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Abstract

Introduction: TNFa is a proinflammatory cytokine that plays a central role in the pathogenesis of rheumatoid
arthritis (RA). We investigated the effects of certolizumab pegol, a TNFa. blocker, on endothelial cell function and
angiogenesis.

Methods: Human dermal microvascular endothelial cells (HMVECs) were stimulated with TNFa. with or without
certolizumab pegol. TNFa-induced adhesion molecule expression and angiogenic chemokine secretion were
measured by cell surface ELISA and angiogenic chemokine ELISA, respectively. We also examined the effect of
certolizumab pegol on TNFa-induced myeloid human promyelocytic leukemia (HL-60) cell adhesion to HMVECs, as
well as blood vessels in RA synovial tissue using the Stamper-Woodruff assay. Lastly, we performed HMVEC
chemotaxis, and tube formation.

Results: Certolizumab pegol significantly blocked TNFa-induced HMVEC cell surface angiogenic E-selectin, vascular
cell adhesion molecule-1 and intercellular adhesion molecule-1 expression and angiogenic chemokine secretion (P
< 0.05). We found that certolizumab pegol significantly inhibited TNFa-induced HL-60 cell adhesion to HMVECs (P
< 0.05), and blocked HL-60 cell adhesion to RA synovial tissue vasculature (P < 0.05). TNFau also enhanced HMVEC
chemotaxis compared with the negative control group (P < 0.05) and this chemotactic response was significantly
reduced by certolizumab pegol (P < 0.05). Certolizumab pegol inhibited TNFa-induced HMVEC tube formation on

Matrigel (P < 0.05).

chemokine secretion.

Conclusion: Our data support the hypothesis that certolizumab pegol inhibits TNFa.-dependent leukocyte
adhesion and angiogenesis, probably via inhibition of angiogenic adhesion molecule expression and angiogenic

Introduction

Angiogenesis is a highly regulated process of new blood
vessel formation from pre-existing vessels. Angiogenesis
is integral to many physiological and pathological pro-
cesses, but is overactive in disease states such as wound
healing, tumor growth [1], cardiovascular disease and
rheumatoid arthritis (RA) [2]. The onset of angiogenesis
depends on the release of proangiogenic mediators that
activate endothelial cells (ECs) and initiate their prolif-
eration and migration [3]. Several types of proangiogenic
mediators have been identified to control and balance
the initiation and maintenance of angiogenesis. Some of
the known angiogenic stimuli include growth factors,
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such as basic fibroblast growth factor (bFGF) or vascular
endothelial growth factor, C-C and C-X-C chemokines
[4], and adhesion molecules, such as E-selectin, vascular
cell adhesion molecule-1 (VCAM-1) [5], intercellular
adhesion molecule-1 (ICAM-1) [6] and junctional adhe-
sion molecules (JAMs). These angiogenic adhesion
molecules and chemokines are highly expressed in RA
synovial tissues (STs) and synovial fluids [7,8]. Myeloid
cells such as monocytes/macrophages circulate in the
bloodstream, adhere to ECs, and enter the RA ST,
where they release angiogenic mediators, such as TNFa
[9].

TNFa is a proinflammatory cytokine implicated in the
pathogenesis of a variety of immunological diseases
including RA. TNFa appears to orchestrate and perpe-
tuate the inflammatory response in RA, probably by
increasing the recruitment of immune cells, mediating
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the destruction of bone and cartilage [10], and increas-
ing angiogenesis [11]. TNFo upregulates the expression
of E-selectin, ICAM-1 [6], VCAM-1 [12], and chemo-
kines, such as monocyte chemoattractant protein-1
(MCP-1)/CCL2 [13], regulated upon activation normal
T-cell expressed and secreted (RANTES)/CCL5, growth-
related oncogene alpha (Gro-o)/CXCL1 [14], epithelial
neutrophil-activating peptide-78 (ENA-78)/CXCL5 [15],
granulocyte chemotactic protein-2 (GCP-2)/CXCL6 [16],
and IL-8/CXCL8 [14] on ECs. The effect of TNFa on
JAMs, including JAM-A, JAM-B and JAM-C, which are
enriched at lateral junctions and participate in leucocyte
extravasation, especially diapedesis, is still uncertain
[17]. Reduction in TNFa improves the signs and symp-
toms of RA, and the availability of TNFo inhibitors has
revolutionized treatment of this illness [18].

Certolizumab pegol is a novel Fc-free, PEGylated, anti-
TNFo mAb that binds and neutralizes soluble and trans-
membrane TNFa [19], and inhibits signaling through
both the p55 and p75 TNFa receptors in vitro. Certolizu-
mab pegol consists of only the Fab’ portion (50 kDa) of a
monoclonal antibody directed against TNFa, with huma-
nized framework sequences and a 2 x 20 kDa pegol
domain. Certolizumab pegol has demonstrated a fast and
lasting effect on the inhibition of joint damage and an
improvement of physical function in RA [18]. The ability
of certolizumab pegol to mediate cytotoxicity and affect
apoptosis of activated human peripheral blood lympho-
cytes and monocytes has been examined in vitro [19],
while its effect on angiogenesis is unknown.

We examined the role of TNFa in angiogenesis. We
determined that the potential mechanism for the anti-
angiogenic activity of certolizumab pegol was in part
through blockade of TNFa-induced human dermal
microvascular endothelial cell (HMVEC) angiogenic
adhesion molecules or chemokines. We also performed
cell adhesion assays using human promyelocytic leuke-
mia (HL-60) cells and HMVECs. The effect of certolizu-
mab pegol on HL-60 cell adhesion to RA ST vasculature
was evaluated using the Stamper-Woodruff assay [20].
Lastly, HMVEC chemotaxis and tube formation on
Matrigel matrix with TNFo were performed. Further-
more, we compared the anti-angiogenic activity using
different concentrations of certolizumab pegol. These
findings support a role for TNFa modulation of
endothelial function, such as leukocyte adhesion and
angiogenesis. Our results also show an important novel
mechanism for blockade of endothelial function by
TNFa inhibitors, such as certolizumab pegol, in RA.

Materials and methods

Human dermal microvascular endothelial cells

HMVECs isolated from adult skin capillaries were
obtained from Lonza (Walkersville, MD, USA). These
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cells were cryopreserved at passage 3 by the manufac-
turer and were routinely cultured for at least 10 popula-
tion doublings. HMVECs were cultured using complete
EC basal medium-2 with EC growth factors (EGM-2
MYV Bullet Kit; Lonza). In three series of experiments
(cell surface ELISA, cell adhesion, and angiogenic che-
mokine ELISA) the medium was changed to complete
EC basal medium-2 with fetal bovine serum (0.1%) with-
out growth factors 2 hours prior to the experiments.

Rheumatoid arthritis synovial tissue specimens

STs were obtained from RA patients meeting the Amer-
ican College of Rheumatology criteria [21]. After pro-
curement, the Optimal Cutting Temperature (OCT)-
embedded specimens were promptly snap-frozen in
liquid nitrogen. Frozen ST samples were cut into ~5 pum
sections and stored at -80°C until use. The study was
approved by the Institutional Review Board of the Uni-
versity of Michigan Medical School (FWA 00004969).
Subjects gave written informed consent prior to partici-
pating in the study.

Cell surface ELISAs for adhesion molecule expression
HMVECs (7.5 x 10* cells/well) were cultured in 96-well
plates (BD Falcon, Bedford, MA, USA) as previously
described [22]. Cells were stimulated with TNFo (25 ng/
ml; Invitrogen, Grand Island, NY, USA) using several
concentrations of certolizumab pegol (UCB, Atlanta,
GA, USA) or mouse-IgG (Ms-Ig) as a control (Jackson
ImmunoResearch, West Grove, PA, USA), and were
incubated for 6 hours for E-selectin and JAM-A and
incubated for 24 hours for ICAM-1 and VCAM-1 cell
surface expression. Cells were initially fixed with 3.7%
formalin in PBS and cell surface ELISAs were per-
formed. Mouse anti-human-E-selectin and anti-human-
ICAM-1 antibodies and goat anti-human-VCAM-1 and
anti-human-JAM-A antibodies (R&D, Minneapolis, MN,
USA) were used at 2.5 pg/ml and plates were read using
an ELISA reader (Bio-Rad, Hercules, CA, USA) set at
450 nm. The specificity of the antibodies was confirmed
in both the western blot analyses and the ELISAs by the
low background and high signal achieved in repeated
experiments using both methods and as described by
the manufacturer (R&D). The results are shown as the
fold change in optical density of stimulated samples to
nonstimulated control cells.

Western blot analysis

HMVECs were stimulated with TNFa (25 ng/ml) in the
presence of different concentrations of certolizumab
pegol or control Ms-Ig for 24 hours and protein lysates
were collected for western blot analysis. Samples were
boiled with either reduced or nonreduced loading buffer.
Protein concentrations were measured with a BCA
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protein assay (Thermo Scientific, Rockford, IL, USA).
SDS-PAGE was performed with cell lysates after equal
protein loading [23]. Antibodies against human E-selec-
tin, ICAM-1 or VCAM-1 (R&D) were incubated over-
night in Tris-buffered saline-Tween buffer containing
5% non-fat-milk. Three independent experiments were
performed for each adhesion molecule. The results are
shown as the fold change of band intensity in treatment
samples to nonstimulated control.

ELISAs for angiogenic chemokines

ECs were incubated with TNFa (25 ng/ml) in the pre-
sence or absence of certolizumab pegol or Ms-Ig for 24
hours. HMVEC culture supernatants were collected and
ELISAs were performed to determine the concentration
of angiogenic chemokines. The chemokines examined
were Gro-o/CXCL1, ENA-78/CXCL5, GCP-2/CXCL6,
IL-8/CXCL8, MCP-1/CCL2 and RANTES/CCL5. All
assays were performed by the University of Michigan
Cancer Center Immunology Core, following the manu-
facturer’s protocol (R&D). Samples were run in dupli-
cate for ELISA and were diluted 1:2 to 1:400 in PBS
before the assay. PBS served as the negative control.

Cell adhesion assays in vitro

We examined the adhesion of HL-60 cells (American
Type Culture Collection, Manassas, VA, USA), a human
leukemic myeloid cell line, to HMVECs [24]. ECs were
grown in 96-well plates and stimulated with TNFa (25
ng/ml) in the presence of neutralizing antibodies to E-
selectin or VCAM-1 or ICAM-1, or with different con-
centrations of certolizumab pegol or Ms-Ig for 8 hours.
Calcein AM (cell-permeant dye, 5 uM; Invitrogen) fluor-
escent-dye-labeled HL-60 cells (50,000 cells/well in 100
ul RPMI medium) were added to HMVECs and cultures
incubated for 30 minutes at 37°C. At the end of the
assay, nonadherent cells were washed off, and fluores-
cence was measured at 485/528 nm using a Synergy HT
fluorescence plate reader (BioTek Instruments,
Winooski, VT, USA).

Stamper-Woodruff assay and immunofluorescence
staining

Adhesion of HL-60 cells to RA ST vessels was tested as
described previously [25]. Briefly, RA STs were incu-
bated with Ms-Ig control (10 pg/ml), certolizumab pegol
(10 pg/ml), or anti-E-selectin antibody (10 pug/ml) as a
positive control for inhibition of binding to vasculature
for 20 hours. Care was taken to select RA STs for each
experimental condition with approximately equal
amounts of vasculature and size of vessels. This selec-
tion ensured that the data evaluated from each group
could be appropriately compared, eliminating the possi-
bility that the results may be skewed due to increased
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vascularity in some tissues. Calcein AM (5 pM)-labeled
HL-60 cells (5 x 10° cells) were then added to each RA
section for 30 minutes at room temperature on a rotary
agitator (60 rpm). After nonadherent cells were washed
off, tissues were fixed with 4% formalin and immuno-
fluorescence staining was performed on RA ST slides
with mouse-anti-human von Willebrand factor antibody
(500 pg/ml; Dako, Carpinteria, CA, USA), followed by
staining with Alexa Fluor 555-conjugated donkey anti-
mouse antibody (10 pg/ml; Invitrogen) and nuclei stain-
ing with 4’,6-diamidino-2-phenylindole (Invitrogen).
Adherent HL-60 cells (green) lying just above the
plane of synovial ECs (stained with von Willebrand fac-
tor antibody in red) were counted in up to 10 fields,
depending on the size and vascularity of the tissue
(x200). The adhesion ratio was determined as the sum
of adherent HL-60 cells to vessels divided by the sum of
blood vessels in up to 10 fields of each section. This was
to examine only myeloid cell-vessel interactions to com-
pare the myeloid HL-60 cell binding ratio amongst the
different treatment groups, normalized to Ms-Ig. Bind-
ing of HL-60 cells to non-ECs was not analyzed. The
various treatments are thus presented as the percentage
of Ms-Ig binding, defined as the adhesion ratio of the
test group divided by the adhesion ratio of the Ms-Ig

group.

HMVEC chemotaxis assays

The HMVEC chemotaxis assays were performed using a
modified Boyden chamber to determine whether certoli-
zumab pegol inhibited TNFa-induced EC migration in
response to a gradient, a facet of the angiogenic
response [26]. HMVECs were preincubated with differ-
ent concentrations of certolizumab pegol or its Ms-Ig
control for 30 minutes before experiments. The stimulus
was TNFa at 25 ng/ml with or without corresponding
certolizumab pegol or Ms-Ig. bFGF (60 nM; R&D) and
PBS served as positive and negative controls,
respectively.

Matrigel tube formation assays

Matrigel is a mixture of extracellular and basement
membrane proteins derived from the mouse Engelbreth-
Holm-Swarm sarcoma on which ECs attach and rapidly
form tubes within 4 to 12 hours. To test the contribu-
tion of TNFa in capillary morphogenesis and to exam-
ine the role of certolizumab pegol on EC differentiation,
we performed EC tube formation assays on growth fac-
tor-reduced Matrigel (Becton Dickinson Biosciences,
Bedford, MA, USA) in which the levels of stimulatory
cytokines and growth factors have been markedly
reduced [27]. Four hundred microliters of complete EC
basal medium-2 with 0.1% fetal bovine serum containing
16,000 HMVECs (4 x 10* cells/ml) were added to each
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well in the presence of different concentrations of
TNFa. bFGF (60 nM) and PBS served as positive and
negative controls.

An additional series of experiments was performed
with TNFa (0.1 ng/ml) using various concentrations of
certolizumab pegol or Ms-Ig. After an overnight incuba-
tion (18 hours) at 37°C, ECs were fixed and counter-
stained. Photographs (x40) were taken, and the number
of tubes formed was quantitated by an observer blinded
to the experimental conditions [27]. Briefly, a connect-
ing branch between two discrete ECs was counted as
one tube and required a consistent intensity, thickness,
and minimum length (> 2 mm on a x40 enlarged copy
of the photomicrograph) to be counted as a tube.

Statistical analysis
Data were analyzed using Student’s ¢ test assuming
equal variances. P < 0.05 was considered statistically sig-
nificant. Data are represented as the mean + standard
error of the mean.

Results

Certolizumab pegol inhibits TNFa-induced adhesion
molecule expression on HMVECs

Previous studies have demonstrated that HMVECs have
increased expression of select adhesion molecules
induced by TNFa [28]. Cell surface ELISAs were per-
formed to determine TNFa (25 ng/ml)-induced
endothelial molecules implicated in angiogenesis -
namely VCAM-1, ICAM-1, E-selectin, and JAM expres-
sion on HMVECs. Our findings indicated that the peak
time for E-selectin expression was 6 hours, whereas that
for ICAM-1 and VCAM-1 expression on HMVECs was
24 hours (Figure 1A to 1C). We did not find an increase
in JAM-A, JAM-B or JAM-C expression on HMVECs
when stimulated by TNFa, indicating that not all EC
adhesion molecules were TNFa inducible (data not
shown). In addition, E-selectin expression at 6 hours,
and ICAM-1 and VCAM-1 expression at 24 hours, were
all decreased by certolizumab pegol (0.001 to 1 pg/ml)
in a concentration-dependent manner (P < 0.05) at the
maximal time of the respective expression of each of
these adhesion molecules (Figure 1D to 1F). These
results were confirmed by western blot analyses, which
showed that certolizumab pegol (0.1 to 10 pg/ml) com-
pletely blocked TNFa-induced adhesion molecule
expression on HMVECs (P < 0.05; Figure 1G, H).

Certolizumab pegol inhibits TNFoa-induced angiogenic
chemokine secretion by HMVECs

HMVECs were stimulated with TNFo (25 ng/ml) in the
presence or absence of different concentrations of certo-
lizumab pegol or Ms-Ig for 24 hours. Cell culture super-
natants were collected and a series of ELISAs were
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performed to determine whether certolizumab pegol
inhibits TNFo-induced HMVEC chemokine secretion.
We found an increase in concentrations of angiogenic
chemokines in the HMVEC supernatants - namely Gro-
o/CXCL1, ENA-78/CXCL5, GCP-2/CXCL6, IL-8/
CXCL8, MCP-1/CCL2 and RANTES/CCL5 (Figure 2A
to 2F). All chemokines listed were increased by TNFa
stimulation and inhibited by certolizumab pegol in a
dose-dependent manner (P < 0.05).

Certolizumab pegol inhibits HL-60 cell-HMVEC adhesion
induced by TNFa

We performed HL-60 celll HMVEC adhesion assays and
the result of each treatment group is presented as the
percentage of adhering HL-60 cells to TNFa-stimulated
ECs. We found that TNFa at 25 ng/ml induced a
greater adhesion of myeloid HL-60 cells to ECs than the
PBS control group (P < 0.05), and this effect was
blocked by neutralizing anti-E-selectin but not by anti-
VCAM-1 and anti-ICAM-1 antibodies (P < 0.05; Figure
3A). This indicates that TNFo-stimulated HL-60 cell-
HMVEC adhesion is mediated mainly via E-selectin.
Furthermore, our results show that certolizumab pegol
(0.005 to 1 pg/ml) decreases TNFa-induced HL-60 cell
adhesion (10 to 57% of TNFa-induced binding, P <
0.05; Figure 3B).

Certolizumab pegol inhibits HL-60 cell adhesion to RA
synovial tissue vessels

To determine whether certolizumab pegol plays a func-
tional role in mediating leukocyte adhesion to the RA
ST vasculature, we performed in situ cell adhesion
assays. We found that myeloid HL-60 cells preferentially
adhere to blood vessels. The merged photographs of
attached HL-60 cells (green) to RA ST vasculature (red)
with different treatments are shown for Ms-Ig (negative
control; Figure 4A), for certolizumab pegol (10 pg/ml;
Figure 4B), or for anti-E-selectin antibody (positive con-
trol; Figure 4C).

Note that the arrows in Figure 4A to 4C point to HL-
60 cells bound to vasculature. HL-60 cell binding to
cells other than ECs was not analyzed. The adhesion
seen in the certolizumab pegol group and anti-E-selectin
antibody group were 40% and 24% of that seen in the
Ms-Ig group, respectively (P < 0.05; Figure 4D). Hence,
certolizumab pegol inhibited binding of myeloid cells to
RA synovial vessels in situ, even without exogenous
TNFo.

Certolizumab pegol inhibits TNFa-mediated HMVEC
chemotaxis

We performed HMVEC chemotaxis assays to test the
effect of varying concentrations of TNFa and certolizu-
mab pegol, as HMVEC chemotaxis is one aspect of
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Figure 1 Certolizumab pegol inhibits TNFo-induced adhesion molecule expression on human dermal microvascular endothelial cells.
E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are expressed on human dermal
microvascular endothelial cells (HMVECs), inhibited by certolizumab pegol. Cell surface ELISAs were performed to determine the peak expression
time of each adhesion molecule on HMVECs induced by TNFa (25 ng/ml). (A) E-selectin, (B) ICAM-1, and (C) VCAM-1 expression is significantly
greater on TNFa.-stimulated HMVECs compared with the nonstimulated (NS) group. HMVEC expression of E-selectin peaks at 6 hours, while
ICAM-1 and VCAM-1 peak at 24 hours (*P < 0.05). Peak expression time points for each adhesion molecule were then used to examine whether
certolizumab pegol can inhibit TNFa adhesion molecule induction on HMVECs. (D) E-selectin, (E) ICAM-1, and (F) VCAM-1 expression on
HMVECs was stimulated with TNFo (25 ng/ml) in the presence or absence of different concentrations of certolizumab pegol (0.0001 to 10 pg/
ml) or mouse-IgG (Ms-Ig) control for 6 hours for E-selectin and for 24 hours for ICAM-1 and VCAM-1 expression, when ECs protein lysates were
collected. (G), (H) Western blot results indicate that E-selectin, ICAM-1 and VCAM-1 expression are entirely blocked by higher concentrations of
certolizumab pegol (0.1 to 10 pg/ml). Blots are representative of three samples. The results are shown as the fold change of treatment samples

to the NS group + standard error of the mean. n, number of experiments.
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Figure 2 Certolizumab pegol inhibits TNFo-stimulated human dermal microvascular endothelial cell angiogenic chemokine secretion.
ELISAs were performed to determine the concentrations of angiogenic chemokines in 24-hour TNFa (25 ng/ml)-stimulated culture supernatants.
Certolizumab pegol or mouse-IgG (Ms-Ig) control were added to the cultures along with TNFaw stimulation. Concentrations of representative
samples show that human dermal microvascular endothelial cell (HMVEC) secreted chemokines are significantly upregulated by TNFa (*P < 0.05)
and downregulated by certolizumab pegol in a concentration-dependent manner (*P < 0.05). (A) Growth-related oncogene alpha (Gro-a)/
CXCL1, (B) epithelial neutrophil-activating peptide-78 (ENA-78)/CXCL5, (C) granulocyte chemotactic protein-2 (GCP-2)/CXCL6, (D) IL-8/CXCLS8, (E)
monocyte chemoattractant protein-1 (MCP-1)/CCL2, and (F) regulated upon activation normal T-cell expressed and secreted (RANTES)/CCLS. For
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adhesion is blocked by certolizumab pegol. Adhesion assays were performed using HL-60 cells and TNFa-preincubated HMVECs in the presence
of anti-E-selectin or anti-intercellular adhesion molecule-1 (anti-ICAM-1) or anti-vascular cell adhesion molecule-1 (anti-VCAM-1) antibody, or of
different concentrations of certolizumab pegol or mouse-IgG (Ms-Ig) control for 8 hours. (A) TNFa (25 ng/ml) significantly induces HL-60
adhesion to HMVECs, and anti-E-selectin but not anti-ICAM-1 or anti-VCAM-1 antibody block this interaction (*P < 0.05). (B) HL-60 cell adhesion
to HMVECGs is significantly inhibited by certolizumab pegol (0.005 to 1 pg/ml, from 10 to 57% of TNFa-induced binding; *P < 0.05). Results are
presented as the percentage of TNFa-induced adhesion + standard error of the mean. n, number of individual experiments. NS, nonstimulated.

angiogenesis. Cell migration per three high-power fields  this migration was significantly greater than migration
(x400) was determined by the number of HMVECs  in the PBS control group (P < 0.05; Figure 5A). HMVEC
migrated in a modified Boyden chemotaxis chamber migration in response to TNFo at 25 ng/ml (41 + 9
towards an angiogenic stimulus. TNFa stimulated cells/well, mean #+ standard error of the mean) was com-
HMVEC chemotaxis in a dose-dependent manner, and  parable with our positive control bFGF group (60 nM;
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Figure 4 Certolizumab pegol inhibits HL-60 adhesion to rheumatoid arthritis synovial tissue vessels. Stamper-Woodruff assay and
immunofluorescence were performed using frozen rheumatoid arthritis (RA) synovial tissue (ST) sections and fluorescence-labeled human
promyelocytic leukemia (HL-60) cells. Synovial vessels are marked by von Willebrand factor antibody in red; calcein AM-labeled HL-60 cells

+»€ertolizumab Pegol

(=3
(=}

80

60

40

Percentage of Ms-Ig binding (%

20
Ms-Ig certolizumab E-selectin
pegol
(n=5) (n=5) (n=3)

appear as green dots; and cell nuclei are stained blue with 4'6-diamidino-2-phenylindole. HL-60 cells adhere to the synovial vessels (x200) when
treated with: (A) mouse-IgG (Ms-Ig; negative control); (B) certolizumab pegol (10 ug/ml); or (C) anti-E-selectin antibody (Ab; positive control). The
arrows in (A) to (C) point to HL-60 cells bound to vasculature. The adhesion ratio of each section was determined as the sum of adherent HL-60
cells divided by the sum of blood vessels in up to 10 fields of each section. (D) Adhesion results of the different treatments given as the
percentage of Ms-lg binding, defined as the adhesion ratio of the test group divided by the adhesion ratio of Ms-lg-treated sections. Results

represent the percentage of Ms-Ig binding + standard error of the mean. n, number of RA patients. *P < 0.05.

33 + 3 cells/well). We preincubated HMVECs with
either certolizumab pegol or Ms-Ig at concentrations
ranging from 0.0001 to 100 pg/ml for 30 minutes before
performing TNFa-induced HMVEC chemotaxis. Certo-
lizumab pegol (1 to 100 pg/ml) resulted in a significant
downregulation of HMVEC migration (P < 0.05; Figure
5B). Results are representative of three to 11 similar
assays.

Certolizumab pegol inhibits TNFa-induced HMVEC tube
formation

When ECs are grown on Matrigel in the presence of an
angiogenic substance, this system supports the attach-
ment and differentiation of ECs into tubes in a manner
that mirrors the in vivo situation [29] and robust EC
capillary-like tube formation occurs. To investigate the
role of certolizumab pegol and TNFa on EC capillary

morphogenesis, we performed EC tube formation on
growth factor-reduced Matrigel in vitro, in response to
TNFa in the presence or absence of certolizumab pegol.
PBS (Figure 6A) and bFGF (60 nM; Figure 6B) were
used as negative and positive controls, respectively.
TNFa (0.1 ng/ml; Figure 6C) induced significant
HMVEC tube formation on Matrigel with an increase of
94% compared with the PBS control group (P < 0.05).
Furthermore, certolizumab pegol at 0.1 pg/ml (Figure
6D) or 0.01 pug/ml blocked TNFa-induced tube forma-
tion, causing a 33% and 30% decrease of the TNFa
effect, respectively (P < 0.05). TNFa (0.1 ng/ml) with
Ms-Ig (0.1 pg/ml) also induced EC tube formation, as
shown in Figure 6E. Results represent the average of
four similar assays at six different concentrations of
TNFa, ranging from 0.001 to 100 ng/ml (Figure 6F),
and the average of four to 16 similar assays at different
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TNF-¢ (25ng/ml) + certolizumab pegol (pug/mi)

Figure 5 Certolizumab pegol inhibits TNFo-induced human dermal microvascular endothelial cell chemotaxis. (A) Increasing
concentrations of TNFa induce human dermal microvascular endothelial cell (HMVEC) migration, which is significant from concentrations of 0.1
to 250 ng/ml, compared with PBS control (*P < 0.05). (B) Certolizumab pegol (1 to 100 ug/ml) decreased TNFa-induced HMVEC migration (from
69% to 89%) when HMVECs were preincubated with different concentrations of certolizumab pegol (*P < 0.05). Cell migration per three high-
power fields (3HPF; x400) was determined by the number of HMVECs migrated towards an angiogenic stimulus. Results represent the mean
number of migrating cells per each quadruplicate well + standard error of the mean. n, number of individual experiments. The positive control
was basic fibroblast growth factor (bFGF; 60 nM) and PBS was the negative control.
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Figure 6 Certolizumab pegol inhibits TNFo-induced endothelial cell tube formation in Matrigel. Photomicrographs (x40) of representative
wells are shown. The increase in tube formation in the TNFa-induced human dermal microvascular endothelial cell (HMVEC) group and the
decreased angiogenesis in certolizumab pegol groups are shown as well as the control groups: (A) PBS, (B) basic fibroblast growth factor (bFGF;
60 nM), (C) TNFa (0.1 ng/ml), (D) TNFe (0.1 ng/ml) in the presence of certolizumab pegol (0.1 ug/ml), and (E) TNFau (0.1 ng/ml) with mouse-IgG
(Ms-Ig; 0.1 pg/ml). Arrows represent the endothelial cell (EC) tube formation in Matrigel. (F) HMVECs form significantly greater number of tubes
in Matrigel in response to TNFa. at 0.1 ng/ml (94% increase) versus the PBS control group (*P < 0.05). (G) HMVECs were plated in Matrigel and
incubated with either PBS (negative control), bFGF (60 nM; positive control) or TNFaw (0.1 ng/ml) with graded concentrations of certolizumab
pegol (0.1 pug/ml, n = 7; 1.0 ug/ml, n = 8; or 10.0 pg/ml, n = 4) or, for comparison, Ms-Ig (0.1 pg/ml, n = 8; 1.0 ug/ml, n = 4; or 10.0 yg/ml, n =
4). As shown, certolizumab pegol (0.1 or 1.0 ug/ml) blocks TNFa-induced EC tube formation in Matrigel compared with the Ms-Ig control groups
(33% and 30% decreases in tube formation, respectively; *P < 0.05; n, number of independent experiments performed). For all sets of
experiments, means of the number of tubes per well are given + standard error of the mean.
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concentrations of certolizumab pegol (0.001 and 10 pg/
ml, P < 0.05; Figure 6G).

Discussion

Angiogenesis occurs in both physiological and patholo-
gical conditions, and plays a key role in synovial inflam-
mation. Adhesion molecules - including selectins,
ICAM-1 and VCAM-1, JAMs, and chemokines - regu-
late vascular permeability and mediate leukocyte adhe-
sion and transmigration, and in some cases angiogenesis
[5,6,30]. We and others have shown that these shed
adhesion molecules bind adjacent ECs via their respec-
tive ligands, exert a direct angiogenic effect on local
ECs, and facilitate angiogenesis [5]. E-selectin is highly
expressed on endothelium in RA synovium, predomi-
nantly on venules and capillaries, whereas VCAM-1 and
ICAM-1 are also expressed on other cell types, includ-
ing ST macrophages, fibroblasts, and lymphocytes in RA
synovium compared with osteoarthritis synovium
[6,18,31]. TNFa, mainly from monocytes and macro-
phages [11], promotes inflammation in RA. The concen-
tration of TNFa is elevated in the joints and the blood
of RA patients [32]. Animal models support a central
role for TNFa in inflammatory arthritis [33]. In many
RA patients the clinical benefit of anti-TNFa antibody
was prolonged, and appeared to outlast the effective
neutralizing level of anti-TNFa in the serum of cA2
(infliximab)-treated individuals. The possible mechanism
that may account for these prolonged effects of anti-
TNFa could be reduced leucocyte trafficking to the
joint [34].

Our results indicate that TNFo upregulates HMVEC
E-selectin, VCAM-1, and ICAM-1 expression, measured
by cell surface ELISAs and western blot analyses. Certo-
lizumab pegol inhibits HMVEC expression of these
adhesion molecules via neutralizing TNFa in a dose-
dependent manner. This finding is supported by the fact
the TNFa, along with its receptors, can be clearly
detected in histology sections, as shown previously in
similar RA ST histology sections [32,35], and as such
would probably be the driving inducing factor for adhe-
sion molecule expression on the endothelium. Our data
are in agreement with previous reports that suggested
TNFa increased adhesion molecule expression on ECs
[12,36]. Furthermore, we showed that HMVEC expres-
sion of these three adhesion molecules is completely
inhibited by certolizumab pegol anti-TNFa treatment.
Our results agree with the report that infliximab, when
given to RA patients, decreased both circulating soluble
E-selectin and ICAM-1 concentrations compared with a
placebo group [34,37]. Tak and colleagues reported that
infliximab decreased the RA ST E-selectin and VCAM-1
expression levels compared with before therapy, which
correlated with the degree of disease amelioration in
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patients [37]. In contrast, soluble VCAM-1 concentra-
tions and RA ST ICAM-1 expression were unaffected by
anti-TNFa treatment and were not related to disease
activity [37,38]. The difference in results between TNFa
blockade with various TNFo blockers may be due to the
production of TNFa by other cells, such as macro-
phages. It may also be due to potential differences in
drug bioavailability and the mechanism of action.

JAMs participate in regulating leukocyte transendothe-
lial migration [17]. Some studies reported that TNFa
enhanced soluble JAM-A expression on ECs, while we
and other authors found TNFa did not increase JAM-A,
JAM-B or JAM-C surface expression as assessed by
fluorescence-activated cell sorting, cell surface ELISA,
and western blot [17,39,40]. TNFa causes the redistribu-
tion of JAM-A away from lateral junctions to the cell
surface and disperses instead of influencing JAM expres-
sion [17,39,40]. Leukocyte trafficking requires not only
expression of adhesion molecules by ECs but also a sec-
ond signal, provided by chemotactic factors such as che-
mokines. Chemokines anchor to the cell surface, thereby
ensuring relatively high concentrations of chemoattrac-
tants close to the blood vessel wall, and thus inducing
leukocyte infiltration. Furthermore, many of these che-
mokines - such as Gro-o/CXCL1, ENA-78/CXCLS5,
GCP-2/CXCL6, IL-8/CXCL8, MCP-1/CCL2 and
RANTES/CCLS5 - are angiogenic, and are able to induce
EC chemotaxis and tube formation [41,42]. MCP-1/
CCL2 [13], Gro-a/CXCL1 [16], ENA-78/CXCL5 [15],
and IL-8/CXCL8 levels are elevated in RA synovial fluid
and serum compared with osteoarthritic synovial fluid
and normal peripheral blood levels [15]. Moreover,
TNFa increases this chemokine expression [27,43] and
anti-TNFa in RA patients results in decreased EC pro-
duction of chemokines, such as IL-8/CXCL8 and MCP-
1/CCL2 [44].

Our data show that TNFa increases angiogenic che-
mokine secretion in HMVECs and that certolizumab
pegol inhibits angiogenic chemokine expression via neu-
tralizing TNFa in a dose-dependent manner. Certolizu-
mab pegol concentrations generally > 0.1 pug/ml block
TNFa-induced adhesion molecule and chemokine
expression on HMVECs. This suggests that certolizu-
mab pegol at this dose can neutralize both soluble and
transmembrane TNFa, and can block TNFa-induced
EC effects by inhibiting the TNF receptor pathway. As a
result, angiogenic adhesion molecule and chemokine
expression on ECs is blocked by certolizumab pegol.
Previously, cell surface E-selectin, ICAM-1, and VCAM-
1 were shown to mediate T-cell and myeloid-cell bind-
ing to ECs [45,46]. We found that certolizumab pegol
(0.005 to 1 pg/ml) decreased the TNFa-induced HL-60
cel-HMVEC adhesion. In addition, our data indicate
that anti-E-selectin antibody decreased TNFo-induced
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HL-60 cell-HMVEC adhesion, while anti-ICAM-1 or
anti-VCAM-1 antibody failed to block cell adhesion.
The reason for different blocking results among anti-E-
selectin, anti-ICAM-1 and anti-VCAM-1 antibody is still
unclear.

Rheumatoid synovitis is characterized by marked
mononuclear infiltration and adhesion molecules, such
as E-selectin, which participate in monocyte binding to
microvasculature in rheumatoid synovium [47]. Our
data show that HL-60 cell adherence to ST vessels in
situ decreases with certolizumab pegol, indicating that
certolizumab pegol inhibits TNFa-induced EC adhesion
molecule expression and, subsequently, leukocyte-EC
adhesion. We also demonstrate that certolizumab pegol
blocks leukocyte adhesion to nonvascular sections of the
synovium, such as RA fibroblasts, using both the Stam-
per-Woodruff assay and HL-60 cell-RA synovial fibro-
blast adhesion assays (data not shown). We performed
HMVEC chemotaxis using TNFa as a stimulus in the
presence or absence of certolizumab pegol, and found
that TNFo induced EC migration in a concentration-
dependent manner. TNFa (25 ng/ml) achieved a peak
degree of cell migration, which was higher than bFGF, a
potent chemotactic stimulus. Our results confirm the
dose range of TNFa to induce EC chemotaxis previously
[11], which was 0.5 to 500 ng/ml, and peak stimulation
of chemotactic activity was 5 to 50 ng/ml. Moreover,
our chemotaxis assays demonstrated a concentration-
dependent blocking of TNFa-induced EC migration by
certolizumab pegol. These data support the hypothesis
that TNFa induces EC chemotaxis and that certolizu-
mab pegol can abrogate this effect.

To investigate the role of certolizumab pegol and
TNFoa on EC capillary morphogenesis, we performed EC
tube formation on growth factor-reduced Matrigel in
vitro. There are conflicting reports on TNFa induction
of tube formation [48-50]. Koolwijk and colleagues
found that TNFa (2.5 ng/ml) failed to induce HMVEC
tube formation in a fibrin matrix [50], while Zhu and
colleagues reported that TNFa (1 ng/ml) induced
human umbilical vein endothelial cell tube formation in
a BD BioCoat™ angiogenesis system (BD Biosciences,
Bedford, MA, USA) [48]. To resolve this issue, we
examined the effect of different concentrations of TNFo
on HMVEC tube formation and found that TNFa
induced an angiogenic effect at 0.1 ng/ml. Our data
agree with the results of Leibovich and colleagues, who
reported that TNFa at lower concentrations induced a
capillary-tube-like structure on collagen gels rather than
Matrigel, whereas this effect on tube formation was lost
at higher concentrations [11]. Our results on TNFa-
induced angiogenesis on Matrigel agree with the reports
of Zhu and colleagues [48] and Pan and colleagues [49]
that low concentrations of TNFo increase tube
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formation in the BD BioCoat™ angiogenesis system or
on collagen gels. These differing reports may be due to
different matrixes and/or methods for the tube forma-
tion assay. Of note, we demonstrated that certolizumab
pegol blocked the formation of EC tubes on Matrigel.

Interestingly, we also show induction of tube forma-
tion in Matrigel with a relatively low dose of TNFa,
consistent with previously published results [11]. We
were also able to significantly inhibit the proangiogenic
effects of TNFa with low doses of certolizumab pegol,
which was lost at higher concentrations in the presence
of the same concentration of TNFa. Also of note was
the finding that increased tube formation correlated
with increasing amounts of control Ms-IgG, as well as
with certolizumab pegol. This effect was not seen in the
other assays (for example, cell surface ELISAs, angio-
genic chemokine ELISAs or the adhesion assays). One
explanation may be that the matrix environment of the
Matrigel may keep large proteins such as antibodies
stable and in close proximity to the HMVECs, allowing
a nonspecific stimulatory process to occur. For instance,
nonspecific secretion of vascular endothelial growth fac-
tor by HMVECs might cause an enhancement of tube
formation in Matrigel at the higher concentrations of
Ms-IgG or certolizumab pegol, as ECs are known to
express vascular endothelial growth factor [51]. This is
indeed a possible hypothesis because we observed more
tube formation with increasing amounts of either Ms-Ig
or certolizumab pegol, in the presence of the same
amount of TNFa. An alternative explanation may be
that the IgG antibodies are binding available EC Fc
receptors and activating HMVECs to either form tubes
or secrete angiogenic factors, as ECs have been shown
to express such receptors [52,53]. This may also explain
how nonspecific Ms-IgG could stimulate HMVEC tube
formation in vitro. However, binding of certolizumab
pegol to HMVEC Fc receptors is doubtful because cer-
tolizumab pegol lacks an Fc region. Nonetheless, at a
consistent concentration of TNFa, certolizumab pegol
significantly decreased the angiogenic activity of TNFa
compared with the Ms-IgG control antibody at two dif-
ferent concentrations - validating the hypothesis that, at
least at relatively lower concentrations, certolizumab
pegol appears to be an effective inhibitor of TNFa.-
induced tube formation in Matrigel.

A notable finding was that the effective inhibition
ranges of certolizumab pegol in all the assays were dif-
ferent, which may possibly be due to the different num-
bers of HMVECs used. For example, in a study of
certolizumab pegol action on peripheral blood mono-
nuclear cells in vitro, the dose range of certolizumab
pegol to neutralize soluble and membrane TNFa
expression on different cell lines ranged from 0.01 to 1
pg/ml, while the effective dose range of anti-TNFa on
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peripheral blood mononuclear cell apoptosis, granulo-
cyte membrane integrity and myeloperoxidase release
was higher than 10 pg/ml [19]. Accordingly, in our
study the effective blocking dose of certolizumab pegol
on HMVEC chemotaxis and tube formation assays was
different from the doses needed to be an effective TNFo
inhibitor in the adhesion molecule expression, chemo-
kine expression, and HL-60 cell-EC adhesion assays.

It is currently unknown whether similar concentra-
tions of certolizumab pegol would have the same effect
on TNFa-activated vasculature in an in vivo setting. For
example, it would be of interest to investigate whether
certolizumab pegol could inhibit vascular formation in
the joints of a relevant rodent model of arthritis such as
K/BxN serum-induced arthritis, collagen-induced arthri-
tis, or rat adjuvant-induced arthritis. Unfortunately, cer-
tolizumab pegol cross-reacts poorly with rodent TNFa,
and subsequently the therapeutic was approved for use
to treat RA without such studies [54]. Regardless, it is
interesting to speculate that disruption of arthritis devel-
opment by targeting TNFa-induced angiogenesis could
be a valid, if not potent, therapeutic strategy. Perhaps
future clinical trials with access to synovial biopsies
from RA patients treated with certolizumab pegol would
shed significant light on this issue.

Conclusion

In summary, we found that certolizumab pegol inhibited
HMVEC expression of angiogenic adhesion molecules
and decreased HMVEC angiogenic chemokine secretion,
which are two independent pathways to deactivate
angiogenesis. At the same time, certolizumab pegol
downregulated TNFa-induced myeloid cell adhesion to
ECs and blocked leukocyte-EC adhesive interactions in
RA ST, suggesting a novel role for certolizumab pegol
in blocking monocyte adhesion to inflamed synovial vas-
culature. Lastly, certolizumab pegol blocked TNFa-
induced EC chemotaxis and tube formation in vitro.
Overall, these findings support the notion that certolizu-
mab pegol, upon neutralizing TNFa, acts as a potent
anti-angiogenic agent with the capacity to block EC
migration and new blood vessel formation in RA.
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