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Abstract

Introduction: T helper (Th)-17 cells are increased in systemic sclerosis (SSc). We therefore assessed whether Th17
cells could modulate the inflammatory and fibrotic responses in dermal fibroblasts from healthy donors (HD) and
SSc individuals.

Methods: Fibroblasts were obtained from 14 SSc and 8 HD skin biopsies. Th17 clones were generated from healthy
peripheral blood upon enrichment of CC chemokine receptor (CCR)-4/CCR6/CD161 expressing cells. Their cytokine
production was assessed by flow cytometry and multiplex beads immunoassay. Fibroblast production of monocyte
chemoattractant protein (MCP)-1, interleukin (IL)-8, matrix metalloproteinase (MMP)-1, tissue inhibitor of
metalloproteinase (TIMP)-1, MMP-2 and type-I collagen was quantified by enzyme-linked immunosorbent assay
(ELISA) and radioimmunoassay (RIA), and changes in their transcription levels assessed by real-time PCR. Intracellular
signals were dissected by western blot and the use of pharmacological inhibitors. IL-17A, tumor necrosis factor
(TNF) and interferon-gamma (IFN-y) blocking reagents were used to assess the specificity of the observed effects.

Results: IL-17A increased MCP-1, IL-8 and MMP-1 production in a dose-dependent manner while having no effect
on type | collagen in HD and SSc fibroblasts both at protein and mRNA levels. Nuclear factor-kappa B (NF-kB) and
p38 were preferentially involved in the induction of MCP-1 and IL-8, while MMP-1 was most dependent on c-Jun
N-terminal kinase (JNK). Supernatants of activated Th17 clones largely enhanced MCP-1, IL-8 and MMP-1 while
strongly inhibiting collagen production. Of note, the production of MCP-1 and IL-8 was higher, while collagen
inhibition was lower in SSc compared to HD fibroblasts. The Th17 clone supernatant effects were mostly
dependent on additive/synergistic activities between IL-17A, TNF and in part IFN-y. Importantly, the inhibition of
type | collagen production induced by the Th17 clone supernatants was completely abrogated by blockade of
IL-17A, TNF and IFN-y mostly in SSc fibroblasts, revealing an intrinsic resistance to inhibitory signals in SSc.

Conclusions: Our findings demonstrate that in vitro Th17 cells elicit pro-inflammatory responses while restraining
collagen production. Thus, the increased Th17 cell number observed in SSc may impact on the inflammatory
component of the disease simultaneously potentially providing a protective role against fibrosis.
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Introduction

Systemic sclerosis (SSc) is an autoimmune disorder of
unknown origin characterized by fibro-proliferative
microangiopathy and progressive fibrosis of the skin
and internal organs [1,2]. Fibrosis results from an over-
production of extracellular matrix (ECM) components
by fibroblasts, especially type I collagen, accompanied by
impaired ECM degradation. In early SSc, dermal fibroblasts
display an inappropriate phenotype essentially characterized
by increased proliferative potential, increased synthetic
capacity, resistance to inhibitory signals and decreased
apoptosis [1,2]. In addition to collagens and matrix
metalloproteinases (MMP), fibroblasts release several
pro-inflammatory chemokines, such as monocytes chemo-
attractant protein (MCP)-1 and interleukin (IL)-8, which
may indirectly influence ECM remodeling [3]. Of interest,
MCP-1 and IL-8 are increased in the skin and serum of
SSc patients [4,5] and appear to be critical in mediating
bleomycin-induced lung and dermal fibrosis [6,7].

The mechanisms leading to dysregulated activation of
fibroblasts in SSc are only partially understood. T cells
infiltrate SSc skin early and fibroblasts with high synthetic
activity localize in close proximity to the inflammatory infil-
trate (reviewed in [8]). T helper (Th) 2 polarized responses
have been shown to be dominant in SSc skin and lung
[9-13]. Consistently, IL-4 and IL-13 were shown to have
direct pro-fibrotic activities on fibroblasts both in vitro
and in vivo [14]. In addition, we and others have reported
that SSc individuals have increased Th17 cell counts in
their peripheral blood and skin [15-21].

Th17 cells are physiologically implicated in protection
against extracellular bacteria and fungi [22] and are thought
to have pathogenic roles in various autoimmune diseases
[23-25]. Th17 cells mainly produce IL-17A, in conjunction
with IL-17 F, IL-21 and IL-22, and are enriched in the
subset of T cells expressing the chemokine receptors
CCR4 and CCR6 in the absence of CCR10 [26,27]. They
further express the lectin receptor CD161 [28]. IL-17A
has been shown to participate in the development of skin
and lung fibrosis induced by bleomycin in mice [29,30].
In agreement with a potential profibrotic role, IL-17 was
shown to enhance fibroblast proliferation in humans [15],
as well as their production of pro-inflammatory cytokines
(MCP-1, IL-6 and IL-8) and matrix metalloproteinases
(MMP-1 and MMP-3) [31,32], and ICAM-1 expression
[15]. However, Kurasawa and colleagues could not show
enhanced type I and type III procollagen mRNA expression
in human fibroblasts cultured in the presence of IL-17 [15].
Moreover, Nakashima et al. recently provided evidence
for an anti-fibrotic effect of IL-17A in human fibroblasts
via upregulation of miR-129-5p and downregulation of
connective tissue growth factor and «1(I) collagen [33]. In
agreement with these findings, we observed that IL-17
decreased alpha-smooth muscle expression induced by
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transforming growth factor p (TGF-f) in human fibroblasts
and that the number of IL-17A + cells in SSc skin cor-
related inversely with skin fibrosis [34]. Thus, the role
of Th17 cells in SSc remains uncertain. The aim of the
present study was to investigate whether Th17 cells
could promote phenotypic changes in dermal fibroblasts
and compare fibroblast responses in healthy and SSc indi-
viduals. Our data highlight the direct role of Th17 cells in
collagen inhibition accompanied by the simultaneous
enhanced production of mediators of inflammation.
Furthermore, the data stress the intrinsic resistance of SSc
fibroblasts to inhibitory signals delivered by Th17 cells.

Methods

Study population

Fourteen SSc individuals (twelve women and two men)
presenting at the Rheumatology Unit of the Gaetano
Pini Hospital in Milan (Italy) or at the Immunology and
Allergy department of the Geneva University Hospital
(Switzerland) were prospectively included in the study.
All patients met the American Rheumatism Association
diagnostic criteria for SSc and were classified according
to LeRoy et al. [35]. None of the patients were under
systemic immunosuppressive therapy apart from a low
dose of glucocorticoids (<6 mg per day) at the time of
sampling. Eight individuals had limited and six diffuse
SSc. A biopsy was performed in the affected skin of the
SSc individuals. The control group consisted of eight age
and sex matched patients who underwent corrective breast
or abdominal surgery at the department of plastic surgery
of Clinique de La Tour in Geneva (Switzerland). None of
the healthy individuals had dermatological disorders and
none were under immunosuppressive agents or glucocorti-
coids. This study was approved by the ethical committee
of the institutions involved (Comité departemental de
médicine interne et médicine communautére des Hopitaux
Universitaires de Geneve, Geneva, Switzerland; and the
Institutional Review Board of the Istituto G. Pini, Milan,
Italy) and was conducted according to the Declaration
of Helsinki. Written informed consent was obtained from
each individual.

Reagents

Anti-CD3 (clone OKT3) monoclonal antibody (mAb) was
from the American Tissue Culture Collection (Manassas,
VA, USA); anti-CD4-APC-Cy7, anti-CD45RA-FITC, anti-
CCR6-PerCP-Cy5.5, anti-CCR4-PE-Cy7, anti-CXCR3-APC,
anti-CD161-APC and anti-CD28 mAbs from BD Biosciences
(San Jose, CA, USA); anti-IL-4-APC, anti-IFN-y-PE-Cy7
and anti-IL-17A-FITC, LEAF irrelevant control mAbs from
Biolegend (San Diego, CA, USA); and anti-IL-22-PE, anti-
CCRI10-PE, recombinant human (rh) IL-23, TGF-f, tumor
necrosis factor a (TNF), IL-17 and anti-human IL-17 Ab
from R&D Systems (Abingdon, UK). Cytofix/Cytoperm
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fixation/permeabilization solution kit was from Becton
Dickinson (San Diego, CA, USA); Ficoll-Paque Plus from
GE Healthcare (Uppsala, Sweden); RPMI 1640, (Dulbecco’s)
modified Eagle’s medium ((D)MEM), phosphate buffered
saline (PBS), glutamine, penicillin, streptomycin, trypsin and
fetal calf serum (FCS) from Gibco (Paisley, UK); phorbol
myristate acetate (PMA), {3-mercaptoethanol, a-ketoglutaric
acid, B-amino propionitrile, L-ascorbic acid, brefeldin A
and nuclear factor-kappaB (NF-«B) peptide inhibitor TPCK
from Sigma (St. Louis, MO, USA); rhIL-2 from Biogen
(Cambridge, MA, USA); Dynal CD4 Negative Isolation kit
from Invitrogen (Oslo, Norway) and phytohemagglutinin
(PHA) from EY Laboratories (San Mateo, CA, USA). Radio-
immunoassay (RIA) for type I procollagen (PINP-1) was
from Orion Diagnostica (Espoo, Finland); and ionomycin,
MEK1/2 pharmacological inhibitor U-0126, p38 inhibitor
S$B203580, NK inhibitor SP-600125 and PI3K inhibitor
LY294002 from Calbiochem (San Diego, CA, USA). TNFa
soluble receptor p75 was a kind gift of Dr ] Sims, Amgen,
Seattle, WA, USA.

Fibroblast culture

Fibroblast cell strains were generated after 0.1% type I
collagenase digestion of skin biopsies at 37°C for two
hours. Adherent cells were grown in (D)MEM containing
1% nonessential amino acids, 1% L-glutamine, 1% sodium
pyruvate, 50 U/ml penicillin, 50 pg/ml streptomycin and
10% FCS. All experiments were performed with fibroblasts
at passage 3 to 8. Fibroblasts were seeded at 2 x 10* cells/
well in triplicate in 96-well plates for collagen and cytokine
assays and at 1x10° cells/well in 35-mm tissue culture
plates for qPCR and western blot. Cultures were serum-
starved overnight and incubated with the indicated reagents
in (D)MEM containing 1% FCS, 25 pg/ml L-ascorbic acid,
3.4 pg/ml a-ketoglutaric acid and 50 pg/ml B-amino
propionitrile to favor collagen maturation as described [36].
IL-17A was added at 30 ng/ml (which fits in the ascending
linear phase of the dose—response curve inducing sig-
nificant effects, as shown in dose—response experiments
in Figure 1A) unless otherwise stated, TGF-$ at 10 ng/ml,
TNF at 1 or 0.01 ng/ml anti-IL-17A, anti-IFN-y and irrele-
vant control mAb at 10 pg/ml (corresponding to a neutra-
lizing antibody to recombinant IL-17A molar ratio of 50:1),
anti-TNF (TNF-sRp759) at 10°® M, Th17 supernatants at
1/50 dilution. Supernatants were harvested at 48 hours
and frozen until protein determination. Trypsinized cells
were snap-frozen in liquid nitrogen and stored at —-80°C
for total RNA extraction. Alternatively, cells were washed
and immediately processed for western blot.

T cell cloning

CD4 + CD45RA- memory T cells (purity >99%) were
isolated from healthy peripheral blood mononuclear
cells (PBMC) by negative selection coupling the Dynal
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CD4 negative Isolation kit with anti-CD45RA mAb. The
cells expressing CCR6 + CCR4 + CCR10- and CD161+
were stepwise positively sorted using FACSVantage
(Becton Dickinson) to enrich for Th17 cells, resulting
in a 7.8-fold enrichment of IL-17-producing CD4+ T cells
compared to the parent population. The Th17-enriched
cell strains were cloned by limiting dilution in the pres-
ence of 0.2 x 10° irradiated (3,500 Rad) allogeneic PBMC
and 1 pg/ml PHA in complete RPMI supplemented with
20 U/ml IL-2 and 10 ng/ml of IL-23 as described [37]. The
T cell clones obtained were screened for IL-17A, IL-22 and
IFN-y production by intracellular fluorescence-activated
cell sorting (FACS) analysis upon 4.5 hour PMA/Inomycin
activation in the presence of brefeldin A with specific
antibodies using FACSCanto (Becton Dickinson) flow
cytometer and FlowJo software 7.5 (Tree Star, Ashland, OR,
USA). Selected clones were activated or not by 1 pug/ml
coated anti-CD3 and 1 pg/ml soluble CD28 antibodies
and supernatants were harvested at 48 hours and frozen
for further experiments.

Chemokine, cytokine and collagen assays

IL-22, MCP-1, MMP-1 and IL-8 were quantified in culture
supernatants by ELISA (R&D for IL-22, MCP-1, MMP1;
Invitrogen for IL-8). Collagen production was assessed by
RIA quantification of PINP (Orion Diagnostica) according
to the manufacturer’s instructions. IL-17A, IFN-y, IL-4 and
TNF were quantified by Luminex xMAP™ Technology
using multiplex beads immunoassay (Fluorokine MAP
Multiplex Human Cytokine Panel, R&D).

Real-time quantitative PCR

Total RNA was extracted from fibroblasts using an
RNAesy micro kit (Qiagen, Hilden, Germany) and cDNA
synthesized from 0.25 pg of total RNA using random
hexamers and Superscript III reverse transcriptase
(Invitrogen, Carlsbad, CA, USA) according to the manufac-
turer’s instructions. SYBR Green assays were performed on
a SDS 7900 HT instrument (Applied Biosystems, Carlsbad,
CA, USA). Each reaction was performed in triplicate.
Raw cycle threshold (Ct) values obtained with SDS 2.2.2
software (Applied Biosystems) were analyzed and the
more stable housekeeping genes (GAPDH (glyceraldehyde-
3-phosphate dehydrogenase) and EEF1A1 (eukaryotic
translation elongation factor 1 alpha 1)) selected for
normalization. All oligonucleotides were obtained from Life
Technologies (Carlsbad, CA, USA): CCL2 (F: AACCACAG
TTCTACCCCTGGG; RTAATGATTCTTGCAAAGACC
CTCAA), IL8 (F:.GCTCTCTTGGCAGCCTTCCT; R:'TTA
GCACTCCTTGGCAAAACTG), MMP1 (F: GGAGGAAA
AGCAGCTCAAGAAC; R'TCCAGGGTGACACCAGTG
ACT), COL1A1 (F: CCCTCCTGACGCACGG; RGTGAT
TGGTGGGATGTCTTCGT), COL1A2 (F:CTGTAAGAA
AGGGCCCAGCC; R:GACCCCTTTCTCCACGTGQG),
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Figure 1 IL-17A dose-responses in dermal fibroblasts. (A) Dermal fibroblasts were cultured in the presence of increasing amounts of IL-17A
for 48 hours. Shown are MCP-1, IL-8, MMP-1 and type | collagen levels assessed in fibroblast culture supernatants from three distinct HD squares
indicates the mean + SEM of the protein levels in cultures from three HD in the presence of TNF (1 ng/ml) or TGF-f (10 ng/ml) performed in
triplicate. (B) Bars represent the mean + SEM of the levels of MCP-1, IL-8, MMP-1 and type | collagen assessed in three distinct HD performed in
triplicate. Neutralizing anti-IL-17A and irrelevant control ab (ctrl-Ab) were added one hour before IL-17A. Significant differences were assessed by
paired Student’s t-test. HD: healthy donors; IL: interleukin; MCP-1: monocyte chemotactic protein-1; MMP-1: matrix metalloprotein-1; SEM: standard
error of the mean; TGF: transforming growth factor; TNF: tumor necrosis factor.

MMP2 (F: CTCACAGAACCCTTGGAGCC; R:CCAC
CAGTGCCCTCTTGAGA), TIMP (F:CGTTATGAGA
TCAAGATGACCAAGAT; R:CCCCTAAGGCTTGGA
ACCQ), IL-17RA (F:CCTGGAAGTGAAAAATACAG
TGATGA; R:AGGCAGGCCATCGGTGT), IL-17RC
(FTGTGCAGTTTGGTCAGTCTGTG; R:GCCTCGAAG
CAGTCATATACCAC), EEF1A1 (F: AGCAAAAATGACC
CACCAATG; R:GGCCTGGATGGTTCAGGATA) and
GAPDH (F: GCACAAGAGGAAGAGAGAGACC; R:AGG
GGAGATTCAGTGTGGTG). Expression levels rela-
tive to the control condition were calculated using the
AACt method.

Western blot

Fibroblasts were lysed for 10 minutes on ice in pre-
chilled radioimmunoprecipitation assay (RIPA) buffer
supplemented with 5 mM ethylenediaminetetraacetic
acid (EDTA), 50 mM NaF, 1 mM NasVO4, 100 mM
okadaic acid, 1X Complete Protease Inhibitor Cocktail
(Roche, Basel, Switzerland) and 0.2 mM phenylmethylsulfonyl
fluoride (PMES). Protein extracts were clarified by centrifuga-
tion and stored at —20°C until use. For western blot, 30 g
of total protein extract were separated in 10% SDS-PAGE,
under reducing conditions, and electroblotted onto nitro-
cellulose membranes (Amersham™ Hybond™-ECL, GE
Healthcare Zurich, Switzerland). Blots were incubated with
antibodies against phospho-extracellular signal-regulated

kinase (ERK)1/2 (Thr202/Tyr204), phospho-p38 (Thr180/
Tyr182), phospho-c-Jun (Ser73), phospho-Smad2 (Ser465/
467), IxB-a, phospho-IkB-a(Ser32), phospho-AKT (Ser473)
(Cell Signaling, Danvers, MA, USA), phospho-c-Jun
N-terminal kinases (JNK) (G-7) (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA) and B-tubulin (Sigma). Horse-
radish peroxidase-conjugated antisera were used to reveal
primary binding, followed by detection by an ECL system
(GE Healthcare). Quantification analysis was performed
with Image] software (http://rsbweb.nih.gov/ij) and values
were normalized to -tubulin.

Statistical analysis

Statistical analysis was performed with GraphPad Prism
version 4.00 (Graphpad Software, La Jolla, CA, USA). Sig-
nificant difference between samples was computed using
Student’s t-test for paired or unpaired samples according to
the experimental design. The Wilcoxon signed-rank test
was used to compare fold changes in protein or mRNA
levels relative to the control condition. A P value <0.05 was
considered statistically significant.

Results

IL-17A enhances MCP-1, IL-8 and MMP-1 but not type |
collagen production in HD and SSc dermal fibroblasts
Several lines of evidence indicate that Th17 cells and their
hallmark cytokine IL-17A are increased in SSc [15-21]. We
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therefore assessed whether IL-17A can affect the capacity of
dermal fibroblasts from SSc and HD to produce inflamma-
tory cytokines and ECM components known to be
upregulated in SSc. Expanding previous observations
[15,31,32], IL-17A enhanced the production of MCP-1, IL-8
and MMP-1 in a dose-dependent manner (Figure 1A).
Neutralization of IL-17A completely abrogated the responses
induced by IL-17A, thus confirming the specificity of our
findings (Figure 1B). MCP-1, IL-8 and MMP-1 responses
were similar in SSc and HD fibroblasts at both the protein
and mRNA levels (Figures 2 and 3A). Of interest, IL-17A,
even at high doses, did not affect type I collagen production,
which production was enhanced in response to TGF-, used
as positive control (Figures 1A and 3A). With respect to the
cohort analyzed, no difference in MCP-1, MMP-1, IL-8 and
type 1 collagen production was observed between limited
systemic sclerosis (ISSc) and diffuse systemic sclerosis (dSSc)
individuals (Figure 2).

Consistently, IL-17A did not modify COLIAI and COLIA2
mRNA levels both in SSc and HD fibroblasts (Figure 3A). Fi-
nally, IL-17A did not affect the mRNA levels of TIMP-1,
and slightly, but significantly, enhanced MMP2 mRNA in
SSc but not HD fibroblasts (Figure 3B).

Together, our findings demonstrate that IL-17A directly
contributes to fibroblast inflammatory responses by enhan-
cing MCP-1 and IL-8 production, and simultaneously im-
pacts on ECM turnover by favoring MMP-1 rather than
type I collagen production.

IL-17A effects on pro-inflammatory chemokines (MCP-1, IL-8)
and MMP-1 are mediated by distinct signaling pathways

IL-17A binds to and signals via a heterodimeric IL-17
receptor composed of the IL-17RA and IL-17RC subunits.
When compared to normal fibrobalsts, only dSSc but not
ISSc fibroblasts showed higher IL-17RA mRNA relative
levels (Figure 4). The relative levels of IL-17RC mRNA were
similar across the three study groups (Figure 4). IL-17A
activated several intracellular signaling pathways including
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c-Jun/JNK, ERK 1/2, p38 and protein kinase B (AKT) as
demonstrated by time-dependant modifications in their
phosphorylation levels (Figure 5A and B). In addition,
IL-17A induced the phosphorylation of the NF-«B inhibitor
protein IkBa, while it did not trigger Smad2-phosphorylation,
which was high in response to the positive control, TGF-f
(Figure 5A and B). The production of MCP-1, IL-8 and
MMP-1 was reduced in the presence of the specific MAP
Kinase Kinase (MEK)1/2 (upstream of ERK1/2) inhibitor
U0126 and PI3K (upstream of AKT) inhibitor LY294002,
suggesting a wide involvement of these pathways in transdu-
cing IL-17A signals (Figure 5C, dark gray bars). Interestingly,
the increased production of the pro-inflammatory chemo-
kines MCP-1 and IL-8, but not that of MMP-1 was abrogated
by the p38 inhibitor SB203580 and the NF-«B inhibitor
TPCK (Figure 5C, black bars). In contrast, MMP-1, but not
pro-inflammatory chemokine production was strongly re-
duced when JNK was inhibited by SP-600125 (Figure 5C,
light gray bars). Thus, our data indicate that IL-17A exploits
distinct signaling pathways to favor the production of pro-
inflammatory chemokines (p38 and NF-kB dependent)
and MMP-1 (JNK dependent).

Th17 clones enhance MCP-1, IL-8 and MMP-1 and
decrease type | collagen production to different extents
in HD and SSc fibroblasts

We then investigated whether the effects induced by Th17
cells on dermal fibroblasts were similar to that induced by
IL-17A. To this aim we generated human Th17 cell clones.
Since the frequency of Th17 cells in the PBMC is very low
(below 1%), we adopted a strategy to generate Th17 clones
by a stepwise approach. In a prototypical experiment, we
found that 8.9% of the CD4 + CD45RA- peripheral blood T
cells were producing IL-17A (1.5% were producing IL-17A
alone and 7.4% IL-17A in conjunction with IL-22 and IFN-y).
The frequency of IL-17A-producing T cells was enriched
up to 38.0% upon positive sorting of CCR4 + CCR6+ cells
and to a further 70.1% after positive sorting of CD161+ cells
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(Figure 6A). This IL-17A + enriched T cell population was
then cloned by limiting dilution. Several of the 20 screened
clones (of 53 generated) produced high levels of IL-17A
with variable levels of IL-22 and IFN-y, thus being Th17 or
Th17/Th1 cells [38] (Figure 6B). The supernatants of five
distinct, representative clones were generated for further
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Figure 4 mRNA expression levels of IL-17RA and IL-17RC in HD
and SSc fibroblasts. Bars represent the mean + SD of the mRNA
levels at basal conditions of IL-17RA and IL-17RC normalized to

the geometric mean of two house-keeping genes (GADPH, EEF1AT)
in eight HD, eight ISSc and six dSSc fibroblasts. Significant differences
were assessed by t-test. dSSc: diffuse systemic sclerosis; EEF1AT:
eukaryotic elongation factor 1 alpha 1; GADPH: glyceraldehyde

3 phosphate dehydrogenase; HD: healthy donors; IL: interleukin;

ISSc: limited systemic sclerosis.

experiments. Of note, substantial amounts of TNF were
produced by all clones (Figure 6C). All supernatants from
activated, but not from resting, Th17 cell clones strongly
induced MCP-1, IL-8 and MMP-1 and inhibited type I
collagen production by both HD and SSc fibroblasts
(Figure 7A and B). However, the production of MCP-1
and IL-8 was higher, while collagen inhibition was lower
in SSc compared to HD fibroblasts (Figure 7B). When
compared to recombinant IL-17A, Th17 cell clone superna-
tants induced higher levels of pro-inflammatory chemokines
(MCP-1 and IL-8) and similar levels of MMP-1. Of note
and different from IL-17A, Th17 clones strongly inhibited
type I collagen production (Figures 2, 3 and 7). Thus,
quantitative as well as qualitative differences were observed
in fibroblast responses when stimulated by Th17 cell super-
natants compared to recombinant IL-17A.

Th17 cell supernatant effects are mainly mediated by
IL-17A, TNF and, in part, IFN-y

As mentioned above and shown in Figure 6C, Th17 cell su-
pernatants contained several cytokines in addition to IL-
17A. We, therefore, assessed to which extent the effects
observed in fibroblasts were mediated by IL-17A. IL-17A
blockade significantly decreased the production of IL-8,
but not that of MCP-1 and MMP-1, induced by five dif-
ferent Th17 cell clones by both HD and SSc fibroblasts
(Figure 8A, B and C). Similar effects were observed upon
TNF blockade (Figure 8A, B and C). The simultaneous
blockade of IL-17A and TNF resulted in a maximal
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inhibition of IL-8 and MMP-1 (Figure 8A, B and C). In
keeping with these observations, recombinant IL-17A
synergized with recombinant TNF in enhancing IL-8
and MMP-1 production when added to HD fibroblasts
(Figure 9). Of interest, IFN-y blockade in the same superna-
tants resulted in slightly decreased MCP-1 and strongly
increased MMP-1 with no effect on IL-8 production
(Figure 8A, B, C). Maximal inhibition of MCP-1 was

observed when IL-17A, TNF and IFN-y were simulta-
neously blocked both in SSc and HD fibroblasts (Figure 8A,
B, C). Interestingly, IL-17A or TNF blockade partially
reverted the inhibition of type I collagen production induced
by the Th17 cell clones in HD and only minimally in SSc fi-
broblasts (Figure 8D). Conversely, neutralization of IFN-y
resulted in a reversion of collagen inhibition particularly in
SSc and only minimally in HD fibroblasts, again stressing
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phenotypic differences intrinsic in SSc fibroblasts. Of major
interest, the joint blockade of IL-17A and TNF or IL-17A,
TNF and IFN-y resulted in the complete reversal of
collagen inhibition induced by Th17 clones mostly in
SSc fibroblasts (Figure 8D).

Discussion

In the present report, we show that Th17 cells elicit MCP-1,
IL-8 and MMP-1 responses while simultaneously inhibiting
type I collagen production in healthy and SSc dermal
fibroblasts. Our data are consistent with a model in which
Th17 cells participate in inflammatory events but not
directly in enhanced collagen deposition. In this per-
spective, Th17 cells may be seen as cells with an im-
portant role in limiting the development of fibrosis. In
line with our data, a recent work by Nakashima et al.
indicated that IL-17A may have direct anti-fibrotic
effects in human normal fibroblasts via upregulation of
miR-129-5p and downregulation of connective tissue
growth factor and type I collagen [15]. According to

these authors, SSc fibroblasts may escape the negative
control of IL-17A because of a reduced expression of
the IL-17RA [15]. In our experimental settings, diffuse
SSc fibroblasts expressed increased IL-17RA mRNA levels
but, in partial agreement with Nakashima et al., we ob-
served that collagen production by SSc fibroblasts was
more resistant to inhibition by Th17 cells. Additional
in vivo evidence consistent with this model was obtained
when we studied the number of IL-17A + cells in the skin
of SSc individuals and found that the total skin thickness
score was higher when IL-17A + dermal cells were less
numerous [34]. Of interest, Th17 cell numbers can be
increased both in vitro and in vivo by iloprost, a PGI,
analog used in the clinical management of SSc digital
ulcers, which may have beneficial effects on the disease
course [39]. These data and our model are distinctly
different from data and conclusions generated in rodents,
in which IL-17 was shown to favor in vivo collagen depo-
sition in models of bleomycin-induced skin as well as lung
fibrosis [29,30,40]. Furthermore, in the thigh skin of mice
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lacking IL-17 the spontaneous fibrotic skin was reduced
[30], and finally IL-17 neutralization decreased lung inflam-
mation and fibrosis induced by silica [41]. The discrepancy
between studies in humans and mice stresses species-
specific differences in the responses induced by IL-17,
as thoroughly discussed recently [8].

Our data clearly show that IL-17A directly promotes the
production of pro-inflammatory mediators and MMP-1
by dermal fibroblasts from healthy and SSc individuals.
Within the limits of the cohort investigated in this study,
no differences were observed between limited and diffuse
SSc individuals in this respect. These effects were largely
amplified when supernatants from Th17 cell clones, pro-
ducing high levels of IL-17, were assessed. Neutralizing
experiments confirmed a critical role for IL-17A, at least
in the case of IL-8, and revealed additive/synergic effects
of IL-17 and TNF. Along this line of evidence, IL-17
was shown to enhance TNF-induced synthesis of IL-1,
IL-6 and IL-8 by normal skin fibroblasts and osteoarth-
ritis fibroblast-like synoviocytes [42]. MCP-1 and IL-8
are increased in skin and serum of SSc patients [5,43]
and reported to be critical in mediating lung and dermal
fibrosis in bleomycin-treated mice [6,7]. However, whether
these mediators have direct pro-fibrotic activities in humans

is controversial. An increase in al(l) collagen mRNA was
reported by northern blot hybridization in human dermal
fibroblasts activated by MCP-1 [5], while later reports could
not confirm these findings [44]. Similarly, MCP-1 was
reported to increase the expression of MMP-1 and MMP-2,
critical matrix degrading enzymes, but also the levels of
their inhibitor TIMP-1 [45]. The role of these mediators
in tissue fibrosis observed in mice may be related more
to chemoattractant and angiogenetic properties than to
a direct pro-fibrotic activity on fibroblasts or to its role
in favoring priming of Th2 cells [46,47].

We found that IL-17A enhanced MMP-1 production in
dermal fibroblasts, as previously reported in human cardiac
fibroblasts and fibroblast-like synoviocytes [48-51]. MMPs
participate in tissue remodeling, directly acting on ECM
but also modulating the activity of many important media-
tors regulating matrix deposition [52]. Despite its role as a
degrading enzyme, MMP-1 levels have been paradoxically
shown to be highly increased in human lung fibrosis
[53], and variably reported to be increased, unchanged or
decreased in SSc [54-57]. Thus, the exact role of MMP-1
in the development of fibrosis remains to be established.

We showed that IL-17A induced the production of pro-
inflammatory chemokines preferentially via NF-kB and p38
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signaling pathways, while inducing MMP-1 via JNK.
Consistent with our data, IL-17 was previously shown
to promote IL-6/IL-8 production via NF-kB/Akt and
NE-kB/MAPK pathways in rheumatoid arthritis synovial
fibroblasts and colonic myofibroblasts, respectively [58,59]
and in partial agreement with our findings, IL-17 induced
MMP-1 production via activation of c-Fos/c-Jun AP1
and NF-«kB in addition to MAPK signaling in cardiac
fibroblasts [49].

Th17 cell clones were obtained after enrichment of cells
expressing the chemokine receptor CCR6 and CCR4 in the
absence of CCR10 [26,27] and the lectin receptor CD161
[28]. By applying this strategy, we obtained more than 70% of
cells producing IL-17A. Compared to the expected numbers,
the cloning procedure resulted in a slight enrichment of
clones co-producing IL-17 and IFN-y (Th1/Thl7 cells),
suggesting a relationship between the Th1 and Th17 differen-
tiation programs. In line with these results, a functional plas-
ticity connecting Thl and Th17 cells was recently reported
both in vitro and in vivo [28,38,60], although IL-17+/IFN-y +
cells were shown to have a transcription profile closer to
Th17 than to Thl cells [38].

Of note, SSc fibroblasts were more prone to produce
pro-inflammatory mediators (MCP-1, IL-8) and less sensi-
tive to collagen inhibition when cultured in the presence of
Th17 cell clone supernatants than their healthy counter-
part. This suggests that SSc fibroblasts may escape or limit
the anti-fibrotic effects induced by Th17 cells, and further
stresses the existence of intrinsic differences between nor-
mal and SSc fibroblasts. In this context, it is worth noting
that the inhibition of type I collagen production induced by
the Th17 clone supernatants was partially reversed by
blockade of IL-17 or TNF mainly in HD but not SSc fi-
broblasts while IFN-y neutralization had opposite effects.
Again, the joint blockade of IL-17, TNF and IFN-y
resulted in maximal effects, specifically in SSc but not
HD fibroblasts. In agreement with previous evidence
[36,61], the present data strongly suggest that, compared
to normal fibroblasts, SSc fibroblasts are more resistant to
inhibitory mediators present in the Th17 cell clone
supernatants.

In conclusion, our data are consistent with a model
in which Th17 cells may participate in enhancing in-
flammation while simultaneously limiting fibrosis. It is
worth noting that the contribution of Th17 cells to inflam-
matory conditions remains in many instances a matter of
debate. As an example, the role of IL-17 in the initiation,
progression and stabilization of atherosclerosis is currently
controversially interpreted with evidence in favor of its
proatherogenic potential and evidence in favor of its
atheroprotective role [62]. Our findings stress for the first
time the concomitant dual role of Th17 cells in the context
of matrix deposition and may provide the functional basis
for novel approaches to harness fibrotic diseases.
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Conclusions

Th17 cells enhance in vitro fibroblast inflammatory
responses while simultaneously inhibiting collagen produc-
tion with a mechanism partially dependent on IL-17, TNF
and IEN-y. SSc fibroblasts are, however, intrinsically resist-
ant to collagen inhibition induced by Th17 cells. Thus,
the increased Th17 cell counts observed in SSc might be
considered a manifestation of autoimmunity not mechan-
istically linked to fibrosis.
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