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Abstract

Introduction: Ankylosing spondylitis (AS) is unique in its pathology where inflammation commences at the
entheses before progressing to an osteoproliferative phenotype generating excessive bone formation that can
result in joint fusion. The underlying mechanisms of this progression are poorly understood. Recent work has
suggested that changes in Wnt signalling, a key bone regulatory pathway, may contribute to joint ankylosis in AS.
Using the proteoglycan-induced spondylitis (PGISp) mouse model which displays spondylitis and eventual joint
fusion following an initial inflammatory stimulus, we have characterised the structural and molecular changes that
underlie disease progression.

Methods: PGISp mice were characterised 12 weeks after initiation of inflammation using histology,
immunohistochemistry (IHC) and expression profiling.

Results: Inflammation initiated at the periphery of the intervertebral discs progressing to disc destruction followed
by massively excessive cartilage and bone matrix formation, as demonstrated by toluidine blue staining and IHC for
collagen type I and osteocalcin, leading to syndesmophyte formation. Expression levels of DKK1 and SOST, Wnt
signalling inhibitors highly expressed in joints, were reduced by 49% and 63% respectively in the spine PGISp
compared with control mice (P < 0.05) with SOST inhibition confirmed by IHC. Microarray profiling showed genes
involved in inflammation and immune-regulation were altered. Further, a number of genes specifically involved in
bone regulation including other members of the Wnt pathway were also dysregulated.

Conclusions: This study implicates the Wnt pathway as a likely mediator of the mechanism by which inflammation
induces bony ankylosis in spondyloarthritis, raising the potential that therapies targeting this pathway may be
effective in preventing this process.

Introduction
Ankylosing spondylitis (AS) displays a unique pathology in
its progression from an initial inflammatory phase to an
osteoproliferative/ankylosing phase, which can result in
joint fusion [1]. The inflammatory phase has similarities
with other inflammatory arthopathies such as rheumatoid
arthritis (RA) with high levels of pro-inflammatory cyto-
kine production and joint damage through osteoclast activ-
ity [2]. However, whereas the synovitis of RA is associated

with joint erosion, while there is initial erosion in AS, the
joint disease is primarily characterised by osteoproliferation
and consequent ankylosis. There is considerable debate as
to how the inflammation and osteoproliferation are linked,
including whether the inflammation directly leads to the
osteoproliferation, ceases before induction of bone forma-
tion, or whether the inflammatory and osteoproliferative
phases are completely uncoupled [3]. The initial inflamma-
tion occurs in axial entheses, such as the spinal and sacroi-
liac ligament attachments, or sites of attachment of the
annulus fibrosus outer fibres of the intervertebral discs
(IVDs), progressing to osteoproliferation, squaring of the
vertebrae and formation of syndesmophytes from the
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vertebral corners, which can eventually bridge leading to
ankylosis. How this inflammation is initiated and how it
progresses through to bone formation and eventual ankylo-
sis is poorly understood.
A number of informative studies have characterised dis-

ease progression using radiography and magnetic reso-
nance imaging (MRI) [4,5] but such modalities can only
inform on gross structural changes. Elucidation of the cel-
lular and molecular changes that contribute to disease
progression requires tissue samples from disease sites.
However, the difficulties in obtaining biopsy at axial skele-
tal sites means very few informative clinical samples are
available. Animal models are thus a good option for exam-
ining detailed events occurring at axial disease sites.
Although a number of animal models present some of the
features similar to those seen in human disease, no mouse
model as yet has proven to be a good model in which to
study the progression from inflammation to ankylosis in
the axial skeleton. Transgenic rats over-expressing the
HLA-B27 and human b2-microglobulin have been shown
to spontaneously display gut disease and peripheral and
axial inflammatory arthritis [6], but ankylosis was only
seen in rats with increased expression of b2-microglobulin,
which coincided with reduced gut disease and unfolded
protein response [7]. Two mouse models over-expressing
TNF-a, either through a transgenic approach (hTNFtg)
[8], or through increasing TNF mRNA stability by deleting
the 3’ ARE regulatory elements (TNFΔARE)[9], show sys-
temic inflammation, gut disease and sacroiliitis but do not
spontaneously develop ankylosis. Several mouse models
have exhibited spontaneous ankylosing enthesopathy
(ANKENT), including C57BL/10 [10] and DBA/1 [11]
mice, but this has been limited to peripheral joints. The
only inducible mouse model demonstrating axial ankylosis
as well as a strong immune component is the proteoglycan
(PG)-induced spondylitis model (PGISp). Disease is
induced by injections of a human cartilage PG extract, and
mimics many of the clinical features of the human disease,
particularly axial inflammation and ankylosis stemming
from an initial inflammatory stimulus [12,13].
The Wnt pathway has been established as a key regula-

tory pathway for the bone-forming cells, osteoblasts, stimu-
lating both osteoblast proliferation and maturation [14].
During canonical Wnt signalling in bone, soluble Wnts
bind to their Frizzled (Fzd) receptors and LRP4/5/6 co-
receptors in a ternary complex at the cell surface, resulting
in glycogen synthase kinase 3 (GSK-3b) inhibition, permit-
ting b-catenin (b-cat) accumulation. Accumulated b-cat
translocates into the nucleus and activates target gene tran-
scription. In the absence of signalling, b-cat is phosphory-
lated, mainly by GSK3b, resulting in b-cat ubiquitination
and proteasome-mediated degradation. In bone, Dickkopf-
1 (DKK-1), sclerostin (SOST) and the secreted Fzd-related
proteins are key inhibitors of the Wnt pathway, binding

either to LRP4/5/6 inhibiting its interaction with the Wnt-
Fzd complex, or associating with Wnts, blocking their par-
ticipation in the pathway [14]. A number of recent papers
have demonstrated changes in SOST and DKK1 in the
hTNFtg mouse model and in AS patients, suggesting a role
for this pathway in the osteoproliferation characteristic of
AS [15-17].
We therefore sought to investigate whether SOST and

DKK1 are dysregulated in the PGISp model, given it is a
good experimental model for assessing cellular and mole-
cular events involved in severe axial osteoproliferation and
ankylosis as seen in AS. In the studies described here we
have undertaken an in-depth morphological and molecu-
lar study to examine the nature of the spondylitis and
identified molecular changes that might contribute to the
joint changes in the PGISp model. As well as identifying
changes in matrix component expression levels that
underlie the excessive bone matrix formation seen, we
also observed decreases in Wnt-signalling inhibitors that
might promote increased bone formation contributing to
ankylosis.

Materials and methods
Mouse model
The PGISp model has been described previously [12,13].
For the studies described here the model was established
on the IL4-/- background due to the reported increased
penetrance [18]. Briefly, three-month old female mice
were injected with 2 mg of human cartilage extract equiva-
lent to 100 μg of PG core protein, together with 2 mg
dimethyl dioctadecyl ammoniumbromide (Sigma, St.
Louis, MO, USA). Three month-old female mice were
injected three times at day 0, 21 and 42. Mice were col-
lected at week 12 for the subsequent analyses described
below. All mouse studies were carried out under the
approval of the University of Queensland Animal Ethics
Committee. For the histology studies four control and
seven PGISp mice were analysed. For the gene expression
analyses, seven control and six PGISP mice were analysed
and of these, four control and four PGISp mice were used
for the microarray study.

Bone fixation/histology
Skeletons were collected and fixed in neutral buffered
formalin and decalcified in 14% ethylenediaminetetraace-
tic acid (EDTA). Sections were stained with H&E or
toluidine blue according to standard protocols. Gruber’s
stain has been described previously [19] with a combina-
tion of Weigert’s haematoxylin, alcian blue and picrosir-
ius red producing distinctive staining of collagen (red),
PG (blue) and the cellular elements of the IVD. Severity
of vertebral joint disease was scored as described pre-
viously [13]; score 1, enthesitis, inflammatory cell accu-
mulation around the IVD and/or infiltration of the
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annulus fibrosus; score 2, < 50% absorption/erosion of
the IVD; score 3, essentially complete resorption (> 50%)
of the IVD; score 4, cartilaginous/bony ankylosis.
For immunohistochemistry (IHC), collagen type I

(ColI) and osteocalcin (OCN) staining were performed
as described in Chang et al. [20] and sclerostin (SOST)
staining as in Walsh et al. [21].

RNA extraction and microarray analysis
Whole spines from control and PGISp mice were flash-
frozen on collection and stored at -80°C. Due to the
requirements to preserve RNA integrity it was not possible
to assess the activity of arthritis in the spines before RNA
extraction, but only mice displaying severe peripheral
arthritis were selected. RNA was extracted using Trizol
(Life Technologies, Mulgrave, Victoria, Australia) as per
the manufacturer’s instructions as described previously
[22], then cleaned using RNAeasy columns (Qiagen, Don-
caster, Victoria, Australia). For microarray analysis cRNA
was generated from 500 ng total RNA using the Illumina
TotalPrep cRNA Amplification Kit and hybridised to
Mouse Ref-8 Expression BeadChips (Illumina, San Diego,
CA, USA). Array data were processed as described pre-
viously [23] using the Illumina GenomeStudio software
and then transformed by variance stabilization transforma-
tion (VST) and normalized by robust spline normalization
using Lumi [24]. Gene expression analysis was performed
in BRB-ArrayTools [25]. Differentially expressed genes
were identified by unpaired t-test with multivariate per-
mutation correction. These data have been uploaded to
the NCI GEO database [GEO: GSE41039].

Gene Ontology analysis
The evaluation of the gene ontology (GO) classes that are
differentially expressed between control and affected
bones was performed using a functional class scoring ana-
lysis as described previously [26]. For each gene in a GO
class, the P-value for comparing control and affected sam-
ples was computed. The set of P-values for a class was
summarised by two summary statistics: (i) The log sum-
mary (LS) is the average of the log P-values for the genes
in that class and (ii) the Kolmogorov-Smirnov summary
(KS) is the Kolmogorov-Smirnov statistic computed on
the P-values for the genes in that class. The statistical sig-
nificance of the GO class containing n genes represented
on the array was evaluated by computing the empirical
distribution of these summary statistics in random sam-
ples of n genes. Functional class scoring is a more power-
ful method of identifying differentially expressed gene
classes than the more common over-representation analy-
sis or annotation of gene lists based on individually ana-
lysed genes. Efron-Tibshirani’s gene set analysis (GSA)
was also used, which uses maxmean statistics for assessing
the significance of predefined gene sets and generates a

direction of significant expression changes. GO analysis
was performed using BRB-ArrayTools.
To examine a possible shift towards osteoblastic activity

in the affected spine we generated an osteoblast gene list
comprised of well-characterised genes known to be
expressed in osteoblasts, which is not available in the stan-
dard GO analysis. The genes incorporated in this list were
Sp7, Ifitm5, Sost, Ostn, Runx2, Osteocalcin (Bglap), Rankl
(Tnfrsf11b), Rank (Tnfsf11), Dmp1, Phex, Alkaline phos-
phatase (Alpl), Col1a1, Ibsp, Spp1, Pthr1 and Sparc.

Quantitative PCR
Both Sost and Dkk1 were expressed at background levels
in the microarray study so we utilised quantitative real-
time reverse-transcription PCR (qPCR) to accurately
measure their transcription levels. RNA (1000 ng) was
reverse-transcribed using both oligo-dT primers and
random hexamers using the Bioline cDNA Synthesis Kit
(Bioline, Alexandria, NSW, Australia) and expression
was measured using Taqman assays (Life Technologies,
Mulgrave, Victoria, Australia) for Sost and Dkk1 and b-
Actin was used as a housekeeping gene to normalise
expression.
Comparison of control and PGISP joints for histologi-

cal scoring, expression levels of Sost and Dkk1 and
SOST IHC were analysed using GraphPad Prism 5
(GraphPad Software Inc, La Jolla, CA, USA), using non-
parametric Mann-Whitney tests. Data are expressed at
the mean ± SD.

Results
Inflammation followed a similar time course to that pre-
viously described for this model [18]. Initial peripheral
inflammation in the knees and ankles, as well as the fore-
limbs, was evident after the second PG injection and per-
ipheral inflammation increased over a further 8-week
period before maximising at 12 weeks after the start date
(data not shown). Our focus for this study was on the
spondylitis, previously described in this model [13]. Mice
were analysed 12 weeks (day 84) after the first PG injec-
tion (day 0) when both axial and peripheral disease was
well-established.
In the spine and sacral IVDs extensive inflammation and

arthritis was found in all affected mice. Similar to human
AS [27], not all vertebrae were affected and the severity of
the arthritis also varied amongst different vertebrae in a
single mouse. Figure 1A and 1B show an unaffected sacral
joint in a mouse 12 weeks after the initial PG injection.
H&E staining clearly shows an intact joint with no inflam-
matory cell invasion or damage. In an adjacent IVD, the
early stages of inflammation can be seen in Figure 1C and
1D, with invasion of inflammatory cells. A severely
affected joint is depicted in Figure 1E and 1F, where the
initial inflammation has progressed to massively excessive
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Figure 1 Morphology of unaffected and affected sacral vertebrae in the proteoglycan-induced spondylitis (PGISp) mouse. An
unaffected sacral vertebral joint from a week-12 mouse shows an intact intervertebral disc (IVD) without inflammation; H&E staining ×40 (A) and
×200 (B). Early inflammation is evident in the IVD of PGISp mice 12 weeks after the first proteoglycan (PG) injection (boxed area); ×40 (C) and
×200 (D). Severely-affected sacral joint in week-12 PGISp show massive mesenchymal cell proliferation, excess matrix formation (black
arrowheads) and almost complete IVD destruction (blue arrowheads); ×40 (E), ×100 (F). Inflammation and joint damage is also found in the
spine and variable penetrance, a characteristic of AS, is also evident. Severely damaged (black arrowheads) and early-stage inflamed (red
arrowhead) joints are found in close proximity to unaffected joints; ×40 (G). Histological scoring of the vertebrae indicates the degree of disease
severity in the PGISp mice (H).
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tissue formation resembling the early stages of a syndes-
mophyte, which is associated with significant numbers of
proliferative mesenchymal cells coupled with almost com-
plete destruction of the IVD. Figure 1G further illustrates
the variable nature of the lesions in a 12-week mouse
spine with IVDs displaying early stage inflammation as
well as severe damage adjacent to unaffected joints. To
quantify the extent of disease in the mice the vertebrae
were scored on a scale of 1 to 4 as described previously
[13] with the average score per vertebrae per mouse being
1.5 ± 0.4 (Figure 1H). We also looked at mice up to 24
weeks after the first injection and they showed similar
morphological changes to those at 12 weeks, except for
greater penetrance, with most joints severely affected by
frequent excessive tissue formation and bridging syndes-
mophyte formation (data not shown).
To further delineate the nature of the components of

the excessive matrix formation shown in Figure 1 we
used toluidine blue, which stains for PG, and Gruber’s
IVD staining, which differentiates between collagen (red)
and PG (blue) [19], to delineate matrix components. In
unaffected IVDs strong PG staining is seen in the carti-
lage endplates and in the nucleus pulposus (Figure 2A,
B). Collagen staining clearly delineates the vertebral bone
tissue but shows only faint staining in the IVD, represent-
ing the lower collagen content in this tissue. However, in
affected joints no PG staining is evident within the disc
due to extensive destruction, but extensive staining is
seen in the excessive matrix laid down at axes of the
joints (Figure 2C, D). The periphery of this matrix is low
in PG but Gruber’s stain shows it is positive for collagen
staining (Figure 2E, F).
Figure 2 indicates the excess matrix underlying syndes-

mophyte formation was largely PG-rich, except at the per-
iphery where the PG staining was less evident, with more
apparent collagen positivity. Advanced AS frequently pre-
sents as fusion of the vertebral bodies due to bony matrix
bridging across adjacent vertebrae. To further investigate
the nature of the excess matrix formation in this model
we used IHC to confirm the presence of the bone matrix
components, Col1 and OCN in the affected tissue. In
intact joints both Col1 I (Figure 3A) and OCN (Figure 3B)
clearly delineate the vertebral bone but no staining is seen
in the disc space. Similarly in affected discs, the vertebral
bone is stained (Figure 3D and 3F) but some Col1 staining
is also evident at the periphery of the syndesmophyte
(Figure 3E) concurring with the Gruber’s collagen staining
in Figure 2E. However this matrix was largely negative for
the more mature bone protein OCN, with slight staining
at the periphery. The unaffected mature vertebral trabecu-
lar bone was strongly positive for OCN (Figure 3G).
Having established that excess cartilage and bone-like

tissue is laid down in this spondylitis model we then
went on to investigate the underlying molecular changes

that might underpin the tissue changes. We undertook
microarray-based whole-genome expression profiling in
spines from week-12 affected PGISp or control mice
that had not been injected with PG extract, to define
the gene expression changes associated with joint remo-
delling. As might be expected with such marked tissue
changes, unsupervised clustering distinguished all
samples from affected mice and unaffected controls
(Figure 4). A class comparison analysis, using a multi-
variate permutation test providing 80% confidence
that the false discovery rate was less than 10%, identified
656 differentially expressed genes. Of these, 125 were
increased > 1.5-fold and 46 decreased > 1.5-fold. To
identify the pathway changes that might underlie the tis-
sue changes we undertook GO analysis. Table 1 shows
that a number of inflammatory and immune pathways
are upregulated, as would be expected in an inflamma-
tory arthritis model. Underlying these pathway changes
was upregulation in a number of inflammatory genes
(all P < 0.01) (Table 2). Tissue remodelling enzymes
were upregulated such as matrix metallopeptidase 3
(Mmp3) (5.3-fold) and Mmp13 (2.3-fold), and tissue
inhibitor of metalloproteinase 1 (TIMP1) (3.5-fold), as
were components of the IL1 signalling network, Il1b
(1.6-fold) and its receptor Il1r2 (1.3-fold). Other SpA-
associated genes were also altered including Il28ra (1.2-
fold) and the gene encoding TNF receptor type I, tumor
necrosis factor receptor superfamily, member 1a
(Tnfrsf1a) (1.2-fold). Elevated inflammatory signalling
was also indicated by significant increases in both signal
transducer and activator of transcription 1 (Stat1) (1.2-
fold) and Stat3 (1.2-fold).
We also looked for changes indicative of osteoproli-

ferative activity. We generated an osteoblast gene list
composed of well-characterised osteoblast-associated
genes and used it to undertake a GO analysis. This
showed a highly significant upregulation in this gene
set (Table 1) with Col1a1 (2.5-fold), bone sialoprotein
(Ibsp) (2.6-fold), osteonectin (Sparc), (1.6-fold) and
osteocalcin (BGlap1) (1.5-fold) all upregulated (all P <
0.03) (Table 2).
As well as changes to bone matrix proteins we also

investigated whether key bone regulatory genes were
also altered that might be driving the osteoproliferative
response. Using qPCR, we therefore specifically mea-
sured expression of the bone-associated Wnt inhibitors
Sost and Dkk1, of which the expression levels are too
low to be picked up by microarray. At both 12 and 24
weeks Sost (0.4-fold, P < 0.01 and 0.5-fold, P < 0.05,
respectively) and Dkk1 (0.5-fold, P < 0.05 and 0.6-fold, P
< 0.05, respectively) were significantly downregulated in
PGISp-affected spines (Figure 5A). Downregulation of
Sost in osteocytes within the vertebrae could also be
seen at protein level (Figure 5B, C).
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Figure 2 Matrix changes in affected proteoglycan-induced spondylitis (PGISp) mouse vertebrae. (A) Toluidine blue staining in unaffected
week-12 control vertebrae shows clear staining in the vertebral growth plate cartilage and also in the nucleus pulposus (×40). Note the lack of
staining in the bone. (B) Further tissue delineation is shown using Gruber’s intervertebral disc (IVD) stain (×40). Collagen in the bone and annulus
fibrosus is stained red, and proteoglycan (PG) in the cartilage and nucleus pulposus is stained blue. The cellular nature of the IVD is clearly
visible. Toluidine blue staining of the same affected sacral joint shown in Figure 1 shows that the majority of the excess matrix laid down is PG-
rich. However, note the fringes of this matrix stain negative for PG (red arrowheads); ×40 (C), ×100 (D). Gruber’s IVD stain further illustrates the
PG-rich nature of the excess matrix; ×40 (E), ×100 (boxed area in F). However the PG-negative fringes also stain positive for collagen (black
arrowheads).
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Discussion
The PGISp model is a well-established mouse model of
arthritis that exhibits both axial and peripheral inflam-
mation [28] and has previously been presented as a
model of spondylitis [13]. This further characterisation
of axial disease pathology and underlying molecular
changes in the Wnt signalling pathway further establish
PGISp as a good model of the bone formation arising
from joint inflammation typical of AS.
Axial disease in the PGISp mice was initiated with

entheseal inflammation at the periphery of the vertebral
and sacral joints. These inflammatory cells infiltrated the

joint intervertebral area generating an invasive pannus,
which destroys the IVD. This is then followed by prolifera-
tion of mesenchymal cells and deposition of a collagen/
proteoglycan-rich matrix, which can eventually mineralise
leading to ankylosis. Given this is the typical disease pro-
gression in AS [29], these observations establish the PGISp
model as highly appropriate for investigation of AS aetiol-
ogy. Initial inflammation occurs in axial insertion sites,
such as the spinal and sacroiliac ligament attachments or
sites of attachment of the outer fibres of the annulus fibro-
sus of the anterior vertebral disc. This initial enthesitis
progresses and often a destructive spondylodiscitis is seen

Figure 3 Bone matrix proteins in affected proteoglycan-induced spondylitis (PGISp) mouse vertebrae. In an unaffected sacral joint,
collagen type I (A) (×40) and osteocalcin (B) (×40) immunohistochemical staining clearly delineate the bone compartment, only staining the
vertebral bone. Collagen type I staining is evident at the fringes of the excess matrix in an affected joint however (D) (×40), (boxed area in E)
(×200). This collagen matrix is only osteocalcin-positive at the outermost periphery (F) (×40), (boxed area in G) (×200,). Rabbit immunoglobulin
(IgG)-negative control shows no background staining (C) (×40).
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[30,31], as well as extensive cartilage loss preceding the
pathological bone formation that underlies the joint fusion
seen in advanced cases.
Whether the initial inflammation directly links to the

subsequent osteoproliferative stages is subject to signifi-
cant debate. There is considerable evidence that syndes-
mophytes develop at sites where previous inflammation
has been observed [4]. Exactly how inflammation and
bone formation are linked is not clear, with studies
demonstrating that inhibition of inflammation does not
affect radiographic progression in either human [32] or
mouse [33] studies. However, it has also been shown in

longitudinal human imaging studies that the presence of
inflammatory lesions can predict the future development
of syndesmophytes [34]. Our present study indicates the
damage is certainly triggered by an initial inflammatory
insult but there is little evidence of inflammatory cells
remaining at sites where an extensive osteoproliferative
response has occurred.
The study described here has further detailed the struc-

tural changes occurring at axial disease sites in the PGISp
model and identified some of the molecular mechanisms
that contribute to the disease process. IVD destruction
follows the initial inflammation with extensive cell

Figure 4 Whole genome expression profiling of affected proteoglycan-induced spondylitis (PGISp) mouse vertebrae. Unsupervised
clustering using centred correlation and complete linkage shows expression profiles clearly delineate between control and PGISp spines.

Table 1 Gene ontology (GO) analysis of genes differentially expressed in control and proteoglycan-induced spondylitis
(PGISp) mouse spines

GO
category

GO term Number of
genes

LS permutation P-
value

KS permutation
P-value

Efron-Tibshirani’s GSA test
P-value

GO:0002252 immune effector process 225 0.00001 0.00196 < 0.005 (+)

GO:0002376 immune system process 995 0.00001 0.00002 0.005 (+)

GO:0002444 myeloid leukocyte mediated
immunity

18 0.00001 0.00179 0.005 (+)

GO:0002682 regulation of immune system process 374 0.00001 0.01936 0.005 (+)

GO:0002684 positive regulation of immune system
process

255 0.00001 0.00417 0.005 (+)

GO:0006954 inflammatory response 293 0.00001 0.00007 < 0.005 (+)

GO:0006955 immune response 562 0.00001 0.00001 0.005 (+)

GO:0032963 collagen metabolic process 30 0.00007 0.01778 0.005 (+)

Osteoblast genes 16 0.00105 0.00005 0.02 (+)

Gene expression levels in a number of inflammatory pathways, as well as an osteoblast gene set are altered in PGISp spine samples. LS, log summary; KS,
Kolmogorov-Smirnov summary; GSA, gene set analysis.
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proliferation and excessive tissue formation then becom-
ing evident. The nucleus pulposus is PG-rich, whereas
the annulus fibrosus stains less strongly [35]. The matrix
laid down in place of the destroyed disc in this model
shows a different makeup, being rich in unmineralised
PG, except at the periphery where collagen appears to
comprise a significant component of the matrix. At this
point, staining for unmineralised PG is negative, which
might indicate a transition from a fibrocartilage-based
matrix to immature bone. OCN staining is only present
at the outer periphery of this matrix, indicating that this
matrix has not yet developed into mature bone. It is clear
that the model exhibits a strong anabolic response to the
initial inflammatory insult.
We also sought to investigate the molecular changes

underlying the progression through inflammation to bone
formation using whole-genome expression analysis.
Inflammatory as well as both matrix catabolic and ana-
bolic pathways were altered. Elements of both the IL-1
and TNF pathways were upregulated. Both these pathways
have been associated with AS through genetic studies
[36,37]. IL28ra has been associated with psoriasis, a condi-
tion frequently co-existing in AS patients [38]. Stat1 and
Stat3 mediate TH1 and IL-17-associated signalling respec-
tively, with both cell types thought to play a role in the
PGISp model [39,40] and have been implicated in SpA
[41,42]. Elevated expression in these genes might reflect
the increased TH1 and IL-17-expressing cell activity seen
in these mice. STAT3 has also been shown to be asso-
ciated with human AS [43]. These molecular disease pat-
terns further support that the PGISp model replicates not
only cellular changes in AS but also but also molecular
patterns as well as inflammation polarization.
Mirroring the destructive nature of the early disease,

stage changes in matrix remodelling factor expression
levels were seen. MMP3, a stromelysin, and MMP13, a
collagenase, key enzymes in extracellular matrix

remodelling, which have both been shown to be elevated
in AS as well as animal models [34,44,45], were both
strongly upregulated. The strong matrix formation
response was also reflected with marked upregulation of
the key bone matrix components Col1, bone sialopro-
tein and OCN, as well as a number of other extracellu-
lar matrix-associated genes.
These gene expression changes mirror the tissue

alterations seen in the joint but of further interest, parti-
cularly from a potential therapeutic point of view, are
the molecules driving these tissue changes. The Wnt
signalling pathway has been established as a key regula-
tory pathway for the bone-forming cells, osteoblasts,
with SOST and DKK1 key inhibitors of Wnt signalling
that are either specific to, or highly enriched in cells of
the osteoblast lineage, respectively [14]. Reduced DKK-1
[16] and SOST [46] levels have been reported in AS
patients. Blockade of DKK-1 has also been shown to
drive ankylosis in a TNF-over-expressing mouse model
of spondylitis [17]. Our data support this proposed ele-
vated Wnt signalling in spondylitis with markedly
decreased levels of the Wnt inhibitors DKK1 and SOST,
the first such demonstration in a mouse model of SpA
or AS.

Conclusions
This study has demonstrated dysregulation of Wnt sig-
nalling in a mouse model of AS displaying excessive tis-
sue formation, underlying syndesmophyte formation and
ankylosis. It is likely in part that this dysregulation con-
tributes to the osteoproliferation and supports targeting
Wnt signalling therapeutically in AS. However, the key
molecule(s) controlling the switch from inflammation to
bone formation still require elucidation. Such molecules
could provide excellent targets to develop targeted drugs
to control the currently untreatable excessive bone for-
mation leading to debilitating joint fusion.

Table 2 Inflammation and osteoblast-associated genes over-expressed in proteoglycan-induced spondylitis (PGISp)
spines

Gene Fold change PGISp/Control P-value Gene symbol

Matrix metallopeptidase 3 5.29 3.50E-05 Mmp3

Matrix metallopeptidase 13 2.26 0.0086 Mmp13

Tissue inhibitor of metalloproteinase 1 3.48 0.0003 Timp1

Interleukin 1, beta 1.57 0.0087 Il1b

Interleukin 1 receptor, type II 1.28 0.0000 Il1r2

interleukin 28 receptor alpha 1.18 0.0068 Il28ra

Signal transducer and activator of transcription 1 1.18 0.0150 Stat1

Signal transducer and activator of transcription 3 1.21 0.0039 Stat3

Bone sialoprotein 2.62 0.0001 Ibsp

Collagen Type I 2.51 0.0005 Col1a1

Collagen Type III 2.42 0.0004 Col3a1

Osteocalcin 1.50 0.0297 Bglap1
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