
Introduction

Doubtlessly, the fi eld of epigenetics has rapidly evolved 

over the last decades – a quick literature survey shows 18 

PubMed entries for 1975 to 1995, >400 entries for the 

following 10 years and >2,000 entries from 2006 to 2010. 

Importantly, the defi nition of epigenetics now extends 

signifi cantly from its initial meaning into other disci-

plines and encompasses wide research areas within 

genetics, genomics, molecular biology and medicine 

(including, for example, epidemiology and pathology) 

(see Figure  1). Th e term epigenesis originally coined by 

Waddington over 50  years ago was introduced in a 

develop mental biology context to describe how geno-

types give rise to diff erent phenotypes [1], a view that is 

fundamentally diff erent from the defi nition of ‘the 

heritable transmission of phenotype without a change in 

the underlying DNA sequence’ that is now widely in use. 

Over the years, however, this interpretation of epigenetics 

has found signifi cant alterations  – in fact, there now 

appears to be no uniform consensus defi nition [2,3]. 

Whereas developmental biologists emphasise the trans-

generational heritability aspect of epigenetics (that is, the 

necessity to stably transmit epigenetic modifi cations to 

achieve a pheno type), many scientists nowadays use the 

term epigenetic in a less constrained manner. In this way 

they relate almost any covalent chromatin modifi cation 

with under lying general events that are considered DNA-

templated processes and thus include transcription, DNA 

repair or genome stability [4].

Irrespective of this semantic debate, this review aims to 

describe the various major systems that modify chroma tin 

components as well as DNA to accomplish gene regu-

lation and functional chromatin states. In this overview, 

epigenetics is used in its widest sense  – that is, epi-

genetics includes a discussion of DNA and chromatin 

modifi cations as well as the area of noncoding RNA, 

known to play key roles in imprinting, gene regulation 

and silencing. Th e article proposes that a better 

understanding of these epigenetic mechanisms and their 

eff ects will lead to an appreciation of their potential roles 

in musculoskeletal and infl ammatory disease pathologies, 

and, fi nally, might pave the way to novel possible 

therapeutic intervention strategies.

What is the biochemical basis of epigenetics?

Chromatin is a highly organised and dynamic protein–

DNA complex consisting of DNA, histones and non-

histone proteins. Within this framework, epigenetic 

mechanisms alter the accessibility of DNA by modifi  ca-

tion or rearrangement of nucleosomes, as well as through 

a plethora of post-translational chemical modifi  cations of 
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chromatin proteins such as histones and DNA itself (see 

below). In addition to the intricate interactions that occur 

between chromatin proteins and DNA, the noncoding 

RNA machinery is included to be epigenetic – as part of 

a complex network entangled with chromatin and DNA 

modifi cation systems, which alter and critically control 

gene expression patterns during development, 

homeostasis and disease [5,6].

Epigenomics  – that is, the genome-wide study of epi-

genetics – is made feasible using recently developed next-

generation sequencing platforms and, importantly, has 

provided an insight into genome architecture that was 

not anticipated by researchers a decade ago when com-

ple tion of the fi rst genome-sequencing projects was 

accomplished. Following this development, the recent 

large-scale chromatin profi ling and interaction mapping 

across many diff erent cell types and their functional 

states carried out by the ENCODE (Encyclopedia of 

DNA Elements) consortium has already resulted in func-

tional annotation of about 80% of the human genome, the 

vast majority of which is nonprotein coding. Th is large-

scale collaborative project has revealed common regu-

latory elements, their func tional interactions as well as 

chromatin state dynamics leading to an unprecedented, 

detailed view of genome biology [7-10] with clear 

implications and novel avenues in understanding of 

human disease (see below).

An important aspect in the epigenetic concept is that 

the local chromatin structure is of critical importance – 

for example, accessible chromatin (that is, as found in 

euchromatin) allows gene-regulatory proteins such as 

trans cription factors or remodelling complexes to inter-

act with their cognate binding sites within the regulatory 

regions of genes, such as proximal promoters, enhancers 

or silencers [7,9]. Modifi cation systems (so-called writers 

and erasers of chromatin marks) that covalently alter 

specifi c residues of chromatin proteins play a pivotal role 

in this process (Table 1). Equally important, the distinct 

chromatin modifi cations or marks can act as beacons to 

recruit specifi cally recognition domains and components 

(readers) of transcriptional complexes, which thus serve 

as the eff ectors of the modifi cation. In this complex and 

interdependent manner (defi ned as the histone code) 

[11], chromatin modifying systems exert control of global 

and local gene activation. In addition, chromatin capture 

methods have revealed the critical importance of nuclear 

architecture and long-range chromatin interactions in 

regulation of concerted gene programmes [12]  – this is 

illustrated, for example, by the murine Th 2 cytokine 

locus where gene regions are folded into connected 

dynamic DNA loop structures anchored by AT-rich 

sequence binding proteins [13].

DNA methylation in an epigenetic context

Among the epigenetic mechanisms regulating gene 

expression, DNA methylation is by far the most studied – 

although, it is probably fair to say, still incompletely 

under stood. In vertebrate genomes, DNA methylation 

mostly occurs at the 5’ position on cytosine bases and 

largely in the context of CpG islands. Th is cytosine modi-

fi  cation critically controls genome functions by silencing 

of genes (see below), and has a function in controlling 

centromeric stability and probably suppresses the expres-

sion and mobility of transposable elements [14]. Because 

5-methylcytosine can be spontaneously deaminated (by 

replacing nitrogen with oxygen) to thymidine, CpG sites 

are frequently mutated and thus become rare in the 

genome. Epigenetic changes of this type thus have the 

potential to directly contribute to permanent genetic 

mutations.

About 70 to 80% of annotated gene promoters are asso-

ciated with CpG islands, which are usually unmethylated, 

but a substantial amount of cytosine methylation is also 

found in gene bodies and intergenic sequences, the func-

tion of which is beginning to emerge [15]. Importantly, 

cell-type specifi c DNA methylation profi les appear to 

vary more frequently at intergenic sequences compared 

with annotated gene promoters [9]. Th ese sites of diff er-

ential methylation them selves might regulate the activity 

of distant enhancers [16] or the transcription of non-

coding RNAs and uncharacterised transcripts [17,18]. 

Methylation of CpG promoter sites is associated with 

stable silencing of gene expression, and aberrant methy-

la tion patterns – for example, hypermethylation of tumour 

suppressor genes or hypomethylation of oncogenes – are 

Figure 1. Impact of epigenetic research on understanding of 

human disease and advancement towards novel therapeutic 

principles. Epigenetics connects various disciplines such as genome 

biology or genetics and will impact on clinical disciplines (see text for 

details).
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now recognised as hallmarks of cancer [19-23]. Silencing 

through DNA methylation is achieved by preventing the 

binding of distinct transcription factors, or by recruiting 

methyl-binding proteins, thereby generating a repressed 

chro matin environment. Th ese patterns of DNA 

methylation can be stably propagated during cell division, 

which makes this process a paradigm for true epigenetic 

regu la tion. Accordingly, these DNA modifi cations can 

mediate long-lasting changes in gene expression even 

when the initial triggering signal has disappeared.

DNA methylation patterns are known to be established 

and modifi ed in response to environmental factors by a 

complex interplay of at least three independent DNA 

methyltransferases, DNMT1, DNMT3A and DNMT3B 

[24] – hence making DNA methylation a prime candidate 

for linking environmental cues and disease. Interestingly, 

a recent epigenome-wide DNA methylation study among 

>300 rheumatoid arthritis (RA) patients identifi ed several 

diff erentially methylated regions within the MHC region, 

suggesting a possible link between genetic predisposition 

and epigenetic modifi cation and function in RA [25]. 

DNA methylation patterns have long been known to 

undergo signifi cant changes during fertilisation and 

embryogenesis, highlighting the existence of systems that 

can revert and erase DNA methylation [24]. Once 

established in diff erentiated cells, DNA methylation is 

considered stable; however, recent studies reveal that it 

appears to also be subject to demethylation (that is, 

reversal of biological eff ect) in specifi c instances, 

involving several incompletely charac ter ised candidate 

mechanisms (that is, methylcytosine hydroxylation, DNA 

glycosylation, base excision repair and deaminases), all of 

which have been shown to play important roles in 

genome biology and disease (reviewed in [24]).

Histone modifi cations are important elements of 

the epigenomic landscape

In addition to the modifi cations described above for 

DNA, post-translational modifi cations of N-terminal, 

un structured tails of histone proteins have now been 

recognised as key components in the regulation and 

signalling of functional states of the epigenomic land-

scape. For example, trimethylated lysine  9 of histone  3 

(H3K9me3) indicates heterochromatic or repetitive 

regions, whereas H3K4me3 marks regulatory elements 

associated with active promoters or transcription start 

sites and H3K27me3 marks those for developmentally 

repressed genes [9].

At present, several classes of histone modifi cations and 

their respective enzymatic modifi cation systems have 

been identifi ed (Table 1) [26]. Amongst their epigenetic 

substrate marks, lysine and arginine modifi cations are 

probably the best studied: acetylation and methylation of 

lysine residues, as well as methylation of arginine [26-28]. 

Whereas acetylation of histone tails is correlated with 

gene activation [26], the infl uence of histone methylation 

on regulating gene transcription depends on the exact 

residue methylated and the number of added methyl 

groups, both for arginine and lysine residues [28]. Th e 

involvement of histone modifi cations in regulation of key 

aspects in musculoskeletal biology  – for example, in 

infl am mation [29-33] or diff erentiation [34-36]  – has 

recently been established. Th e best understood systems 

of histone modifi cations that potentially allow trans-

mission of stable heritable marks through cell divisions 

comprise methylation of H3K9 (HP1, heterochromatin 

establishment) and H3K27 and H3K4 (repression and 

activation of genes through polycomb and trithorax 

complexes, respectively) [37,38].

Importantly, histone modifi cations and DNA methyla-

tion act in concert with respect to gene regulation 

because both activities are functionally linked [39]. One 

should state that modifi cations of histone residues are the 

best studied reactions, but constitute only the tip of the 

iceberg of nuclear mechanisms regulating chromatin 

function since many reader binding specifi cities or enzy-

matic activities have not yet been elucidated. Further-

more, many of the writers and erasers also modify other 

chromatin-associated proteins such as key transcription 

factors – including, for example, p53, retinoblastoma or 

NF-κB [40-43]  – and thus critically control gene trans-

cription programmes and cell-fate decisions.

Noncoding RNAs contribute to epigenetic mechanisms

Over the last decade it has become apparent that the 

nonprotein coding fraction of the human genome is of 

critical importance for homeostasis and disease, as 

discussed in greater detail elsewhere [5,6]. Th ose non-

coding RNAs are currently divided into several classes 

(transcribed ultraconserved regions, small nucleolar 

RNAs, PIWI interacting RNAs, large intergenic non-

coding RNAs, long noncoding RNAs and miRNAs) based 

on their length, as well as their processing and eff ector 

mechanisms [6]. Whereas the most studied class of 

miRNAs are ~22 base long ribonucleotide sequences that 

target complementary untranslated regions of mRNAs, 

directing them for degradation in the RNA-induced 

silencing complex, or regulate their translation, other 

noncoding RNA types have diff erent or less understood 

mechanisms of action. Small nucleolar RNAs (60 to 

300  bp size) are involved in ribosomal RNA modifi  ca-

tions, the PIWI interacting RNAs (24 to 30  bp size) 

interact with PIWI proteins that are critical for genome 

stability regulation (for example, heterochromatin forma-

tion), and large intergenic RNAs and long noncoding 

RNAs (>200 bp size) are found in chromatin complexes.

Several of the noncoding RNA classes are considered 

part of the epigenetic machinery due to their critical 
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involvement in epigenetic phenomena. For example, long 

noncoding RNAs can recruit chromatin remodelling 

complexes to specifi c loci, and are involved in DNA 

methy lation and other chromatin modifi cations. Th e im-

por tance of long noncoding RNAs is illustrated through 

their complex interactions – for example, with the HOX 

gene cluster, where hundreds of long noncoding RNAs 

regulate in a specifi c temporal and spatial manner 

chromatin accessibility and recruitment of histone modi-

fi  cation systems and RNA polymerase. Th ese noncoding 

RNA–chromatin complexes are furthermore central to 

X-chromosome inactivation and imprinting.

Much of the current work in this fi eld has been directed 

towards understanding of the miRNA system, and in 

particular several of the miRNAs have been shown to 

play key roles in disease [6]. However, the recurring 

question for the cause or consequence relationships of 

noncoding RNA systems is largely unanswered. Whereas 

the involvement in cancer biology is well studied, their 

role in other diseases such as infl ammatory conditions 

like RA is less understood and is only beginning to 

emerge. Amongst the miRNAs, some such as miR21, 

miR148a, miR155 or mi146a (and others) have been 

linked to infl ammatory disease and autoimmunity [44-48]. 

Importantly, poly morphisms in target regions (for 

example, the 3’ UTR of IL-1 receptor-associated kinase 1) 

of noncoding RNAs such as miR146 might contribute to 

RA suscepti bility [49], highlighting the inter play of 

genetic and epigenetic mechanisms in disease. Taken 

together, the fi eld of noncoding RNAs is certainly in its 

infancy, and future research will further clarify its role in 

immunity and infl ammation, and ultimately will have to 

prove its therapeutic utility.

Reversibility of chromatin modifi cation and 

inheritance of phenotypes

Th e contemporary defi nition of epigenetics that describes 

mechanisms to produce ‘stable, heritable phenotypes that 

result from chromosomal changes without alteration in 

DNA sequence’ implies a stably stored sort of memory at 

a molecular level that is copied and maintained during 

subsequent cell divisions and is independent of the 

initiating stimulus.

In contrast to genetic lesions, epigenetic modifi cations 

on DNA and histones are reversible, which is illustrated 

by the activities of the various enzyme systems that are 

operative in maintaining the epigenomic signatures (cf. 

Table  1). For example, histone lysine acetyltransferases 

are counteracted by histone lysine deacetylases (histone 

deacetylases (HDACs)) in establishing histone acetylation 

modifi cations at lysine residues in the N-terminal tails. 

Similarly, histone lysine methyltransferases catalyse the 

S-adeno syl methionine-dependent methylation of lysine 

residues in histone and other chromatin proteins in a 

sequence and methylation state-specifi c manner – these 

marks can be removed by the recently discovered lysine 

demethy lases (formerly known as histone demethylases) 

in establishing histone methylation modifi cations. Th ese 

opposing activities thus constitute a switch mechanism 

between functional states  – for example, changing 

between the acetylated (active transcription) and tri-

methy lated (repressed) state of H3K9 must involve the 

Table 1. Overview of major epigenetic DNA and chromatin modifi cation systems

System Abbreviation Class Substrate/mark

DNA modifi cations

DNA methyltransferases DNMT Writer Cytosine

Candidate systems: methylcytosine hydroxylation,  – Eraser 5-methyl-C, 5-OH-methyl-C

DNA glycosylation, base excision repair and 

deaminases?

Methyl-CpG binding domain MBD Reader 5-methyl-C

Histone modifi cations

Histone lysine methyltransferases KMT Writer Methylation (lysine)

Histone methyl-lysine demethylases KDM Eraser Demethylation (methyl lysine)

Chromodomain, Tudor domain, MBT domain,  – Reader Methyl lysine

PWWP domain, PHD fi ngers, WD40 domain

Protein arginine methyltransferases  PRMT Writer Arginine methylation

Protein arginine deiminases  PADI Eraser deimination

Tudor domain – Reader Methyl-arginine

Histone lysine acetyltransferases KAT Writer Acetylation (lysine)

Histone lysine deacetylases HDAC Eraser Deacetylation (lysine)

Bromodomain – Reader Acetyl-lysine

For further details and nomenclature used, see [26,91].
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eraser activities described above. Th ere is also no doubt 

that active DNA demethylation plays a role, for example, 

in myeloid cell development. Interestingly, a recent study 

identifi ed diff erentially methylated regions in post-

mitotic cells as shown in monocyte cultures diff eren tiat-

ing to dendritic cell or macrophage populations [50].

Transmission of epigenetic and genetic states (for 

example, DNA methylation) vary considerably, with an 

error rate of 1 in 106 (DNA sequence) as compared with 1 

in 103 (DNA modifi cation) [51]. Consequently, epigenetic 

signatures and marks diff er fundamentally from genetic 

lesions by showing a stochastic manifestation and often 

incomplete distribu tion, and are in principle (at least 

partially) reversible. Although much still needs to be 

learned in terms of biological and clinical signifi cance of 

the reversible nature of these epigenetic modifi cations, it 

does make the chromatin-modifying enzymes possible 

therapeutic targets as discussed in some detail further 

below.

How can epigenetics further our understanding of 

human disease?

For most autoimmune diseases, genetic evidence from 

monozygotic and dizygotic twin studies show concor-

dance rates below 50%, suggesting that additional mecha-

nisms exist which potentially link individual susceptibility 

and environmental factors such as lifestyle (for example, 

smoking or stress), infection or xenobiotic exposure [52-

55]. Genome-wide association studies (GWASs), for 

example, have provided a wealth of possible genetic 

factors contributing to the phenotypic diversity of syn-

dromes such as RA and ankylosing spondylitis [56,57] . 

Genes identifi ed by searches for common genetic variants 

associated with disease have been highly productive in 

both RA and ankylosing spondylitis, and the eff ect of 

targeting the products of such contributory genes may be 

dispro por tionately greater than the apparent contribution 

to syndrome susceptibility.

Furthermore, gene associations have thus far failed to 

explain the heterogeneity of clinical features and res-

ponse to targeted therapies across patient subgroups. 

Th is concept of missing heritability might be (at least in 

part) explained by several mechanisms such as unmapped 

common variants, rare variants, gene–gene interaction 

or, not unlikely, epigenetic mechanisms. Although genetic 

mutations in the epigenetic machinery (that is, readers, 

writers, erasers) occur  – for instance, mutations in the 

DNA methyltransferase DNMT3B in immunodefi ciency/

centromeric instability/facial anomalies syndrome, or in 

Rett syndrome showing mutations in the methyl-CpG 

binding protein 2 – it is unlikely that monogenic lesions 

in epigenetic eff ector mechanisms contribute signifi -

cantly to complex multifactorial human autoimmune 

disease such as RA. Many of the regions identifi ed in 

GWAS do not coincide with coding regions, however, but 

overlap with functional regulatory regions such as en-

hancers or transcription start sites identifi ed in the 

ENCODE project [7,9]. For example, 11 out of 57 SNPs 

identifi ed in RA GWASs overlap with transcription factor 

binding sites such as NF-κB [9]. In addition, risk loci such 

as the MHC cluster could be targeted by epigenetic 

modifi cation such as DNA methylation [25].

Epigenetics might also link environmental risk factors 

with genetic variation. Importantly, the epigenome itself 

is subject to environmental infl uences, as documented in 

multiple instances [58-61], and thus could act in concert 

with genetic variation to explain phenotypic variation 

and plasticity [62,63].

Among chronic infl ammatory diseases, RA has the 

highest prevalence in the western world and is a chronic 

and progressive infl ammatory disease. In RA, for 

example, the concordance of disease occurrence and 

progression in identical twins is only 10%, clearly in-

dicating that environmental and/or epigenetic factors are 

involved both in induction (where smoking is the biggest 

environmental risk) and progression of disease [64]. Of 

note, a correlation between smoking and hypo methy la-

tion of a CpG motif in the IL-6 promoter and resulting 

increased cytokine levels was established in a recent 

study among RA and chronic periodontitis patients [65]. 

Th is correlation indicates that a causal environ mental 

disease trigger could indeed lead to a change in cytokine 

profi le, although the connecting epigenetic mechanism 

in this relationship needs to be further defi ned.

Th e pathogenesis of disease in RA is attributed to the 

production of proinfl ammatory cytokines from activated 

cells that infi ltrate the synovial tissues from the blood 

(T  cells, macrophages, plasma cells) together with resi-

dent cell types (fi broblasts and endothelium). Multiple 

studies addressing chromatin and DNA modifi cations in 

several autoimmune diseases (for reviews see [66-68]) 

have clearly shown that tissue-specifi c epigenetic modifi -

cations play a role in autoimmune disease. For example, 

DNA methylation in RA is impaired in peripheral blood 

mononuclear cells [69], and particularly in CD4+ T cells, 

rendering them more autoreactive. Th is impairment has 

been associated with decreased levels of DNA 

methyltransferases in senescent CD4+CD28– T cells [70].

In RA peripheral blood mononuclear cells, demethy la-

tion of a single CpG in the IL-6 promoter region 

increased the production of this proinfl ammatory cyto-

kine [71]. In other autoimmune diseases such as systemic 

lupus erythematosis, the correlation between DNA methy-

lation and reactivity of CD4+ T cells was noted early and 

led to the discovery of several key disease genes (reviewed 

in [72]). Furthermore, RA synovial fi bro blasts  – that is, 

the eff ector cells of joint and bone destruc tion in RA  – 

present an intrinsic aggressive behaviour even in the 
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absence of cells of the immune system or cytokines. Early 

work suggested that the DNA of RA synovial fi broblasts 

is partially hypomethylated, resulting in an activated 

phenotype [73,74]  – an obser vation that more recently 

could be confi rmed and expanded by showing cytokine 

regulation of DNA methyl transferase expression, linked 

to diff erentially methy lated genes, and critical to RA 

pathogenesis such as CHI3L1, CASP1, STAT3, MAP3K5, 

MEFV and WISP3 [75,76]. Interestingly, epigenetic 

inhibitor therapy appears to have therapeutic potential in 

suppressing proliferation and aggressive phenotype of 

synovial fi broblasts [77-79].

Th e eff ect of inhibition of DNA methyltransferases by 

5-aza-deoxycytidine, procainamide or hydralazine on T-

cell function, and the subsequent development of 

systemic lupus erythematosis, underscores the import-

ance of epigenetic modifi cations (in this case, DNA 

methylation) in autoimmunity [80]. Furthermore, the 

histone components of nucleosomes and anti-nucleo-

some antibody–nucleosome adducts have both been 

implicated as severe immunostimulatory factors [81,82].

As demonstrated by the examples given above, the 

characterisation of epigenomic modifi cations focusing on 

post-translational histone modifi cations has started to 

make signifi cant advances in both the adaptive immune 

system in T-cell diff erentiation and the innate immune 

system in, for example, the regulation of TNF gene 

expression in macrophages.

Interfering with chromatin modifi cations off ers 

novel possibilities in drug discovery

As discussed above, there are certainly good indicators 

that epigenetic mechanisms do play a role in pathogenesis 

and might even be targets for therapeutic intervention 

(cf. Table  2) within the musculoskeletal disease arena, 

which includes infl ammatory conditions such as RA as 

well as degenerative or malignant diseases such as osteo-

arthritis or bone cancers. Th e target classes identifi ed in 

these studies comprise well-established HDAC (including 

clinically used) inhibitors or miRNAs, as well as novel 

targets such as bromodomains, histone methyltrans fer-

ases or histone demethylases.

Epigenetic target discovery in chronic infl ammatory 

diseases is expected to mirror the eff orts currently 

invested in epigenetic drug development in oncology. 

Th is hypothesis is highlighted by the recent discovery 

that selective and potent inhibitors can be developed 

against a class of histone 3 lysine 27 (H3K27) demethylase 

enzymes, which inhibit proinfl ammatory cytokine 

production in lipopoly saccharide-stimulated primary 

macrophages from healthy individuals or RA patients 

[31]. Th is fi nding led to the discovery that parts of the 

H3K4 and H3K27 methylation axis, which is regulated by 

the opposition between Polycomb and Trithorax groups, 

is inducible by lipopolysaccharide and regulated through 

NF-κB pathways [29,30]. Th e inhibitor study is the fi rst of 

its kind, and a proof of concept that modulation of 

chromatin modifi cation systems is of potential thera-

peutic benefi t in controlling proinfl ammatory mecha-

nisms. In addition, the lipo poly saccharide response in 

macrophages was recently discovered to require the 

H3K4 methyltransferase Kmt2b [83], pointing to novel 

opportunities to modulate infl am matory responses.

Th e compelling functional impact of epigenomic 

modulation in the immune system has also recently been 

demonstrated through the remarkable pharmacology 

seen with bromodomain and extraterminal bromo-

domain inhibitor treatment in mouse models of bacterial 

sepsis [84]. Inhibitors of this bromodomain and extra-

terminal class have been shown to critically regulate 

eff ects of MYC and pTEFb transcriptional complexes 

[84-86]. Interestingly, bromodomain and extraterminal 

Table 2. Epigenetic drugs or inhibitors targeting mechanisms in musculoskeletal disease

 Reagent
 (drug/chemical
Target class/target probe/antisense) Disease area Mechanism References

Histone demethylase, KDM6 

subfamily of demethylases

GSK-J4 Infl ammation, 

autoimmunity

Suppression of proinfl ammatory 

cytokine production, targeting of H3K27 

demethylases

[31]

BET bromodomains I-BET Sepsis, infl ammation Inhibition of BET bromodomain interactions, 

suppression of cytokine production

[84]

BET bromodomains JQ1 Bone disease / multiple 

myeloma

Inhibition of BET bromodomain interactions, 

MYC targeting

[85]

Histone deacetylase (class 1 and II 

HDACs)

HDAC inhibitors Osteoarthritis, RA [77,78,89,90]

miRNA (for example, miR146a, 

miR155)

Antisense RNA 

technologies

Autoimmunity, RA [44-47,88]

BET, bromodomain and extraterminal; HDAC, histone deacetylase; I-BET, bromodomain and extraterminal bromodomain inhibitor; RA, rheumatoid arthritis.
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bromodomain inhibitor suppresses the expression of a 

subset of proinfl ammatory cytokines and chemokines 

such as IL-1β, IL-6, IL-12α, CXCL9 and CCL12 [84]. 

Although some discrepancies remain with regards to the 

specifi city of the proinfl ammatory profi les that require 

further investigation [87], the results clearly support the 

notion that bromodomain proteins are key regulators of 

the infl ammatory response and constitute targets for 

anti-infl ammatory target discovery [87].

Consequently, these data also extend the disease 

applications of anti-infl ammatory bromodomain inhibi-

tors into metabolic disorders such as obesity and insulin 

resistance that have a strong infl ammatory component. 

Regarding other target classes, inhibition of HDACs has 

been investigated using RNAi in RA demonstrating 

critical functions of HDAC1 and HDAC2 in synovial 

fi broblast proliferation and activity [88]. In addition, 

HDAC inhibitors (for example, MS-275, Trichostatin A) 

have shown therapeutic activity in inhibition of synovial 

fi broblast proliferation [77,78] as well as in stress-induced 

osteoarthritis models – for example, by inhibiting cyclic 

tensile strain-induced expression of RUNX-2 and 

ADAMTS-5 via the inhibition of mitogen-activated 

protein kinase pathway activation in human chondro-

cytes [89,90].

Conclusion

Th e rise of epigenetics highlights the maturation of an 

area, created half a century ago, which is still associated 

with a somewhat blurred defi nition. Despite this un-

certainty, epigenetics is now a dynamic discipline, driving 

new technological advances as well as challenging and 

revising traditional paradigms of biology. Th rough 

epigenetics the classic genetic works are now seen in 

diff erent ways, and com bined they help to understand the 

roles and interplay of DNA, RNA, proteins, and 

environment in inheritance and disease aetiology. Th e 

epigenetics fi eld is anticipated to contribute to 

understanding of the complexities of genetic regulation, 

cellular diff erentiation, embryology, aging and disease 

but also to allow one to systematically explore novel 

therapeutic avenues, ultimately leading to personalised 

medicine.

For the foreseeable future, epigenetics will contribute 

in at least two ways to the understanding of musculo-

skeletal disease. First, the systematic mapping of func-

tional chromatin elements in combination with GWAS 

outputs has generated a rich set of hypotheses to be 

further tested in order to identify relevant pathways, and 

to understand phenotypic variation and plasticity in 

human disease. Secondly, epigenetic chemical biology 

and drug discovery, although in its infancy, has already 

resulted in identifi cation of novel, possible targets in, for 

example, infl ammatory disease. Although much has to be 

learned in terms of mechanisms, therapeutic utility, 

effi  cacy and safety of drugs targeting epigenetic modifi ers 

in infl ammation, these novel approaches hold promise 

for the future of drug discovery in infl ammatory and 

musculoskeletal disease.
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