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Abstract

Introduction: Skeletal muscle fiber composition and muscle energetics are not static and change in muscle
disease. This study was performed to determine whether a mitochondrial myopathy is associated with adjustments
in skeletal muscle fiber-type composition.

Methods: Ten rats were treated with zidovudine, an antiretroviral nucleoside reverse transcriptase inhibitor that
induces a myopathy by interfering with mitochondrial functions. Soleus muscles were examined after 21 weeks of
treatment. Ten untreated rats served as controls.

Results: Zidovudine induced a myopathy with mitochondrial DNA depletion, abnormalities in mitochondrial
ultrastructure, and reduced cytochrome ¢ oxidase activity. Mitochondrial DNA was disproportionally more
diminished in type | compared with type Il fibers, whereas atrophy predominated in type Il fibers. Compared with
those of controls, zidovudine-exposed soleus muscles contained an increased proportion (256%) of type Il fibers,
whereas neonatal myosin heavy chains remained repressed, indicating fiber-type transformation in the absence of
regeneration. Microarray gene-expression analysis confirmed enhanced fast-fiber isoforms, repressed slow-fiber
transcripts, and reduced neonatal fiber transcripts in the mitochondrial myopathy. Respiratory chain transcripts
were diminished, whereas the enzymes of glycolysis and glycogenolysis were enhanced, indicating a metabolic
adjustment from oxidative to glycolytic capacities. A coordinated regulation was found of transcription factors
known to orchestrate type Il fiber formation (upregulation of MyoD, Six1, Six2, Eyal, and Sox6, and downregulation
of myogenin and ERRY.

Conclusions: The type | to type Il fiber transformation in mitochondrial myopathy implicates mitochondrial
function as a new regulator of skeletal muscle fiber type.

Introduction

Low muscle endurance and fatigue are frequent symptoms
of patients with diseases that limit the oxygen supply of
muscles by its capillaries or muscular oxygen use by its
mitochondria. Muscle capillaries are lost in dermatomyosi-
tis [1], systemic sclerosis [2-4], and chronic obstructive
pulmonary disease (COPD) [5], and qualitative or quanti-
tative defects of respiratory chain components are found
in the mitochondrial myopathies [6,7]. Ultrastructural
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changes in mitochondria and respiratory-chain dysfunc-
tion can also be induced by medications (statins [8], zido-
vudine, and other antiretroviral nucleoside analogues [9],
and potentially, alcohol [10]). The physiological explana-
tions for muscle fatigue and the adjustments of muscle
metabolism to such respiratory compromise have, how-
ever, been only poorly addressed.

In humans, most skeletal muscles are equipped with
more than one fiber type to accommodate a wide range of
forces, kinetics, and endurance. Muscles specialized for
maintaining postural tone have a high proportion of fibers
that contract slowly (type 1 fibers), whereas muscles spe-
cialized for rapid movements contain a high proportion of
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fast-twitch (type 2) fibers. To account for fiber-type diver-
sity, virtually every contractile protein of muscle fibers
exists in different isoforms. Muscle-fiber types have also
developed fine-tuned systems of energy delivery, which
result in diverse metabolic profiles and oxygen require-
ments. Fiber types are, however, not static, as endurance
training, weight loading, or hormonal factors can promote
fiber-type transformation, even in adult muscles, by means
of a coordinated antithetic regulation of fast and slow
gene programs [11-13]. No study has investigated skeletal
muscle fiber-type adjustments in response to a primary
defect of the mitochondrial respiratory chain.

We therefore investigated how skeletal muscles adjust to
mitochondrial dysfunction and whether they can alter
their fiber-type composition. In this study, we modeled a
mitochondrial myopathy by feeding rats with zidovudine,
a nucleoside-analogue reverse transcriptase inhibitor that
impairs with the replication of mitochondrial DNA and
interferes with mitochondrial function through a variety of
mechanisms, including competition with the normal
nucleotide triphosphates for incorporation into replicating
mtDNA chains, impairment of chain elongation, and exci-
sion-repair steps (extensively reviewed elsewhere) [14]. On
a global basis, zidovudine is widely used in the treatment
of human immunodeficiency virus (HIV) infections and
can also cause a myopathy in humans [9,15]. Our experi-
ments are the first to describe the ability of skeletal muscle
to change fiber-type composition by downregulating the
proportion of slow fibers and upregulating fast fibers in
response to mitochondrial dysfunction. The changes in
fiber-type composition are accompanied by metabolic
adjustments from oxidative to more glycolytic capacities.

Materials and methods

Animals

Male Wistar rats were purchased at Charles River (Sulz-
feld, Germany), were fed a normal rat chow (SSniff R/
M-H; Spezialdidten, Soest, Germany) ad libitum, and
were housed in a normal night-day rhythm under stan-
dard conditions of temperature and humidity. At 7 weeks
of age, 10 rats received zidovudine (kindly provided by
GlaxoSmithKline, Munich, Germany) in the drinking
water (100 mg/kg/d). This daily dose of zidovudine corre-
sponds to the human dosage adjusted for body area and
the higher metabolic and drug-disposal rate of rodents
and was calculated on the basis of a daily liquid con-
sumption of 20 ml [16,17]. Control rats (# = 10) did not
receive any zidovudine.

Observations for fluid consumption, clinical signs, and
mortality were carried out daily; body weights were
recorded weekly. All rats were killed by cervical dislocation
at age 28 weeks, immediately before organ collection and
postmortem examination. Soleus muscle was snap frozen
and cryopreserved in liquid nitrogen until subsequent
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analysis. Muscle aliquots were fixed in glutaraldehyde (3%)
for subsequent electron microscopy. Serum was collected
by puncture of the Venae saphenae laterales [18] before
cervical dislocation in anesthesia with isoflurane (Abbott,
Wiesbaden, Germany). All animal work was performed
after animal welfare board approval (Regierungsprésidium
Freiburg; Department 3, Nr. 35/9185/.81/G-07/67) and
conformed to institutional guidelines as well as to the NIH
policy [19].

Histopathology and mitochondrial ultrastructure

Soleus muscle-fiber diameters were morphometrically
quantified in all rats on three randomly selected 0.09-mm?
areas of 8 pm thick, hematoxylin and eosin-stained sec-
tions, by using an automated image-analysis and processing
software (Leica QWin Standard v2.7; Leica Microsystems,
Imaging Solutions, Cambridge, UK). The histochemical
assay for myofibrillar ATPase activity (pH 4.35 or 10.5) was
used to distinguish and morphometrically count fast
and slow muscle fibers [20]. On 4-pm cryostat muscle
transverse sections, succinate dehydrogenase (SDH) and
cytochrome c-oxidase (COX) histochemistry was per-
formed [21]. The evaluating person was blinded to the
group status of all animals. Two randomly selected soleus
muscle samples from each group were examined with elec-
tron microscopy, as described [22].

Myosin heavy-chain immunohistochemistry

Fiber-type analyses were confirmed in muscle cryosec-
tions (8 pm) incubated overnight with 1:100 diluted anti-
bodies against fast or slow myosin heavy-chain isoforms
(clones WB-MHCF and WB-MHCS; Novocastra, New-
castle, UK). To determine signs of regenerating fibers, we
used anti-neonatal myosin heavy-chain antibody (clone
WB-MHCn; Novocastra). An Alexa-fluor 488 conjugated
secondary antibody (IgG anti-mouse; Novacastra) was
used. In images obtained from immunohistochemistry,
muscle fiber-type composition was also quantified by
using automated image analysis (Leica QWin Standard
v2.7; Leica Microsystems). The evaluating person was
blinded to the group status of the animals.

Respiratory-chain enzyme activities

Histochemical COX and SDH staining is difficult to
quantify reliably. We therefore measured the activities of
COX, SDH, and nicotinamide adenine dinucleotide
hydrogen dehydrogenase (NADH-DH) in freshly pre-
pared soleus muscle extracts with spectrophotometric
assays, as described [23]. NADH-DH and COX are the
multisubunit complexes I and IV of the mitochondrial
respiratory chain and are encoded partly by nuclear DNA
(nDNA) and partly by mtDNA, whereas SDH is a respira-
tory chain component (complex II), which is encoded
entirely by nDNA.
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Serum parameters

Serum concentrations of creatinine kinase, resting lactate,
glucose, aspartate aminotransferase, alanine aminotrans-
ferase, and creatinine levels were determined photometri-
cally by using a Roche/Hitachi 917/Modular P analyzer
(Mannheim, Germany), according to the manufacturer’s
instructions.

Single-fiber mtDNA copy numbers

In each animal, three fast and three slow fibers were
picked with a microcapillary under an inverted micro-
scope from a 14-pm-thick, ATPase activity (pH 10.5)
typed, transverse soleus muscle section [24]. Total DNA
from single fibers was released with 5 ul of a solution
containing 200 mM KOH and 50 mM dithiothreitol
(incubated for 1 hour at 65°C), followed by a neutralizing
buffer (5 pl) containing 900 mM Tris-HCI, pH 8.3, and
200 mM HCI [24]. MtDNA and nDNA copy numbers
were quantified from 2 pl of the solute by quantitative
PCR, as described [25]. Amplifications of mitochondrial
and nuclear products were performed in triplicate. Abso-
lute mtDNA and nDNA copy numbers were calculated
by using serial dilutions of plasmids with known copy
numbers.

Microarray analysis

RNA was extracted from eight randomly selected frozen
muscles from each group with the Uneasy Kit (Qiagen,
Hilden, Germany). Quantity and integrity of the RNA
were verified by using RNA 6000 nano chips (2100
Bioanalyzer; Agilent, Palo Alto, CA, USA). RNA samples
(500 ng) with an RNA integrity number of greater than
9 were further processed with the GeneChip Whole
Transcript Sense Target Labelling Assay from Affymetrix
(Santa Clara, CA, USA) according to the manufacturer’s
instructions.

Arrays were scanned with the Affymetrix GeneChip
Scanner 3000 7G, and raw data were imported into
the Refiner module of Genedata Expressionist software
(Martinsried, Germany, version 5.3.5), in which quantile
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normalization and probe summarization was performed
by using its Refiner condensing algorithm [26]. The micro-
array data were uploaded (ArrayExpress accession num-
ber: E-MEXP-3642) in the ArrayExpress Archive [27].

Statistics

The Kolmogorov-Smirnov test was used to analyze for
normal distribution. Groups were then compared with
ANOVA, Mann-Whitney, unpaired ¢ test, or Wilcoxon
analysis, as appropriate. Skewed data are provided as med-
ian plus interquartile ranges (IQRs), and normally distribu-
ted data, as group means and standard deviation (SD).
Correlations were computed as nonlinear exponential
regressions. All graphics and calculations were performed
by using the Sigma Plot 2000, version 8.0 (SPSS, Inc.) and
the Sigma Stat, version 3.1 (Jandel Inc.) packages.

To identify differentially expressed genes between the
groups in microarray analysis, the unpaired Bayes T test
(CyberT) [26] with the Bayes confidence estimate value set
to 24 and a window size of 101 genes, as well as 100%
valid values in each group, was performed with the Analyst
module of Expressionist. To estimate the false-discovery
rate, the Benjamini-Hochberg g value was calculated in a
sequential Bonferroni-type procedure [28]. We then used
the “N-fold regulation” activity of Analyst to calculate the
median ratio between the experimental groups. Only
genes from the categories “main” and “unmapped” (see
Affymetrix transcript annotation RaGene-1_0-st-v1.na30.1.
rnd.transcript) were included, thereby omitting control
probes or genes with uncertain annotation. The false-
discovery rate, which estimates the number of false posi-
tives within a list of significant genes, was chosen as 10%.

Results

Zidovudine induces a respiratory-chain myopathy

The daily fluid consumption and body weight of the rats
was unaffected by zidovudine (data not shown). The
autopsy did not reveal macroscopic organ anomalies.
Soleus muscle fiber diameters were decreased in the
zidovudine group (Figure 1, Table 1). After 28 weeks,
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Table 1 Effects of zidovudine on soleus muscle histology, serum parameters, mtDNA, mitochondrial function, and

muscle fiber-type characteristics

Complete soleus muscle Control (n = 10) Zidovudine (n = 10) P value

Soleus muscle fiber diameter (median pum) 583 (IQR 54.2, 62.3) 41.1 (IQR 375, 47.1) <0.001

Serum creatine kinase (U/L) 724 + 480 548 + 257 03

Serum creatinine (mg/L) 36+ 034 3.1 +011 <0.001

Serum glucose (mg/L) 1,760 + 100 1,680 + 220 0.055

Serum resting lactate (mM) 45+ 18 50+16 09

Serum alanine aminotransferase (U/L) 66 + 8 56+ 7 0.1

Serum aspartate aminotransferase (U/L) 125 + 35 101 £ 13 0.09

mtDNA copy number (mean copies/myonucleus) 559 + 46 399 £ 78 <0.001

NADH DH (umoles min’’ g muscle protein™) 684 + 254 474 + 236 0.042

COX (umoles min" g muscle protein™" ) 28 + 8 18+ 9 0026

SDH (umoles min” g muscle protein™ ) 36+6 35+ 10 0.7

NADH DH/SDH-ratio (% of control mean) 100 + 28 72 £ 20 0.027
COX/SDH-ratio (% of control mean) 100 + 27 67 = 26 0.016

Single-fiber soleus muscle Control Zidovudine p-value

Fiber type Fast Slow Fast Slow Fast Slow
Fiber-type proportion (% of all fibers) 52+ 30 948 + 30 133 + 5.1 86.7 £ 5.1 <0.001 <0.001
Fiber diameter (mean pm) 548 +58 655 + 106 373 +£93 518 £+ 6.2 <0.001 0.006
mtDNA copy number (mean copies/myonucleus) 617 £ 91 683 + 94 384 + 91 206 + 97 <0.001 <0.001

Values represent group means (+SD); soleus muscle-fiber diameter values are given as median with interquartile range.

groups did not differ in serum levels of creatinine kinase,
resting lactate, and glucose. Serum creatinine levels, how-
ever, were lower in rats treated with zidovudine, indicat-
ing reduced muscle mass (P = 0.001) compared with
untreated rats. Electron microscopy revealed a focal dis-
array of the myofibrillar lattice in the zidovudine group
(Figure 2). The crystal architecture was lost in a substan-
tial proportion of the organelles and contained deposits
of electron-dense material. Mean mtDNA copy numbers
were decreased by 29% (P < 0.001) in zidovudine-treated
rats compared with control animals (Table 1). Histo-
chemical COX/SDH staining showed a uniformly down-
regulated respiratory-chain activity and no clear fiber
type-specific pattern. NADH-DH and COX activities in
the soleus muscle were depressed in the zidovudine
group (P = 0.042 and P = 0.026, respectively; Table 1). In
contrast, the activity of SDH was unaffected (P = 0.7;
Table 1). These data indicate that zidovudine induced a
metabolic myopathy with depleted mtDNA copies and
a specific downregulation of mtDNA-encoded respiratory
chain activities and consecutive fiber atrophy.

Type Il fibers are enhanced in mitochondrial myopathy

Muscle morphometry revealed that the fiber diameter was
reduced in both fast and slow fibers of zidovudine-treated
rats (Table 1), leading to an increased fiber number per
microscopic area (151 + 20 fibers/um? in rats without
versus 194 + 26 fibelrs/pm2 in rats with zidovudine;
P = 0.002). Fast fibers, however, had a disproportionate

degree of atrophy (32% reduction of mean fiber diameter;
P < 0.001) compared with slow fibers (21% reduction;
P =0.006).

In control muscle, slow fibers and fast fibers contained
similar numbers of mtDNA copies (P = 0.15). In zidovu-
dine-treated rats, however, slow fibers had fewer
mtDNA copies than did fast fibers (P = 0.002). Zidovu-
dine treatment also induced a greater proportion of
mtDNA depletion in slow fibers than in fast fibers (70%
versus 38%; P < 0.001; Table 1).

As expected, histomorphometry in ATPase-typed
soleus muscle of control rats demonstrated the vast pre-
dominance of type 1 slow oxidative fibers (94.8% =+
3.0%) relative to fast glycolytic fibers. In contrast, zido-
vudine-treated animals, soleus muscles contained a high
proportion of fast fibers (256% increase compared with
controls; P < 0.001), whereas slow fibers were dimin-
ished (Table 1). Fiber-type grouping was not evident.
The upregulation of fast fibers in soleus muscle exposed
to zidovudine was confirmed with antibodies specific for
fast and slow myosin heavy chain (Figure 3). Immuno-
fluorescence studies of zidovudine-treated soleus mus-
cles were carried out with an antibody directed against
neonatal MHC. None of the soleus muscle fibers
expressed the neonatal myosin heavy-chain isoform,
indicating the absence of fiber regeneration (not shown).
Furthermore, we did not observe signs of muscle dener-
vation in terms of fiber-type grouping or upregulated
neonatal myosin heavy chains (data not shown).
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Control Zidovudine

Figure 2 Representative electron micrographs demonstrate zidovudine-induced degeneration of the myofibrillar lattice. Abnormal
mitochondria (star) with disrupted crystal architecture. Magnification bars, 2.5 um.
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Figure 3 Immunohistochemistry demonstrating increased numbers of type Il (fast) fibers in zidovudine-exposed soleus muscle
(magnification bars, 100 pm).
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Enhanced fast-fiber and repressed slow-fiber transcripts
Microarray gene expression analysis identified 1,411
genes and 43 pathways to be significantly regulated (P <
0.01) in zidovudine-treated animals relative to control. In
zidovudine-exposed rat soleus muscle, fast-fiber tran-
scripts were significantly enhanced, and slow-fiber tran-
scripts, repressed (Figure 4). Consistent with the absence
of fiber regeneration in the immunofluorescence studies,
embryonal and neonatal myosin heavy-chain transcripts
were downregulated [29].

Investigating metabolic adjustments, we found nucleus-
and mtDNA-encoded respiratory chain subunits to be
coordinately downregulated in zidovudine myopathy,
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although many changes were not statistically significant.
The transcription of the rate-limiting enzymes of glycoly-
sis and glycogenolysis was enhanced (Table 2) and the
mitochondrial carnitine shuttle (carnitine palmitoyltrans-
ferase, CPT1b), and B-oxidation (3-hydroxy-acyl-CoA
dehydrogenase) downregulated.

Regulation of fiber composition

To elicit regulatory mechanisms of fiber transformation,
we focused on transcription factors involved in muscle
differentiation. In zidovudine-treated muscle, MyoD,
which is expressed mainly in type II fibers [30], was upre-
gulated (+4.41-fold; P = 1.01E-16), and the myogenic
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Figure 4 Soleus muscle gene transcripts indicative of fast or slow myofiber type. The cell color codes in the heat map indicate relative
transcript amounts in the soleus muscles of eight control rats and eight rats treated with zidovudine. Fast myofiber transcripts: Mylpf, myosin
light chain, phosphorylatable (skeletal fast); Tnnt3, troponin T type 3 (skeletal, fast); troponin C type 2 (skeletal fast); Myh2, myosin, heavy
polypeptide 2 (skeletal muscle, adult); Tnni2, troponin | type 2 (skeletal, fast); Myh1, myosin, heavy polypeptide 1 (skeletal muscle, adult); Actn3,
actinin a3; Myh4, myosin, heavy-chain 4, (skeletal muscle); Mybpc2, myosin-binding protein C, fast-type; Pvalb, parvalbumin. Slow myofiber
transcripts: Cryab, crystallin, aB; Myl3, myosin, light-chain 3, alkali; (ventricular, skeletal, slow); Myh7, myosin, heavy-chain 7, cardiac muscle, B;
Actn2, actinin a2; Atp2a2, ATPase, ca’t transporting, cardiac muscle, slow twitch 2; Ankrd2, ankyrin repeat domain 23; Tnnil, troponin | type 1
(skeletal, slow); Tnnc1, troponin C type 1 (slow); Myl2, myosin, light polypeptide 2, regulatory, cardiac, slow; Tnnt1, troponin T type 1 (skeletal,
slow); Pdlim1, PDZ and LIM domain 1; RGD1309537, similar to myosin regulatory light-chain 2-A, smooth muscle isoform (myosin RLC-A); Myh7b,
myosin, heavy-chain 7B, cardiac muscle, B; RGD1560334, similar to myosin light-chain 1 slow a.
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Table 2 Microarray gene expression of soleus muscle-fiber energy metabolism and gene products involved in fiber-
type regulation

Gene description (gene symbol) FC P value q value

Respiratory chain complex |

NADH dehydrogenase (ubiquinone) 1w subcomplex, 4 (Ndufa4) -1 0.007 0.999
NADH dehydrogenase (ubiquinone) 1o/ subcomplex, 1 (Ndufab1) 1.0 0.507 0.999
NADH dehydrogenase (ubiquinone) Taw subcomplex, assembly factor 1 (NdufafT) -1 0.110 0.999
NADH dehydrogenase (ubiquinone) 18 subcomplex 3 (Ndufb3) -1.0 0.772 0.999
NADH dehydrogenase (ubiquinone) 1B subcomplex, 5 (Ndufb5) -1 0.036 0.999
NADH dehydrogenase (ubiquinone) 1 B subcomplex, 9 (Ndufb9) -1.0 0.286 0.999
NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1 (NdufcT) -1.1 0.167 0.999
NADH dehydrogenase (ubiquinone) Fe-S protein 1 (Ndufs1) -1 0.045 0.999
NADH dehydrogenase subunit 1 (mt-ND1) -1 0.267 0.999
NADH dehydrogenase subunit 2 (mt-ND2) -1 0.087 0.999
NADH dehydrogenase subunit 4L (mt-ND4l) -1 0.004 0.999
NADH dehydrogenase subunit 5 (mt-ND5) -1.1 0.002 0.999
NADH dehydrogenase subunit 6 (mt-ND6) -1.2 0.364 0.999
Respiratory chain complex Il

Succinate dehydrogenase complex, subunit B, iron sulfur (Ip) (Sdhb) -14 0.00001 0.139
Respiratory chain complex Il

Ubiquinol-cytochrome ¢ reductase binding protein (Ugcrb) -1 0.003 0.999
Ubiquinol-cytochrome ¢ reductase core protein | (Ugcrc1) -1.0 0677 0.999
Ubiquinol cytochrome ¢ reductase core protein 2 (Ugcrc2) -1 0.039 0.999
Respiratory chain complex IV

Cytochrome ¢ oxidase, subunit Va (Cox5a) -1 0.205 0.999
Cytochrome ¢ oxidase subunit Vb (Cox5b) -1.0 0442 0.999
Cytochrome ¢ oxidase, subunit Vla, polypeptide 2 (Cox6a2) -1 0.096 0.999
Cytochrome ¢ oxidase, subunit Vic (Cox6c) -1 0.144 0.999
Cytochrome ¢ oxidase subunit Vilb (Cox7b) 1.0 0.501 0.999
Cytochrome ¢ oxidase, subunit Vlla 2 (Cox7a2) -1 0.006 0.999
Cytochrome ¢ oxidase subunit Vlla polypeptide 2 like (Cox7a2l) -1.2 0.002 0.999
Cytochrome ¢ oxidase subunit | (mt-Co1) -1 0.000 0.999
Cytochrome ¢ oxidase subunit Il (mt-Co2) -1 0.028 0.999
Respiratory chain complex V

ATP synthase, F1 complex, y polypeptide 1 (Atp5cT) 1.0 0.807 0.999
ATP synthase, FO complex, subunit C3 (subunit 9) (Atp5g3) -1 0.080 0.999
ATP synthase GA binding protein transcription factor, a subunit: (Gabpa: Atp5j) -1.2 0.005 0.999
ATP synthase, FO complex, subunit F2 (Atp5j2) 1.0 0.548 0.999
ATP synthase FO subunit 6 (mt-atp6) -13 0.739 0.999
ATP synthase FO subunit 8 (mt-atp8) -1 0.016 0.999
Glycolysis

Phosphofructokinase, muscle (Pfkm) 2.1 1.00E-35 1.00E-35
Pyruvate kinase, muscle (Pkm2) 2.7 1.00E-35 1.00E-35
6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3) 29 1.19E-13 3.26E-09
Glycogenolysis

Phosphorylase, glycogen, muscle (Pygm) 13 1.78E-14 4.88E-10
Phosphoglucomutase 1 (Pgm1) 2.8 1.00E-35 1.00E-35
Phosphoglucomutase 2-like 1 (Pgm2I1) 22 1.19E-13 3.25E-09
Fatty acid (3-oxidation

Carnitine palmitoyltransferase 1b, muscle (CPT1b) -14 3.52E-07 0.009

Hydroxyacyl-Coenzyme A dehydrogenase (Hadh) -1.6 2.02E-07 0.005
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Table 2 Microarray gene expression of soleus muscle-fiber energy metabolism and gene products involved in fiber-

type regulation (Continued)

Regulator genes (muscle fiber-type switch)

SRY (sex-determining region Y)-box 6 (Sox6)
Myogenic differentiation 1 (Myod1)

Myogenin (Myog)

Regulator of calcineurin 1 (Rcant)

SIX homeobox 1 (Six1)

SIX homeobox 2 (Six2)

Myostatin (Mstn)

Estrogen-related receptor y (Esrrg)

NFAT activating protein with ITAM motif 1 (Nfam1)

52 1.00E-35 1.00E-35
44 1.11E-16 3.06E-12
-3.7 1.78E-09 4.82E-05
-4.6 351E-13 9.61E-09
20 5.68E-12 1.55E-07
50 9.39E-13 2.57E-08
44 3.74E-13 1.03E-08
-2.1 1.07E-10 291E-06
-1.7 3.34E-08 8.96E-04

The fold-change (FC) value indicates the relative amounts of transcripts in rats treated with zidovudine, compared with control animals. The Benjamini Hochberg

g value indicates the false-discovery rate.

regulatory factor (MRF) transcribed from myogenin [31]),
which is normally expressed predominantly in type I
fibers, was downregulated (-3.75-fold; P = 1.78E-09) [32].

The homeodomain transcription factors SixI and Six2,
the transcriptional repressor Sox6, and the transcriptional
coactivator Eyal promote a switch from slow to fast
fibers [33,34]. We found SixI (+2.05-fold; P = 5.68E-12),
Six2 (+5.00-fold; P = 9.39E-13), Eyal (+1.42-fold; P =
8.09E-06), and Sox6 (+5.20-fold; P = 1.00E-35) upregu-
lated in zidovudine-treated rat soleus muscle.

Estrogen-related receptor (ERR) y enhances mitochon-
drial biogenesis and function, mtDNA content and the
expression of contractile proteins specific to slow muscle
and is physiologically highly expressed in soleus muscle
[35]. We found ERRy downregulated in zidovudine-
exposed soleus muscle compared with untreated controls
(-2.13-fold; P = 1.07E-10).

Thus, mitochondrial dysfunction is associated with a
coordinate regulation of a multitude of transcription fac-
tors that orchestrate the transformation from type I to
type 1II fibers.

Discussion

The present study demonstrates a previously undescribed
skeletal muscle fiber-type transformation from slow fibers
to fast fibers in a mitochondrial myopathy. The changes in
fiber-type composition occur in the absence of muscle
regeneration and not only are demonstrated at the level of
myosin heavy-chain isoforms and isoforms of other con-
tractile proteins, but also are paralleled by adjustments in
the metabolic profile and a switch from an oxidative to a
more-glycolytic transcriptosome. From a mechanistic per-
spective, this response of muscle energetics to the primary
defect in respiratory chain function may maintain muscle
strength via increased recruitment of glycolysis for ATP
production, at the expense of increased energetic cost.
The switch to more-glycolytic type II fibers, which are
characterized by an increased lactate production compared

with type I fibers, could contribute to the hyperlactatemia
observed in patients with mitochondriopathies [36]. The
fact that hyperlactatemia is typically observed only, or at
least is aggravated during exercise in patients with inher-
ited mutations in mtDNA [37,38] can explain the normal
lactate levels in our rats in whom blood was collected at
rest. Fiber-type switching is also observed in conditions
associated with impaired blood oxygenation [39] and
diminished muscle microcirculation [40].

In COPD, muscle hypoxia is associated with an increased
proportion of type II fibers [39,41], a reduced number of
mitochondria [42], increases in glycolytic enzyme activity,
and an impairment of oxidative capacity [43].

Patients with idiopathic inflammatory myopathies also
reveal an increased proportion of fast fibers and a lower
proportion of slow fibers compared with healthy controls
[40]. Even in healthy humans exposed to high altitude, the
proportion of type I fibers is decreased [44,45]. Although
we failed to identify a single master switch of type I to
type II fiber transformation, these observations indicate
that an impairment of mitochondrial respiration of many
causes promotes type II fiber formation.

Interestingly, slow fibers showed even less mtDNA
content than did fast fibers in zidovudine-treated rats.
This observation may be explained by the dynamics of
the system (for example, the possibility that these slow
fibers could still be in the process of converting). Alterna-
tively, this finding could be explained with a physiologi-
cally higher mtDNA turnover in slow (oxidative) fibers
compared with fast (glycolytic) fibers, and therefore an
increased susceptibility to the inhibition of mtDNA repli-
cation conferred by zidovudine. Clearly, regulators of
fiber type exist in addition to mtDNA content, and vice
versa. Downregulation of the ERRy may explain some of
the biologic processes observed in our model, as ERRy
physiologically promotes a switch to slow muscle fibers
and induces oxidative metabolism by increasing mito-
chondrial number, size, and functions [35].
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Type II fibers in our study had a higher degree of
atrophy than did type I fibers, despite the fact that the
former appeared to be less dependent on mtDNA repli-
cation than the latter, as evidenced by a lesser degree of
mtDNA depletion. Because muscle disuse affects mainly
type I fiber diameters [46,47], the type II fiber atrophy
in our model suggests a mechanism related to mito-
chondrial dysfunction. This hypothesis is further sup-
ported by the predominant type II fiber atrophy in other
conditions associated with muscle hypoxia, such as
COPD [41], systemic sclerosis [2-4,48], and inflamma-
tory myopathies [5]. Age-related sarcopenia is also asso-
ciated with a predominant atrophy of type II fibers and
an increased abundance of fast myosin heavy-chain iso-
forms in soleus muscle [49]. It is interesting to specu-
late, whether mitochondrial dysfunction, which has also
been implicated in aging, may be a driver of these char-
acteristics of the aging muscle [50]. Myostatin has been
described as a potent negative regulator of muscle mass,
and increased myostatin expression is particularly asso-
ciated with type II atrophy [51]. Consistent with this, we
found a fourfold enhancement of myostatin transcrip-
tion (Table 2). Sarcopenia, in combination with the dis-
abled aerobic energy supply of slow-twitch fibers, can
also explain muscle weakness on static and dynamic
exercise, fatigue and muscle atrophy observed in
patients with mitochondrial myopathies [52].

The effects of mitochondrial dysfunction and hypoxia
on fiber-type composition have important clinical impli-
cations for training and rehabilitations programs by sug-
gesting that exercise intolerance in mitochondrial
dysfunction may be improved not only by cardiopul-
monary mechanisms, but also by promoting fiber type II
formation, either by resistance training, or pharmacolo-
gically by targeting the calcineurin-dependent nuclear
factor of activated T-cells (NFAT) with calcineurin inhi-
bitors [53,54].

In mitochondrial myopathies, muscle strength and
oxidative capacity were improved without type I fiber
enhancement [55,56], and in COPD, muscle strength
and oxidative capacity were enhanced without altera-
tions in lung function [41,57]. In idiopathic inflamma-
tory myopathy, however, endurance training increased
type I fiber proportions and diameters [40]. This differ-
ence could be explained by the preservation of mito-
chondrial function in idiopathic inflammatory myopathy,
which enables type I fiber formation, and the impair-
ment of mitochondrial function in inherited or acquired
defects of the mitochondrial genome, which disables
type I fiber formation. Clearly, more research is needed
about the different effects of training programs on cardi-
opulmonary function, skeletal muscle microcirculation,
oxidative capacity, and fiber-type composition in these
different conditions.
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Conclusions

Our work demonstrates a type I to type II fiber transfor-
mation in a mitochondrial myopathy and a preferential
atrophy in type II fibers. The skeletal muscle fiber-type
transformation in the absence of fiber-type regeneration
and observed adjustments from oxidative to glycolytic
metabolism provide evidence for mitochondrial function
as a new regulator of skeletal muscle fiber type and
other metabolic capacities. The effects of mitochondrial
dysfunction on fiber-type composition have important
clinical implications for training and rehabilitations
programs.
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