt-mediated 

IL-17A mRNA trans cription. Upon stimulation in an 

infl amed context, these cells convert into IL-17-

producing eff ector T cells.

Evidence from several groups of investigators, includ-

ing our own, support this hypothesis of conversion of 

T
Regs

 into eff ector IL-17-secreting cells in AAV. As men-

tioned before, we found a signifi cant increase in the 

percentage of FoxP3+CD25High T
Regs

 with a defective 

regulatory function in AAV patients in remission as 

compared with healthy controls. Furthermore, we 

demon strated a concurrent increase in the percentage of 

Th 17 cells upon in vitro stimulation of peripheral blood 

samples from AAV patients. Consistent with this, 

patients with AAV had signifi cantly higher serum levels 

of IL-17 compared with healthy controls [62]. Import-

antly, increased serum levels of IL-17 in AAV patients 
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Figure 1. Proposed pathophysiological mechanisms of anti-neutrophil cytoplasmic autoantibody-associated vasculitides. Infl ammatory 

cytokines (IL-1β, IL-6, transforming growth factor beta (TGFβ)) released due to bacterial or viral infections can promote skewing of a subset of 

functional regulatory T cells (T
Regs

) towards IL-17-producing nonfunctional T
Regs

. These IL-17-producing cells play a key role in disease onset through 

their cytokine IL-17. This cytokine induces CXC chemokine release from the target tissue that will attract neutrophils to the site of infl ammation. In 

addition, IL-17 stimulates the release of IL-1β and TNFα from macrophages, which causes upregulation of the expression of endothelial adhesion 

molecules and induces translocation of proteinase-3 (PR3) and myeloperoxidase (MPO) to the neutrophil membrane (priming). Released PR3 

and MPO can be processed and presented by antigen-presenting cells (APC) to T-helper cells. Since T
Regs

 are converted into nonfunctional IL-17-

producing cells that fail to inhibit this autoimmune response, autoreactive T cells may undergo repeated stimulation by PR3-pulsed or MPO-pulsed 

APC, resulting in a pool of eff ector memory T cells (T
EM

). In addition, PR3-stimulated T-helper cells act on B cells. The presence of IL-17 can enhance 

the production of anti-neutrophil cytoplasmic autoantibody (ANCA) by autoreactive B cells. Subsequently, ANCA binds to PR3 or MPO on primed 

neutrophils that adhere to endothelial cells, which enhances neutrophil activation resulting in degranulation and release of reactive oxygen species 

(ROS) and proteolytic enzymes that can damage vascular endothelial cells. Moreover, persistent activation of T-helper cells by PR3 or MPO, together 

with the breakdown of T
Reg

-mediated self-tolerance mechanisms, will induce autoreactive CD4+ T
EM

 expansion. Expanded CD4+ T
EM

 upregulate their 

killer immunoglobulin-like receptor (NKG2D) and interact with their ligand (major histocompatibility complex class-I chain-related molecule A 

(MICA)) on vascular endothelial cells, which in turn enhances their cytotoxic function and kills target cells in a perforin-dependent and granzyme-

dependent way, ending up in vasculitis.

Abdulahad et al. Arthritis Research & Therapy 2011, 13:236 
http://arthritis-research.com/content/13/4/236

Page 5 of 9



correlated signifi cantly with increased levels of the 

cytokines that are involved in the conversion of T
Regs

 into 

Th 17 cells; that is, IL-1β, IL-23 and IL-6 [62]. In addition, 

patients with active CSS showed an increased frequency 

of Th 17 cells with a decrease in the frequency of IL-10-

producing T
Regs

, whereas an inverse result was observed 

in CSS patients with inactive disease [63]. Th e 

aforementioned data appear to support a link between 

the conversion of T
Regs

 into Th 17 cells and disease activity 

in AAV (Figure 1).

Therapeutic targets in patients with AAV

Because Th 17 cells contribute to infl ammation and 

granuloma formation, this T-cell subset could be a novel 

therapeutic target for AAV. Depletion of Th 17 cells by 

targeting specifi c surface proteins may be diffi  cult as 

Th 17 cells share many surface markers with other T-cell 

subsets. A therapeutic approach targeting its cytokine 

(that is, IL-17) would therefore be more feasible. Indeed, 

neutralizing IL-17 by anti-IL-17 antibody or by soluble 

IL-17 receptors reduces infl ammation and bone erosion 

in various animal arthritis models [81]. Interestingly, 

humanized anti-IL-17 mAbs – including AIN457 and 

LY2439821, which neutralize the biologic activity of 

IL-17 – are in clinical trials. Th ese biologicals have been 

shown to induce clinically relevant responses in patients 

with psoriasis, rheumatoid arthritis, and non-infectious 

uveitis, compared with placebo without safety issues 

[82,83]. Neutralization of IL-17 could therefore represent 

a novel therapeutic approach for patients with AAV.

On the other hand, CD4+ T
EM

 – supposed to act as a 

key trigger of disease expression and relapse in AAV – 

may also serve as a therapeutic target. Selective targeting 

of CD4+ T
EM

 without impairing other parts of the 

humoral and cellular immune system could be a major 

step forward in the treatment of AAV. NKG2D blockade 

by anti-NKG2D antibodies has been reported to prevent 

autoimmune diabetes in NOD mice [84]. Blocking of 

NKG2D could be a new strategy in the treatment of AAV. 

Other studies have revealed that targeting of the voltage-

gated Kv1.3 channel, which is highly expressed on 

activated CD4+ T
EM

, provides a specifi c immunomodu-

latory approach [85,86]. Blockade of the Kv1.3 channel by 

ShK(L5) amide eff ectively prevented autoimmune disease 

in the EAE model of multiple sclerosis and suppressed 

delayed-type hypersensitivity in rats [85,86]. Th e selective 

targeting of CD4+ T
EM

 using ShK(L5) amide and/or 

blocking the NKG2D–MICA interaction by anti-NKG2D 

antibodies may therefore hold therapeutic promise for 

AAV.

Conclusion

CD4+ T
EM

 seem to be involved in tissue damage and renal 

injury in patients with AAV. Besides CD4+ T
EM

, impaired 

T
Reg

 function and an increased Th 17 response are also 

reported in AAV patients. During the past 2 years, 

multiple studies indicate a link between T
Regs

 and Th 17 

cells. Indeed, in the context of an infl ammatory cytokine 

milieu, conversion of T
Regs

 into IL-17-producing cells has 

been demonstrated. Evidence from several studies 

supports this conversion in AAV patients. Defective T
Reg

 

function in AAV patients can thus be explained by their 

conversion into eff ector Th 17 cells. Instead of suppressing 

autoreactive responses, these converted T
Regs

 – through 

production of IL-17 – can participate in granuloma 

forma tion and tissue injury, which contribute to necro-

tiz ing granulomatous vasculitis in AAV patients. Th e 

mechanisms underlying the conversion of suppressive 

T
Regs

 into nonfunctional T
Regs

 in AAV await further 

investigation. Th is novel view into the role of converted 

T
Regs

 in the pathophysiology of vasculitis will improve our 

understanding of AAV pathogenesis, which may lead to 

the identifi cation of new biomarkers and targets for 

therapeutic intervention.
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