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Transcriptomic signatures in cartilage ageing
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Abstract

associated with age-related changes in gene signatures.

transcriptome.

Introduction: Age is an important factor in the development of osteoarthritis. Microarray studies provide insight
into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding
RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of
transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms

Methods: RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from
macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years
old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion
and sequencing was undertaken using the lllumina HiSeq 2000 platform. Differentially expressed genes were
defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio
test (P < 0.05, expression ratios + 14 log, fold-change). Ingenuity pathway analysis enabled networks, functional
analyses and canonical pathways from differentially expressed genes to be determined.

Results: In total, the expression of 396 transcribed elements including mRNAs, small noncoding RNASs,
pseudogenes, and a single microRNA was significantly different in old compared with young cartilage (+ 14 log,
fold-change, P < 0.05). Of these, 93 were at higher levels in the older cartilage and 303 were at lower levels in the
older cartilage. There was an over-representation of genes with reduced expression relating to extracellular matrix,
degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older
donors compared with young donors. In addition, there was a reduction in Wnt signalling in ageing cartilage.

Conclusion: There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study
has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the

Introduction

Ageing presents huge challenges for society because whilst
the lifespan increases, the quality of life faced by indivi-
duals in old age is often poor [1]. The musculoskeletal sys-
tem in particular is severely affected by the ageing process,
with many tissues undergoing changes that lead to loss of
function and frailty. Articular cartilage is susceptible to
age-related diseases, such as osteoarthritis (OA), although
it is not an inevitable result of ageing but rather a conse-
quence of a complex inter-relationship between age and
further predisposing factors such as obesity [2], injury 3],
genetics [4] and anatomical configuration [5].
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A number of studies have interrogated ageing cartilage
in order to elucidate the underlying mechanisms that
contribute to OA. An age-related reduction in response
to insulin-like growth factor in rats resulted in a decline
in synthetic activity [6]. Furthermore, using whole
mouse joints, Loeser and colleagues demonstrated that
there was a reduction in extracellular matrix (ECM)
gene expression in older sham-operated mice following
surgical destabilisation of the medial meniscus [7]. A
characteristic of ageing articular cartilage is the reduc-
tion in the number of chondrocytes within the tissue
[8,9] and there is evidence of chondrocyte senescence
[10]. Chondrocyte senescence is believed to be one
cause of a decline in the ability of chondrocytes to
respond to growth factors; resulting in the anabolic/
catabolic imbalance evident in OA [11]. One of the con-
sequences of cell senescence is an alteration in cell
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phenotype [12] characterised by increased production of
cytokines and growth factors. The increase in ageing
chondrocytes expressing this phenotype has been pro-
posed to contribute to cartilage ageing and, given the
rise in cytokine production in OA, could directly con-
nect ageing to OA development [13]. Furthermore,
there is evidence for the role of oxidative damage in car-
tilage ageing from reactive oxygen species [14,15], which
can result in damage to cartilage DNA [16], whilst a
link between reactive oxygen species and development
of OA has also been established [17]. Hence, the out-
come of ageing on chondrocyte function is an inability
to maintain homeostasis when stressed.

There is a need to examine and understand the pro-
cesses and mechanisms involved specifically in cartilage
ageing. Whilst some insights into cartilage ageing have
been learnt from transcriptome profiling studies in age-
ing joints using microarrays [7], these data did not iden-
tify a specific chondrocyte phenotype associated with
ageing alone. Limitations in coverage and sensitivity
mean that a significant part of the chondrocyte ageing
transcriptomic phenotype is as yet poorly defined.
Advances in high-throughput sequencing methodologies
are allowing a new approach to studying transcriptomes:
massively parallel sequencing of short reads derived
from mRNAs known as RNA-Seq [18]. Compared with
microarray technologies, RNA-Seq is demonstrated to
enable more accurate quantification of gene expression
levels [19]. Furthermore, RNA-Seq is an effective
approach for gene expression profiling in ageing tissues
with a greater dynamic range and the ability to detect
noncoding RNAs [20].

Here we examine the effect of ageing on gene expres-
sion in cartilage. Using RNA-Seq analysis of RNA
extracted from whole cartilage of young and old equine
donors, we elucidate the differential transcriptional sig-
natures associated with ageing and identify some of the
molecular mechanisms associated with these changes.

Methods

Sample collection and preparation

Samples were collected as a byproduct of the agricul-
tural industry. Specifically, the Animal (Scientific Pro-
cedures) Act 1986, Schedule 2, does not define
collection from these sources as scientific procedures.
Ethical approval was therefore not required for this
study. Full-thickness equine cartilage from the entire
surface of macroscopically normal metacarpophalangeal
joints of eight horses was collected from an abattoir.
Horses selected were non-Thoroughbred leisure horses.
No exercise history was available for the donors.
Macroscopic scoring of the metacarpophalangeal joint
was measured using a macroscopic grading system
as described previously [21] and samples with no
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macroscopic perturbations were selected (combined
score of zero). Subsequent RNA-Seq experiments were
undertaken on normal cartilage from four young horses
(4 years old) and four old horses (>15 years old).

RNA extraction

Cartilage from both articular condyles was removed
from the underlying subchondral bone with a scalpel
blade under sterile conditions into RNAlater (Sigma-
Aldrich, Dorset, UK) according to the manufacturer’s
instructions. Cartilage was pulverised into a powder
with a dismembranator (Mikro-S, Sartorius, Melsungen,
Germany) following freezing in liquid nitrogen prior to
addition of Tri Reagent (Ambion, Warrington, UK).
RNA was extracted using the guanidium-thiocyanate-
phenol-chloroform technique, as described previously
[22]. Briefly, 20 volumes of Tri Reagent were added to
the powdered cartilage tissue and incubated at room
temperature for 30 minutes. Following centrifugation at
12,000xg for 10 minutes at 4°C, 200 ul chloroform was
added to the supernatant, mixed and incubated at room
temperature for 10 minutes. The aqueous phase was
then precipitated following centrifugation at 12,000xg
for 10 minutes at 4°C using 70% ethanol. RNA was puri-
fied using RNeasy spin columns (Qiagen, Crawley, UK)
with on-column DNase treatment (Ambion) to remove
residual gDNA according to the manufacturer’s instruc-
tions. RNA was quantified using a Nanodrop ND-100
spectrophotometer (Labtech, Uckfield, UK) and assessed
for purity by ultraviolet absorbance measurements at
260 nm and 280 nm.

RNA-Seq analysis: cDNA library preparation and
sequencing

Eight libraries were prepared representing four animals
from two groups, young (n = 4) and old (n = 4). Total
RNA was analysed by the Centre for Genomic Research,
University of Liverpool, for RNA-Seq library preparation
and sequencing using the Illumina HiSeq 2000 platform
(Hlumina Inc., San Diego, CA, USA). Total RNA integrity
was confirmed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). Ribosomal
RNA was depleted from eight total RNA samples using
the Ribo-Zero™ rRNA Removal Kit (Human/Mouse/Rat;
EpiCentre, Madison, WI, USA) following the manufac-
turer’s instructions. cDNA libraries were prepared with
the ScriptSeq v2 RNA-Seq library preparation kit
(Epicentre) using 50 ng ribosomal-depleted RNA as the
starting material and following the manufacturer’s proto-
cols. Briefly, ribosomal RNA-depleted sample was frag-
mented using an RNA fragmentation solution prior to
c¢DNA synthesis. Fragment size of the final libraries and
pooled libraries was confirmed using the Agilent 2100
Bioanalyzer software in the smear analysis function.



Peffers et al. Arthritis Research & Therapy 2013, 15:R98
http://arthritis-research.com/content/15/4/R98

Fragmented RNA was reverse transcribed using
random-sequence primers containing a tagging sequence
at their 5" ends. The 3’ tagging was accomplished using
the Terminal-Tagging Oligo, which features a random
nucleotide sequence at its 3’ end, a tagging sequence at its
5 end and a 3’-blocking group on the 3’-terminal nucleo-
tide. Terminal-Tagging Oligo randomly annealed to the
c¢DNA, including to the 3’ end of the cDNA. Purification
of the di-tagged cDNA was undertaken with AMPure™
XP (Agencourt, Beckmann-Coulter, Beverly, MA, USA).
The di-tagged cDNA underwent 15 cycles of amplification
using polymerase chain reaction (PCR) primer pairs that
annealed to the tagging sequences of the di-tagged cDNA.
Excess nucleotides and PCR primers were removed from
the library using AMPure™ XP (Agencourt, Beckmann-
Coulter). The final pooled library was diluted to 8 pmol
before hybridisation. The dilute library (120 pl) was hybri-
dised on each of three HiSeq lanes.

Data processing
The 100-base-pair paired-end reads obtained by RNA-
Seq were compiled using manufacturer-provided pipeline
software (CASAVA 1.8.2; Illumina Inc., San Diego, CA,
USA). Reads were then aligned onto the equine chromo-
somes with TOPHAT 1.3.2 (John Hopkins University,
Baltimore, MD, USA) using default settings. Only
uniquely mapped reads retained with less than two mis-
matches were used for analysis. Quality control of the
reads in each lane was undertaken with FASTQC [23].
The R (version 2.15.1) Bioconductor package edgeR
(version 2.13.0) [24] was used to identify differentially
expressed genes. edgeR models data as a negative bino-
mial distribution to account for biological and technical
variation using a generalisation of the Poisson distribu-
tion model. Prior to assessing differential expression, data
were normalised across libraries using the trimmed mean
of M values normalisation method [25]. Genes were
deemed differentially expressed with Benjamini-Hochberg
false discovery rate-corrected P < 0.05 and fold-change
>1.4 log, [26] using a generalised linear model likelihood
ratio test. This represents a 50% linear fold-change; that
is, logy1.4 = 0.5 or 50%. Statistical analysis on mapped
reads was undertaken with a custom Perl script. All
sequence data produced in this study have been sub-
mitted to the National Centre for Biotechnology Informa-
tion GEO under Array Express [GEO:E-MTAB-1386].

Gene ontology and ingenuity pathway analysis

Owing to the minimal annotation for the equine gen-
ome, equine genes were converted to their human
Ensembl orthologs prior to bioinformatics analysis.
Functional analysis of age-related differentially expressed
genes was undertaken to evaluate the differences in
gene expression due to age. The functional analysis and
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clustering tool from the Database for Annotation, Visua-
lisation, and Integrated Discovery (DAVID bioinfor-
matics resources 6.7) was used [27].

Networks, functional analyses, and canonical pathways
were generated through the use of ingenuity pathway
analysis (IPA; Ingenuity Systems, Redwood City, CA,
USA) on the list of differentially expressed genes with
value-adjusted P < 0.05 and + 1.4 log, fold regulation.
Gene symbols were used as identifiers and the Ingenuity
Knowledge Base gene was used as a reference for path-
way analysis. For network generation, a dataset contain-
ing gene identifiers and corresponding expression values
was uploaded into the application. Default settings were
used to identify molecules whose expression was signifi-
cantly differentially regulated. These molecules were over-
laid onto a global molecular network contained in the
Ingenuity Knowledge Base. Networks of network-eligible
molecules were then algorithmically generated based on
their connectivity. The functional analysis identified the
biological functions and diseases that were most signifi-
cant to the dataset. A right-tailed Fisher’s exact test was
used to calculate P values. Canonical pathways analysis
identified the pathways from the IPA library of canonical
pathways that were most significant to the dataset.

Real-time polymerase chain reaction

Samples of RNA from the same pools used for the RNA-
Seq analysis were used for real-time (RT)-PCR. M-MLV
reverse transcriptase and random hexamer oligonucleo-
tides were used to synthesise cDNA from 1 pg RNA (both
from Promega, Southampton, UK) in a 25 pl reaction.
PCR was performed on 1 pl of 10x diluted cDNA, employ-
ing a final concentration of 300 nM each primer in 20 pl
reaction volumes on an ABI 7700 Sequence Detector
using a SYBR Green PCR mastermix (Applied Biosystems,
Paisley, Scotland, UK). Exon-spanning primer sequences
were used that had been validated in previous publications
[28,29] or were designed for this study using Primer-Blast;
National Centre for Biotechnology Information BLAST
searches were performed for all sequences to confirm
gene specificity. Oligonucleotide primers were supplied by
Eurogentec (Seraing, Belgium). Steady-state transcript
abundance of potential endogenous control genes was
measured in the RNAseq data. Assays for four genes -
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
TATA box binding protein, beta-actin, and 18 ribosomal
RNS - were selected as potential reference genes because
their expression was unaltered. Stability of this panel of
genes was assessed by applying a gene stability algorithm
[30] using genorm”""* (Biogazelle, Zwijnaarde, Belgium)
[31]. GAPDH was selected as the most stable endogenous
control gene. Relative expression levels were normalised to
GAPDH and calculated using the 22 method [32]. Stan-
dard curves were generated from fivefold serial dilutions



Peffers et al. Arthritis Research & Therapy 2013, 15:R98
http://arthritis-research.com/content/15/4/R98

for each assay to confirm that all efficiencies were accepta-
ble; within 5% of GAPDH and R* > 0.98. Primers pairs
used in this study are presented in Table 1. RT-PCR analy-
sis data were log, transformed to ensure normal distribu-
tion and then analysed using Student’s ¢ test.

Table 1 Gene primer sequences used in RNA-Seq
validation

Gene Accession code Primer sequence
GAPDH? AF157626 F: GCATCGTGGAGGGACTCA

R: GCCACATCTTCCCAGAGG
TBP® XM_001502211  F: TGCTGCTGTAATCATGAGGGTAA

R: TCCCGTGCACACCATTTTC
ACTB? AF035774 F: CCAGCACGATGAAGATCAAG

R: GTGGACAATGAGGCCAGAAT
185° AJ311673 F: GGCGTCCCCCAACTTCTTA

R: GGGCATCACAGACCTGTTATTG
RUNX2 XM_001502519  F: TCCCTGAACTCTGCACCAAG

R: GCCAGGTAGGAGGGGTAAGA
IL7R NM_001081942  F: GGCTATGCACAGAATGGAGACT

R: CAACTGGCTGTAGCACGAGA
SRPX XM_001489643  F: CTGAGAACAAGGGCG-TTGC

R: CCGGAGCGTTGAGTTTGC
ACSLS XM_001915998  F: CCTGGGCTCCTATCTCTTGC

R: CGGAGATGATCCACTCTGGC
DKK NM_001267802  F: TAGAACCCTGGGACCTCTGG

R: GTGTCACTTTGCAAGCCTGG
ADAMTS4® NM_001111299  F: CAGCCTGGCTCCTTCAAAAA

R: CCGCAGGAATAGTGACCACAT
COLTAT® 046388 F: GACTGGCAACCTCAAGAAGG

R: CAATATCCAAGGGAGCCACA
COL2AT®  NM_001081764  F: TCAAGTCCCTCAACAACCAGAT

R: GTCAATCCAGTAGTCTCCGCTCTT
COLT0A1®  XM_001504101  F: TGCCCAGTGGACAGGTTTCT

R: GTCTTTTCGTTTCTAGTCAGATTTTGAA
MMP1® NM_001081847  F: GGTGAAGGAAGGTCAAGTTCTGAT

R: AGTCTTCTACTTTGGAAAAGAGCTTCTCT
MMP13° NM_001081804  F: CTGGAGCTGGGCACCTACTG

R: ATTTGCCTGAGTCATTATGAACAAGAT
IL1p® NM_001082526  F: GAGCCCAATCTTCAACATCTATGG

R: CAGGCTTGGTAAAAGGACTTGGTAT
TNFa® NM_001081819  F: GCTCCAGACGGTGCTTGTG

R: GCCGATCACCCCAAAGTG
TGFB® NM_001081849  F: CCCTGCCCCTACATTTGGA

R: CGGGTTGTGCTGGTTGTACA

ACSL5, acyl-CoA synthetase long-chain family member 5; ACTB, beta-actin;
ADAMTS4, a disintegrin and metalloproteinase with thrombospondin motifs 4;
COL1A1, collagen type |, alpha 1; COL2A1, collagen type II, alpha 1; COL10A1,
collagen type X, alpha 1; DKK1, dickkopf homolog 1; F, forward; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; IL-1B, interleukin 1 beta; IL7R,
interleukin 7 receptor; MMP1, matrix metalloproteinase 1; MMP-13, matrix
metalloproteinase 13; R, receptor; RUNX2, Runt-related transcription factor 2;
18S, 18 ribosomal RNS; SRPX, Sushi repeat-containing protein; TBP, TATA box
binding protein; TGFf, transforming growth factor beta; TNFo, tumour
necrosis factor alpha;. *Primer pairs previously published in [29]. "Primer pairs
previously published in [28].
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Statistical analysis

The analyses were undertaken using the software edgeR
[24], S-Plus (Tibco Software Inc., Palo Alto, CA, USA),
SPSS (IBM, Portsmouth, Hampshire, UK) and Excel
(Microsoft, Redmond, WA, USA).

Results
Preliminary analysis of RNA-Seq data
Approximately 116 million to 235 million reads were
obtained per sample. Low-quality reads were eliminated,
resulting in 7 million to 58 million mapped reads (equal
to 6.5 to 35% of the total reads). In total, 3 million to 49
million uniquely mapped read pairs were obtained per
sample and aligned to the reference sequence of the
equine genome (Equus caballus; EquCab2.56.pep [33].
Identical reads mapped to the same genomic position
were retained as duplicates because these were poten-
tially real reads. The number of genes per read were
normalised to reads per kilobase of exon model per mil-
lion mappable reads; the values were therefore consid-
ered the final expression level for each gene [34]. Using
the E. caballus database, analysis demonstrated that in
total 16,635 genes (from a total of 25,180 genes) were
expressed in cartilage, which represented 66% of the
equine genome. These data were used for subsequent
analysis and are comparable with other recent RNA-Seq
studies [35].

Age-related differential gene expression in cartilage

A multidimensional scaling plot (Figure 1A) revealed
that data were clustered tightly in two groups: one for
older donors, and one for younger donors.

Alterations in gene expression between young and old
cartilage demonstrated significant age-related changes.
There were 396 genes differentially expressed with the
criteria P < 0.05 and + 1.4 log, fold-change (Figure 1B);
93 were at higher levels in the older cartilage and 303
were at lower levels in the older cartilage. Table 2 repre-
sents the top 10 genes most differentially expressed up
and down in the young horses compared with the older
horses.

The top 25 differentially expressed genes are repre-
sented in Figure 2. The National Centre for Biotechnol-
ogy Information [GEO:E-MTAB-1386] contains a
complete list of all genes mapped. The subset of 93
genes that were significantly higher in older donors con-
tained six small nuclear (SNORA)/nucleolar (SNORD)
RNAs, 12 pseudogenes, 11 genes that were not identi-
fied and a single microRNA (miRNA), miR-21. Thus, 60
known protein coding genes were differentially
expressed as higher in the older cartilage. Within the
group where gene expression was lower in old com-
pared with young cartilage, nine genes were SNORAs/
SNORDs, one was a pseudogene and three were not
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Figure 1 Principal component analysis and volcano plot of differentially abundant transcripts. (A) Principal component analysis revealed
the greatest variability in RNA-Seq data was due to the age of the donor. (B) A set of differentially expressed genes between young and old
cartilage was discovered. Using the common dispersion in edgeR [24], 396 differentially expressed genes were identified with P < 0.05 (red). To
enable expression of all genes to be visualised simultaneously, a smear plot was produced. The smear at the left-most edge allows visualisation
of genes with zero counts in one of the groups. This was undertaken as if the total counts in one group are zero, the log fold-change is
technically infinite, and the log concentration is negative infinity.
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Table 2 Genes with the highest and lowest log, fold-change when comparing RNA from young and old cartilage

Gene symbol Gene name Log, fold-change Q value
Genes with increased expression in young cartilage

CPz Carboxypeptidase Z 32.09 160 x 10°
C180rf8 Chromosome 8 open reading frame 4 31.09 140 x 107
SRPX Sushi repeat-containing protein SRPX 30.69 194 x 107
CYP1AT Cytochrome P450, family 1, subfamily A, polypeptide 1 30.68 119 x 107
AQP1 Aquaporin 1 3062 119 x 10°
PHEX Phosphate regulating endopeptidase homolog, X-linked 30.39 354 x 107
EPHAS EPH receptor A5 30.16 1.55x 102
CTCFL CCCTC-binding factor (zinc finger protein)-like 30.15 167 x 107
IL7R Interleukin 7 receptor 30.14 6.16 x 107
ACSL5 Acyl-CoA synthetase long-chain family member 5 3013 210 x 107
Genes with increased expression in old cartilage

SHCBP1L SHC SH2-domain binding protein 1-like -3.26 266 x 107
FGF9 Fibroblast growth factor 9 -333 416 x 10*
SLC22A3 Solute carrier family 22 (extraneuronal monoamine transporter), member 3 -3.73 468 x 107
TOX3 TOX high mobility group box family member 3 -3.86 442 %107
RELN Reelin -4.57 187 x 107
COCH Coagulation factor C homolog, cochlin (Limulus polyphemus) -4.57 149 x 10
DKK1 Dickkopf homolog 1 492 623 x 10*
LINGO1 Leucine-rich repeat and immunoglobulin domain containing 1 -509 201 x 107
SKA1 Spindle and KT associated 1 -5.55 155 % 107
RORA RAR-related orphan receptor B -5.98 326 x 107"

Log, fold-change and Q value (adjusted P value) were determined in edgeR [24]. A logarithm to the base 2 of 30 is approximately a linear fold-change of 4.9.
Shown are the 10 genes with highest and lowest expression in old compared with young cartilage samples.

identified, giving 292 known protein coding genes that
were reduced in abundance in older cartilage. Table 3
presents SNORA and SNORDs that displayed age-
related differential expression. Thus, 352 genes were
used in downstream DAVID and IPA analysis.

Age-related changes in important cartilage genes

There was a reduction in the expression of 42 genes
relating to the ECM, degradative proteases, matrix syn-
thetic enzymes, cytokines and growth factors in cartilage
derived from older donors compared with young
donors. In comparison, there was an increase in only
three ECM genes (COL10A1, COL25A1 and lubricin)
together with a single growth factor (fibroblast growth
factor 9) in older donors (Table 4).

Gene ontology analysis of differentially expressed genes
to characterise transcriptomic signatures in cartilage
ageing

DAVID analysis of all differentially expressed genes
included annotations for cell adhesion and the ECM
(see Additional file 1). The genes most differentially
expressed, with reduced expression in cartilage from
older donors, included two involved in Wnt signalling:
carboxypeptidase Z and chromosome 8 open reading
frame 4. Furthermore, the abundance of three other

genes involved in Wnt signalling (secreted frizzled-
related protein 2, Wntll and Wnt inhibitory factor-1)
were also reduced in old cartilage. Interestingly, of the
genes expressed in higher levels in older cartilage, one
of the most highly regulated was the negative regulator
of Wnt signalling, dickkopf homolog 1 (DKK1). DAVID
analysis of this group revealed annotations for skeletal
and cartilage development, and immune response.

Differential expressed genes and network analysis

Both sets of differentially expressed genes associated
with ageing were analysed together in IPA with the fol-
lowing criteria; P < 0.05 and + 1.4 log, fold-change.
Network-eligible molecules were overlaid onto molecu-
lar networks based on information from the ingenuity
pathway knowledge database. Networks were then gen-
erated based on connectivity. (Additional file 2 contains
all identified networks and their respective molecules.)
Interesting age-related features were determined from
the gene networks inferred. According to the top-scor-
ing network, the differentially expressed genes were
from connective tissue disorders, such as collagens
COL12A1, COL16A1, COL1A1, and COL25A1 plus leu-
cine-rich repeat and immunoglobulin domain containing
1 (LINGO), transforming growth factor beta (TGEFp)-
induced 68 kDa and coclin (COCH) (Figure 3A).
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Table 3 SNORDs and SNORAs identified as being differentially expressed in ageing cartilage.

Name Family Action Target Log, fold-  Higher

change
SNORD113 C/D BOX Site-specific 2-O-methylation Not predicted to target 296 Young
rRNA or snRNA.

SNORAS3 H/ACA box  H/ACA family of pseudouridylation guide snoRNAs Not identified 29.9 Young

SNORA79 H/ACA box  H/ACA family of pseudouridylation guide snoRNAs Not identified 53 Young

SNORA48 H/ACA box  H/ACA family of pseudouridylation guide snoRNAs 28SrRNA 4.1 Young

SNORD12/ C/D BOX Site-specific 2-O-methylation 28srRNA, 18SrRNA 32 Young

SNORD16

RNase P RNase MRP  Site-specific endonuclease, ribosome biogenesis, pre-rRNA Numerous 17 Young
related processings

Rnase MRP Rnase MRP  Site-specific endonuclease Numerous 2 Young

U1 splicesomal  Splicesome  Complex of snRNA and protein subunits that removes introns 23 Young

RNA from a transcribed pre-mRNA

U2 splicesomal  Splicesome ~ Complex of snRNA and protein subunits that removes introns 23 Young

RNA from a transcribed pre-mRNA

SNORA40 H/ACA box  H/ACA family of pseudouridylation guide snoRNAs 28SrRNA -1.5 old
class

SNORA5 H/ACA box  H/ACA family of pseudouridylation guide snoRNAs Not identified -19 Old
class

SNORA30/ H/ACA box  H/ACA family of pseudouridylation guide snoRNAs 28SrRNA -2.7 Old

SNORA37 class

Small nucleolar ~ H/ACA box  H/ACA family of pseudouridylation guide snoRNAs Not identified -14 Old

RNA U89 class

U4 splicesomal  Splicesome ~ Complex of snRNA and protein subunits that removes introns -2.2 Old

RNA from a transcribed pre-mRNA

U6 splicesomal  Splicesome ~ Complex of sSnRNA and protein subunits that removes introns -2.1 Old

RNA from a transcribed pre-mRNA

The class of action and target of these RNAs are shown with higher differential gene expression (DGE) in young or old cartilage. rRNA, ribosomal RNA; snoRNA,

small nucleolar RNA.

Other networks significantly enriched also related to a
further network in connective tissue disorders that con-
tained genes including collagens COL10A1, COL11A1
and COL2A1 plus a disintegrin and metalloproteinase
with thrombospondin motifs-2 (ADAMTS-2) and
fibulin-1 (FBLN1) (Figure 3B). Additionally, a connective
tissue development network was also significantly
affected. The genes most affected in this network
included acyl-synthetase long chain family member 5
(ACSL5), phosphate-regulating neutral endopeptidase
(PHEX) and DKK1 (Figure 3C).

Significant IPA canonical pathways are demonstrated
in Table 5 and the associated molecules of the top cano-
nical pathways identified are in Additional file 3. These
include atherosclerosis signalling, prothrombin activa-
tion and rheumatoid arthritis.

Confirmation of differential gene expression using real-
time PCR measurements of selected genes

To validate the RNA-Seq technology, 14 genes were
selected to measure using reverse transcription and RT-
PCR based on differences noted in the arrays and/or
their potential importance in the OA process. This was
performed on the original RNA from all donors used to

perform the RNA-Seq experiment (Table 6). Genes were
selected based on differences noted in the RNA-Seq
results. All genes were found to have comparable results
with RNA-Seq data; for instance, genes identified as
having an increase in expression in older samples in the
RNA-Seq experiment also gave increased expression
relative to GAPDH following RT-PCR. Statistical signifi-
cance was tested using Student’s ¢ test. Two genes
whose expressions were not significantly altered in
RNA-Seq results - tumour necrosis factor alpha and
transforming growth factor B (TGFfB) - were also unal-
tered when assessed with RT-PCR.

In addition, quantitative RT-PCR was undertaken for
the 14 genes on a different set of donors to those used
in the RNASeq study in order to validate our findings
young (4 years old, n = 4) and old (>15 years old, n = 4)
(Table 7). All genes were found to have comparable
results.

Discussion

Ageing has an important role in the development of OA
by making the joint more susceptible to OA risk factors.
To provide interventions to prevent age-related changes
and reduce the risk of developing OA, the underlying
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Table 4 Older cartilage demonstrated reduced expression of many important cartilage genes compared with young
cartilage.

Gene class Gene name Gene symbol Log, fold-change Q value

DGE higher in old

ECM Collagen, type X, alpha 1 COL10A1 -1.40 3.09 x 107
Collagen, type XXV, alpha 1 COL25A1 -2.78 362 x 107
Lubricin CSPG4 225 253 x 107

Growth factor/cytokine Fibroblast growth factor 9 FGF9 -333 416 x 10

DGE lower in old

Protease A disintegrin and metallopeptidase with thrombospondin 12 ADAMTS12 220 231 x 107
A disintegrin and metallopeptidase with thrombospondin 2 ADAMTS2 541 143 x 107"
A disintegrin and metallopeptidase with thrombospondin 4 ADAMTS4 1.94 847 x 10
Matrix metallopeptidase 1 MMP1 1.67 600 x 10°
Matrix metallopeptidase 13 MMP13 2.01 307 x 107
Plasminogen activator inhibitor-1 SERPINET 424 404 % 107°
Plasminogen activator, tissue PLAT 1.86 419 x 10°

Matrix enzyme Chondroitin sulfate synthase 3 CHSY3 1.54 210 x 107
Hyaluronan synthase 3 HAS3 164 165 x 107
Procollagen C-endopeptidase enhancer PCOLCE 1.90 189 x 107

ECM Asporin ASPN 155 272 %107
Biglycan BGN 147 225 % 107
Cartilage intermediate layer protein 2 CILP2 492 597 x 107°
Chondroadherin CHAD 255 7.89 x 10°
Collagen alpha 1(V) chain COL5A1 332 905 x 10"
Collagen, type |, alpha 1 COLTA1 6.55 149 x 1078
Collagen, type |, alpha 2 COL1A2 557 445 x 107
Collagen, type I, alpha 1 COL2A1 6.53 129 x 1072
Collagen, type IIl, alpha 1 COL3A1 5.11 1.04 x 1022
Collagen, type IV, alpha 1 COL4A1 30.11 6.16 X 10°
Collagen, type 1V, alpha 5 COL4A5 407 276 x 10°
Collagen, type IX, alpha 1 COL9A1 802 9.70 x 10°*?
Collagen, type IX, alpha 2 COL9A2 404 247 x 107
Collagen, type VIIl, alpha 1 COL8A1 3.66 379 x 1071°
Collagen, type XI, alpha 1 COLT1A1 2.01 279 x 107
Collagen, type XII, alpha 1 COLT2A1 168 511 % 10°
Collagen, type XlII, alpha 1 COL13A1 414 123 x 10
Collagen, type XIV, alpha 1 COLT4A1 366 907 x 103
Collagen, type XV, alpha 1 COL15A1 221 711 % 10°
Collagen, type XVI, alpha 1 COL16A1 233 128 x 10°
Fibulin 1 FBLN1 483 444 x 10°
Fibulin-7 FBLN7 166 169 x 107
Matrilin 2 MATN2 456 395 x 107
Matrilin 4 MATN4 3.69 665 % 10°
Procollagen V, alpha 2 COL5A2 403 269 x 107°
Thrombospondin 2 THBS22 241 126 x 107
Thrombospondin 3 THBS3 2.10 154 x 107

Growth factor/cytokine Fibroblast growth factor 12 FGF12 234 155 x 107
Interleukin-11 IL11 148 246 x 107
Interleukin-8 IL8 165 141 x 107
Interleukin-1b IL1B 6.26 891 x 107°
Tumour necrosis factor, alpha-induced protein 3 TNFAIP3 1.73 149 x 107

The table illustrates significant differential gene expression (DGE) in young and old cartilage of important cartilage, extracellular matrix (ECM), cytokines and
growth factors, proteases (causing cartilage degradation) and matrix enzymes (involved in matrix synthesis). Significance was set at P < 0.05 and * 1.4 log, fold-
change in gene expression based on mapped reads following normalisation and statistical testing in edgeR [24].
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Figure 3 Top-scoring networks derived from the 352 genes differentially expressed in ageing. (A) Ingenuity pathway analysis (IPA)
identified connective tissue disorders as the principle associated network functions with scores of 43. (B) The second top-scoring network was a
further connective tissue disorder with scores of 35. (C) IPA identified ageing significantly affected the connective tissue development and

function network in ageing cartilage. Figures are graphical representations between molecules identified in our data in their respective networks.
Green nodes, upregulated gene expression in older cartilage; red nodes, downregulated gene expression in older cartilage. Intensity of colour is

related to higher fold-change. Key to the main features in the networks is shown.
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Table 5 IPA canonical pathways were significantly affected in ageing cartilage

Name of canonical pathway P value Ratio
Atherosclerosis signalling 380 x 107 15/136 (0.11)
Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis 341 x 10° 16/238 (0.067)
Intrinsic prothrombin activation 982 x 10° 6/35 (0.171)
Hepatic fibrosis and stellate cell activation 992 x 10° 12/146 (0.082)
Role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis 173 x 10 16/333 (0.048)

The significance of the association between the dataset and the canonical pathway was measured using a ratio of the number of molecules from the dataset
that mapped to the pathway divided by the total number of molecules that map to the canonical pathway is displayed. Fisher’s exact test was used to calculate

P values.

mechanisms involved in age-related changes of cartilage
require elucidation. Characterisation of both young and
old cartilage at the molecular level is essential for identi-
fying the important signalling pathways in OA develop-
ment. In the present study, we used the RNA-Seq
technique to undertake deep transcriptome profiling of

young and old cartilage. This is the first time that, to
our knowledge, this technique has been used to interro-
gate transcriptional changes in cartilage ageing and,
importantly, validation studies using RT-PCR demon-
strated high correlation between methodologies and
demonstrated reproducibility using a different donor set.

Table 6 Real-time polymerase chain reaction analysis of 14 selected genes reveals good correlation with RNA-Seq

results
Gene RNA-Seq results RT-PCR results
Differential Significant log, Q value Age 2% |og, fold- P Mean Ct value, Mean Ct
expression fold-change change value young value, old
Young Oold
DKK1 Higher in old -49 00006 00044 £+ 00338+ -30 0024 309 288
0.006 0.20
CcoL10 Higher in old -14 0.03 00006 + 00013+  -10 026 324 323
0.0001 0.0009
RUNX2 Lower in old 22 0.038 0.0093 + 0.0034 + 15 0002 29 30.8
0.009 0.002
SRPX Lower in old 16 0.009 0.0046 + 0.0006 + 3.0 0.007 30 338
0.005 0.0005
ACSL5 Lower in old 30.1 0.02 0.0155 + 0.0062 + 13 0.09 295 296
0.0002 0.005
IL7R Lower in old 301 0.06 0.0005 + 0.0001 + 23 0.06 339 37
0.0002 0.0001
COL2AT  Lower in old 6.5 229 x 633246+ 13165+ 57 0.04 183 224
107 54.7 112
COL1AT  Lower in old 6.5 148 x 34815 + 0.0278 + 70 0.15 243 27.5
102 157 0.02
MMP1 Lower in old 16 0.006 0.7093 + 04027 + 0.8 0.05 23.1 24
021 0.14
MMP13  Lower in old 2 0.0003  0.2323 + 0.044 + 24 0.1 26.1 26.8
0.15 0.04
ADAMTS- Lower in old 19 0.0008 05121 + 01345 + 19 0.07 24 249
4 035 0.05
IL1B Lower in old 6.2 891 x  0.0057 + 0.0004 + 39 0.05 30.1 334
10"° 0005 0.0003
TNFa No change Not significant 1 0.0041 £ 0.001 + 2.1 0.28 31.1 32.1
0.004 0.0003
TGFB No change Not significant 1 1.2865 + 23124 + -0.8 0.15 219 214
023 124

Values for real-time polymerase chain reaction (RT-PCR) are the mean + standard deviation of relative expression levels normalised to expression of

glyceraldehyde-3-phosphate dehydrogenase. Statistical significance was tested using Student’s t test. Log, fold-change of

2% values is shown for comparison.

Average threshold cycle (Ct) values for young and old donors are demonstrated to indicate robustness of expression. DKK1, dickkopf homolog 1; COL10, collagen
type X; RUNX2, Runt-related transcription factor 2; SRPX, Sushi repeat-containing protein; ACSL5, acyl-CoA synthetase long-chain family member 5; IL7R,
interleukin 7 receptor; COL2A1, collagen type II, alpha 1; COL1A1, collagen type |, alpha 1; MMP1, matrix metalloproteinase 1; MMP-13, matrix metalloproteinase
13; ADAMTS4, a disintegrin and metalloproteinase with thrombospondin motifs 4; IL-1B, interleukin 1 beta; TNFo, tumour necrosis factor alpha; TGFS,

transforming growth factor beta.
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Table 7 Real-time PCR analysis of 14 selected genes using a different set of donors reveals similar correlation with

RNA-Seq results

Gene name Differential expression Age P value
Young Oold
DKK1 Higher in old 0.0004 + 0.0006 0.008 + 0.0006 0.04
COL10 Higher in old 766 x 10° + 305 x 10° 0000148 + 7.13 x 107 0.1
RUNX2 Lower in old 0.002 + 0.0004 0.0005 + 0.0004 0.02
SRPX Lower in old 0.0025 + 0.0002 0.001 + 0.002 0.05
ACSL5 Lower in old 0.004 + 0.002 0.002 + 002 013
IL7R Lower in old 0.001 + 0.0002 0.0007 + 0.0004 0.07
COL2A1 Lower in old 326 + 245 02 +£0.13 0.04
COL1A1 Lower in old 0.71 + 0.1 0.02 + 002 0.0003
MMP1 Lower in old 028 + 017 0.07 + 003 0.03
MMP13 Lower in old 0.08 + 0.12 002 + 002 0.28
ADAMTS-4 Lower in old 0.07 + 0.05 0.03 + 0.02 0.07
IL1B Lower in old 0.0001 + 0.0002 266 x 107 + 1.14 x 10” 003
TNFaL No change 00001 + 7.7 x 10° 98 x 10° + 45 x 10° 04
TBFB No change 058 + 0.14 106 + 05 0.12

Values for real-time polymerase chain reaction (RT-PCR) are the mean + standard deviation of relative expression levels normalised to expression of
glyceraldehyde-3-phosphate dehydrogenase. Statistical significance was tested using Student’s t test. DKK1, dickkopf homolog 1; COL10, collagen type X; RUNX2,
Runt-related transcription factor 2; SRPX, Sushi repeat-containing protein; ACSL5, acyl-CoA synthetase long-chain family member 5; IL7R, interleukin 7 receptor;
COL2A1, collagen type II, alpha 1; COL1A1, collagen type |, alpha 1; MMP1, matrix metalloproteinase 1; MMP-13, matrix metalloproteinase 13; ADAMTS4, a
disintegrin and metalloproteinase with thrombospondin motifs 4; IL-1B, interleukin 1 beta; TNFa, tumour necrosis factor alpha; TGFB, transforming growth factor

beta.

This study built on previous findings that identified a
reduction in matrix gene expression with joint ageing
[7]. We took a single tissue, articular cartilage, and
undertook RNA-Seq in order to interrogate a greater
range of genes for differential expression. Not surpris-
ingly, our experiments identified that the age of the
donor accounted for the principal variability in the data.
The major findings of this study were as follows: the
age-related gene expression changes identified were
most notably involving reduced differential gene expres-
sion in older cartilage; there was an over-representation
of genes with reduced expression relating to the ECM,
degradative proteases, matrix synthetic enzymes, cyto-
kines and growth factors in cartilage derived from older
donors compared with young donors; cartilage ageing
caused a decrease in many important Wnt signalling
genes; IPA revealed that the top-scoring network for dif-
ferentially expressed genes was from connective tissue
disorders and connective tissue development; IPA also
demonstrated significant canonical pathways for athero-
sclerosis signalling, prothrombin activation and rheuma-
toid arthritis; and there was differential expression of
pseudogenes and small noncoding RNAs in cartilage
ageing with increased expression of 12 pseudogenes and
six noncoding RNAs in older cartilage, and of one pseu-
dogene and nine small noncoding RNAs in younger
cartilage.

Equine tissue was readily obtained, enabling collection
of cartilage samples from macroscopically normal, skele-
tally mature young and aged horses. Importantly, the

horse suffers clinical joint diseases similar to man
(reviewed [36]), and as such has been used as a model
for naturally occurring OA [37] due to extensive knowl-
edge of its pathogenesis and clinical experience of the
disease [38]. Indeed, the incidence of equine metacarpo-
phalangeal OA in young racehorses [39] in training is
similar to the incidence of post-traumatic OA in man
[40]. Additionally, the articular cartilage thickness is also
comparable between species [41].

For young horses one year is equivalent to about 3.5
years of a human [42,43]. The rate of equine ageing
relative to equivalent human age is greatest within the
first two years of life and decreases after the horse
reaches maturity at 4 years of age [44]. Hence, horses
>15 years old, as used in this study, are likely to equate
to humans older than 52 years. The average lifespan of
a horse is 25 to 30 years and so it is possible that the
obvious differences in lifespan may vyield significant dif-
ferences in the effect of ageing amongst animal species
due to cumulative lifetime load. However, whilst the
work in this study may not be directly applied to
humans, it does enable an insight into human cartilage
ageing by studying a population at skeletal maturity to
one beyond the middle age equivalent in man.

This study utilised the entire articular surface of distal
metacarpal III bone. High and low load-bearing cartilage
was thus used. An assessment of macroscopic changes
revealed no abnormalities in our samples. Previous stu-
dies indicated a high correlation between gross scoring
and Mankin’s grading in equine cartilage from the distal
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metacarpal III bone [28,45]. To validate that the RNA
extracted from the harvested tissue was articular carti-
lage, the expression level of several genes typically
expressed and those of bone were measured. There was
a high expression of articular cartilage genes only (data
not shown).

Previous studies have identified a number of age-
related changes in chondrocyte metabolism (reviewed in
[46]). Most of these studies demonstrate changes at the
protein level, such as an age-related decline in matrix
production when equine chondrocytes were stimulated
with TGFB1 [47]. Others have provided evidence for a
chondrocyte senescence secretory phenotype in ageing,
demonstrated by an increase in cytokines [48,49] along
with matrix metalloproteinase (MMP) production and a
reduction in growth factors [50,51]. These studies did
not interrogate transcript changes and of course simple
deduction of protein from mRNA expression is insuffi-
cient because post-translational regulation, small non-
coding RNAs, decay differences in mRNA and proteins,
and locations or molecular associations of proteins affect
overall protein levels [52]. However, a recent whole
mouse-joint study demonstrated a reduction in matrix
genes with age [7] in agreement with our findings.
Furthermore, a study of equine articular cartilage con-
cluded that although there was no change in the age-
related expression of MMP-13 there was a reduction in
MMP-3 and interleukin (IL)-1B gene expression in carti-
lage from older donors [53]. Annotations of genes at
reduced levels in older samples included many relating
to the ECM, degradative proteases, matrix synthetic
enzymes, cytokines and growth factors. In contrast,
within these annotations those at higher levels in older
cartilage were very small: COLX, COLXXYV, lubricin and
fibroblast growth factor 9.

There appears to be an age-related failure of matrix,
anabolic and catabolic cartilage factors. This is interest-
ing because a recent study on postnatal and skeletally
mature equine cartilage identified a reduction in col-
lagens, matrix modelling and noncollagenous matrix
transcripts with age [54]. ADAMTS-4 expression was
reduced in the older cartilage in this study, which is in
agreement with findings in ageing rat cartilage [55]. In
contrast, previous studies have demonstrated an increase
in IL-7 in ageing chondrocytes and in response to fibro-
nectin fragments or IL-1 [49]. Although our experiment
did not identify IL-7, interestingly one of the most
downregulated genes identified in this study was the IL-
7 receptor. A reduction in IL-7 receptor signalling in
ageing B-progenitor cells has been demonstrated pre-
viously to result in ageing-like gene expression profiles
[56]. Also, whereas other studies have demonstrated an
increase in IL-1 [48] (where an increase in IL-1 protein
was evident in older cultured human chondrocytes) and
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MMP-13 [48,57] in ageing human cartilage, this study
identified an age-related decline in their transcript abun-
dance. However, one MMP-13 study looked at catabolic
responsiveness with age whilst another used immunolo-
calisation of MMP-13 to identify protein. These two fac-
tors are not always related [58]. Whilst differences could
also be attributed to our age classification of young and
old and species distinctions, increased matrix enzymes
(MMP-1, MMP-13) and cytokines such as IL-1, IL-8
and IL-11 identified in younger cartilage could be due
to increased turnover. Interestingly a recent study iden-
tified that low innate capacity to produce IL-13 and IL-
6 was associated with the absence of OA in old age [59].
The reduction in IL-1f evident in older cartilage may
represent a protective mechanism against OA.

We noted in cartilage derived from old donors that
there was primarily a reduction in the expression of
some key Wnt signalling genes plus an increase in the
Wnt antagonist DKK1 and a reduction in RUNX2, a
downstream target of Wnt. Wnt signalling is active in
adult cartilage, with deregulation being detrimental,
resulting in age-associated joint pathologies due to
excessive remodelling and degradation [60]. This signal-
ling pathway has also been found to both regulate
matrix synthesis in chondrocyte cell lines [61] and sti-
mulate catabolic genes such as MMP-13 and ADAMTS-
4 in chondrocytes [62]. A recent study demonstrated a
potential protective function of Wnt in ageing. The acti-
vation of the Wnt pathway inhibited IL-1-mediated
MMP-13 expression in human chondrocytes through
the direct interaction between nuclear factor-xB and -
catenin [63]. One study has linked Wnt signalling with
chondrocyte hypertrophy through RUNX2 activation
[64], whilst elsewhere it was shown that DKKI1 is a
major player in the cessation of hypertrophic differentia-
tion that can contribute to OA [65]. Interestingly,
COL10A1, a marker of chondrocyte hypertrophy, was
increased in old cartilage. However, COL10A1 has also
been identified in the transitional zone of cartilage and
may have a role in the modification of collagen fibril
arrangement [66]. A recent study in mesenchymal stems
cells derived from OA patients found that COL10A1
downregulation played a role in the establishment of a
defective cartilage matrix in OA [67]. It would seem
that this increased expression with ageing is not through
the Wnt signalling interaction with subsequent RunX2
activation as described previously [64]. Further credence
is given to this hypothesis by our findings that alkaline
phosphatase expression, also regulated through RunX2,
was downregulated in old cartilage. Overall Wnt signal-
ling is involved in maintenance of cartilage, and the dys-
regulation event here in ageing may be an important
episode. Interfering with the pathway may contribute to
improvements in cartilage regeneration.
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Using IPA, this study identified age-related changes in
pathways and processes including connective tissue dis-
orders and development in which a significant number
of genes, regulated both strongly and subtly, were
enriched. This is not remarkable given the number of
matrix genes differentially identified in the study. Care
should also be taken in overinterpretation of this finding
because some of the genes in this network are minor
components of cartilage, such as COL12A, COL16A,
COL25A, LINGO and COCH. Canonical pathways iden-
tified as significantly affected by ageing, such as the role
of osteoblasts and osteoclasts in rheumatoid arthritis,
were not surprising. Interestingly, age-affected athero-
sclerosis signalling pathways follow the differential
expression of a mixture of proteases and lipoproteins. In
ageing cartilage, further studies to investigate the signifi-
cance of this are clearly required.

One advantage for the use of RNA-Seq to undertake
differential gene expression studies is that other sets of
RNA molecules from the transcriptome can be identi-
fied, such as nonprotein coding RNAs (for example,
miRNA and small nucleolar RNA (snoRNA)) that con-
stitute a significant part of the transcriptome [68] as
well as pseudogenes.

Pseudogenes provide a novel tier of gene regulation
through the generation of endogenous silencing RNA or
miRNA binding sites, which act as decoys for miRNAs
[69]. Indeed some miRNAs have been demonstrated to
target the genes [70]. It is hypothesised that pseudogenes
act as post-transcriptional regulators of the corresponding
parental gene [71]. Whilst possessing very similar
sequences to their counterpart coding genes, they are
unable to be transcribed due to mutation/deletion or
insertion of nucleotides. Transcription of pseudogenes
has tissue specificity and can be activated or reduced in
disease, indicating a possible functional role in cells [72].
Interestingly, pseudogenes have been identified as
increasing with age, such as pseudogene cyclin D, in the
ovary [73]. Whilst this study identified the differential
expression of pseudogenes in cartilage of different ages, it
is not known whether these are functional or have rele-
vance to cartilage ageing. Recent work by the Encyclopae-
dia of DNA Elements (ENCODE) Consortium identified
that 8% of the pseudogenes in the human genome are
functional [74], and so with the publication of GEN-
CODE, a reference human genome annotation for The
ENCODE Project [75], more light may be shed relating
to the role of pseudogenes in cartilage ageing in the near
future. Pseudogenes thus present an interesting area for
future research in cartilage ageing and disease.

The methodology used here does not enrich for miR-
NAs. To increase the identifications of small miRNAs
using RNA-Seq, specific techniques are used for their
enrichment in conjunction with additional miRNA
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abundance quantification algorithms. A single miRNA,
miR-21, was however identified as increased in ageing
cartilage. miRNAs are short noncoding RNAs that reg-
ulate the translation [76] and/or degradation of target
message [77]. miR-21 has been implicated in inflamma-
tion [78], cancers including osteosarcomas [79], and
hypomethylation [80]. The role of miR-21 in cartilage
is not fully elucidated, although a study in rats found
that it promoted increased proliferation and matrix
synthesis in chondrocytes embedded in atelocollagen
gel [81]. However, our finding is interesting because
epigenetic changes such as hypomethylation occur with
ageing, a risk factor contributing to several age-related
pathologies [82].

A further set of small noncoding RNAs, snoRNAs - a
class of small guide RNAs found in the nucleolus -
were also identified in the study. The snoRNAs direct
chemical modification of other RNAs, and like miR-
NAs are emerging as important regulators of cellular
function and disease development. There are two prin-
ciple classes: the C/D box snoRNAs (SNORDs) and H/
ACA box snoRNAs (SNORAs), which are associated
with methylation and pseudouridylation of ribosomal
and other RNAs. In addition, RNase MRP and RNaseP
are the only members of a further special class of
snoRNAs [83]. Both were significantly reduced in older
cartilage in this study. Interestingly, mutations in
RNase MRP cause cartilage hair hypoplasia in which
patients display dwarfism [84]. In recent work, RNase
MRP was identified as a regulator of chondrocyte
hypertrophy, demonstrating functional cross talk with
chondrogenic pathways [85]. snoRNAs fine-tune the
ribosome to accommodate changing requirements for
protein production during development, normal func-
tion and disease [86]. Indeed, control of snoRNA
expression may play a pivotal role in the regulation of
high protein-producing cells such as chondrocytes, as
demonstrated by the phenotypes of ribosomopathies
[87]. Whilst there are very few studies into the signifi-
cance of snoRNAS in cartilage ageing or disease, a
recent study proposed the use of serum snoRNA U38
and U48 as biomarkers of early cartilage damage.
These snoRNAs was detected in serum following ante-
rior cruciate ligament injury, but were not associated
with normal ageing [88]. The snoRNA transcriptome
signatures in ageing cartilage provide an interesting set
of genes for further studies to determine their role in
ageing.

Conclusions

A major strength of this study is that it represents the
first application of RNA-Seq technology for transcrip-
tomic studies in cartilage ageing. The study has
increased our knowledge of transcriptional networks
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by providing a global view of the transcriptome. The
molecular signatures described in this paper reflect a
combination of degenerative processes and transcrip-
tional responses to the process of ageing. This analysis
further supports the use of next-generation sequen-
cing as an ideal quantitative framework to study
pathways and networks as an integrated system in
order to understand the complex processes of cartilage
ageing.

Additional material

Additional file 1: Table S1 presenting a complete list of significantly
expressed genes and DAVID analysis of the expression patterns.
The first two spreadsheets contain the DAVID results for annotation
cluster analysis. The next two sheets contain the KEGG results from
DAVID.

Additional file 2: Table S2 presenting IPA generated networks of
differentially expressed genes. Network eligible molecules were
overlaid onto molecular networks, and networks were then generated
based on connectivity. All identified networks and their respective
molecules are tabulated.

Additional file 3: Table S3 presenting IPA canonical pathways.
Significant IPA canonical pathways and the associated molecules relating
to these pathways.
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