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A complex interaction between Wnt signaling
and TNF-a in nucleus pulposus cells
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Abstract

cytokine TNF-a in nucleus pulposus cells.

pathological TNF-a expression in nucleus pulposus cells.

these effects were not observed for DKK-1 or DKK-2.

Introduction: Increased expression of the proinflammatory cytokine TNF-a in intervertebral discs (IVDs) leads to
inflammation, which results in progressive IVD degeneration. We have previously reported that activation of
Wnt-3-catenin (hereafter called Wnt) signaling suppresses the proliferation of nucleus pulposus cells and induces cell
senescence, suggesting that Wnt signaling triggers the process of degeneration of the IVD. However, it is not known
whether cross talk between TNF-a and Wnt signaling plays a role in the regulation of nucleus pulposus cells. The goal
of the present study was to examine the effect of the interaction between Wnt signaling and the proinflammatory

Methods: Cells isolated from rat nucleus pulposus regions of IVDs were cultured in monolayers, and the expression
and promoter activity of Wnt signaling and TNF-a were evaluated. We also examined whether the inhibition of Wnt
signaling using cotransfection with Dickkopf (DKK) isoforms and Sclerostin (SOST) could block the effects of

Results: TNF-a stimulated the expression and promoter activity of Wnt signaling in nucleus pulposus cells. In addition,
the activation of Wnt signaling by 6-bromoindirubin-3"-oxime (BIO), which is a selective inhibitor of glycogen synthase
kinase 3 (GSK-3) activity that activates Wnt signaling, increased TNF-a expression and promoter activity. Conversely,
the suppression of TNF-a promoter activity using a 3-catenin small interfering RNA was evident. Moreover, transfection
with DKK-3, DKK-4, or SOST, which are inhibitors of Wnt signaling, blocked Wnt signaling-mediated TNF-a activation;

Conclusions: Here, we have demonstrated that Wnt signaling regulates TNF-a and that Wnt signaling and TNF-a form
a positive-feedback loop in nucleus pulposus cells. The results of the present study provide in vitro evidence that
activation of Wnt signaling upregulates the TNF-a expression and might cause the degeneration of nucleus pulposus
cells. We speculate that blocking this pathway might protect nucleus pulposus cells against degeneration.

Introduction

Wnt proteins are important intervertebral disc (IVD) cell
regulatory factors. We have previously analyzed Wnt-p3-
catenin (hereafter called Wnt) signaling in nucleus pulpo-
sus cells and reported that activation of Wnt signaling
suppresses the proliferation of nucleus pulposus cells and
induces cell senescence, suggesting that Wnt signaling
triggers the process of degeneration of IVDs [1-3]. In-
creased expression of both matrix metalloproteinase
(MMP)13 and a disintegrin and metalloproteinase with
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thrombospondin motifs (ADAMTS)-5 was also reported
recently in the IVDs of B-catenin knockout mice, which is
consistent with the observed IVD degeneration. Moreover,
those authors found that IVD degeneration was sup-
pressed when an inhibitor of MMP13 was administered to
[-catenin knockout mice. These results led to the conclu-
sions that [B-catenin is a key factor that is responsible for
the maintenance of the IVD tissue structure [4]. To date,
at least three intracellular signaling pathways have been
shown to mediate Wnt signaling: the Wnt/p-catenin path-
way, the Wnt/Ca>* pathway, and the planar cell polarity
(PCP) pathway [5,6]. As the signaling pathways that play
crucial roles during embryogenesis are tightly regulated,
the expression of Wnt proteins and Wnt antagonists is ex-
quisitely restricted, both temporally and spatially, during
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development [7]. Wnt signaling is activated upon binding
of several members of the Wnt protein family to the
Frizzled/low-density lipoprotein receptor-related protein 5
or 6 (Fz-LRP5/6) receptor complex. This causes [-catenin
stabilization and translocation to the nucleus, where it
binds to the lymphoid enhancer factor and T-cell factor
(LEF and TCF) transcription factors to activate Wnt target
gene expression [8-11]. However, the upstream and down-
stream regulatory elements of Wnt signaling in IVD cells
remain unknown, and the molecular mediators in the IVD
are poorly understood.

Low back pain is strongly associated with IVD degener-
ation, which in turn is associated with sciatica and disc
herniation [12,13]. The IVD consists of the peripheral an-
nulus fibrosus that encloses a gel-like tissue, the nucleus
pulposus. During development, the highly hydrated nu-
cleus pulposus is populated by clusters of large vacuolated
notochordal cells of distinct molecular phenotype. In
humans and some other species (for example, cattle and
chondrodystrophoid dogs), notochordal cells disappear be-
fore maturity, to be replaced by chondrocyte-like cells
[14,15]. IVD degeneration, which is linked to persistent
back pain, is characterized by profound anatomical and
biological changes that include a decrease in cell number
and a simultaneous increase in the expression of catabolic
cytokines. Elevated levels of proinflammatory cytokines
and other inflammatory mediators have been reported to
be present in degenerate IVDs, including TNF-«, IL-1p,
IL-6, and prostaglandin E2 (PGE2) [16,17]. These cyto-
kines upregulate MMPs and ADAMTs gene expression,
and downregulate SOX-9, type II collagen, and aggrecan
expression in articular chondrocytes [18,19]. During IVD
degeneration and IVD herniation, nucleus pulposus and
annulus fibrosus cells produce high levels of proinflamma-
tory cytokines. Moreover, both TNF-a and IL-1p stimulate
the production of nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), and vascular endo-
thelial growth factor (VEGEF), which are molecules that are
associated with the nerve ingrowth and angiogenesis ob-
served in nucleus pulposus cells [20]. Increased TNF-a
levels in IVD lead to inflammation and apoptosis, which
results in progressive IVD degeneration. Currently, it is
not known whether cross-talk between TNF-a and Wnt
signaling plays a role in the regulation of nucleus pulposus
cells. Therefore, the goal of the present study was to
examine the effect of the interaction between Wnt signal-
ing and the proinflammatory cytokine TNF-a in nucleus
pulposus cells. Here, we showed that Wnt signaling regu-
lated TNF-a and that Wnt signaling and TNF-a form a
positive-feedback loop in nucleus pulposus cells.

Methods
Animal experiments were performed according to a proto-
col approved by the Animal Experimentation Committee of
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our institution (The Institutional Animal Care and Use
Committee at Tokai University, approved number: 135011).

Reagents and plasmids
To determine the p-catenin-TCF/LEF transcriptional activ-
ity, nucleus pulposus cells and annulus fibrosus cells were
transiently transfected with the TCF/LEF reporter gene
Topflash (optimal TCF binding site) or Fopflash (mutated
TCEF binding site) (Upstate Biotechnology, Lake Placid, NY,
USA). The Fopflash construct is identical to the Topflash
construct, with the exception that it contains mutated cop-
ies of TCF/LEF binding sites and is used as a control to
measure nonspecific activation of the reporter construct.
K3-luc (TNF-a promoter element; number 11110) and the
SOST expression plasmid (number 10842) were purchased
from Addgene (Cambridge, MA, USA). The wild-type
(WT)-B-catenin expression plasmid and the backbone
plasmid were provided by Dr Raymond Poon (Hospital for
Sick Children, University of Toronto, Toronto, Ontario,
Canada). The [-catenin small interfering RNA (siRNA)
(number sc-29209) and control siRNA duplexes were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). The Dickkopf (DKK)-1, -2, -3, and -4 expression
plasmids and the backbone (pMY-IRES-EGFP) plasmids
were provided by Dr Siegfried Janz (Laboratory of Genet-
ics, Center for Cancer Research, National Cancer Institute,
National Institutes of Health, Bethesda, MD, USA) [21].
We used the vector pGL4.74 (Promega, Madison, CA,
USA) containing the Renilla reniformis luciferase gene
as an internal transfection control. Recombinant TNF-«
was purchased from (210-TA, R & D Systems, Abing-
don, UK). We used 6-bromoindirubin-3"-oxime (BIO)
(number 361550; Calbiochem, San Diego, CA, USA) to
examine Wnt signaling activity. BIO is a cell-permeable,
highly potent, selective, reversible, and ATP-competitive
specific inhibitor of glycogen synthase kinase (GSK)-3a/
b activity [22].

Isolation of IVD cells

Nucleus pulposus cells and annulus fibrosus cells were iso-
lated from the lumbar discs of 11-week-old Sprague Dawley
rats (n = 32) using methods reported by Hiyama et al. [3].
The isolated cells were maintained in (DMEM) and 10%
fetal bovine serum (FBS) supplemented with antibiotics at
37°C in a humidified atmosphere of 5% CO,. Confluent nu-
cleus pulposus and annulus fibrosus cells were harvested
and subcultured in 10-cm dishes. Low-passage (<3) cells
cultured in monolayers were used for all experiments, be-
cause cells obtained from the rat IVD tissues exhibited vari-
able morphology until passages 2 or 3.

Immunofluorescence staining
Nucleus pulposus cells were plated in flat-bottom 96-
well plates (3 x 10° cells/well) and incubated for 24 h.
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The cells were treated with 10 ng/mL TNF-a or 1.0 pM
BIO, fixed with 4% paraformaldehyde, permeabilized
with 0.5% Triton X-100 (vol/vol) in PBS, blocked with
PBS containing 10% FBS, and incubated overnight at 4°C
with antibodies against TNF-a (sc-1350, 1:100 dilution;
Santa Cruz Biotechnology) or B-catenin (1:200 dilution;
Cell Signaling Technology, Danvers, MA, USA). The
cells were washed and incubated with anti-rabbit Alexa
Fluor 488 secondary (green) antibodies (Invitrogen,
Carlsbad, CA, USA) at a dilution of 1:200 and 10 pM
4’,6-diamidino-2-phenylindole (DAPI) for 1 h at room
temperature, for nuclear staining. The samples were ob-
served under a fluorescence microscope connected to a
digital imaging system. Negative controls without the
primary antibody were prepared.

Real-time reverse transcription polymerase chain reaction
(RT-PCR) analysis

Nucleus pulposus cells were cultured in 10-cm plates (5 x
10° cells/plate) with or without TNF-a for 24 h, and the
total RNA was extracted from the cells using the TRIzol
RNA isolation protocol (Invitrogen). RNA was treated with
RNase-free DNAse 1. Total RNA (100 ng) was used as a
template for the real-time PCR analyses. The cDNA was
synthesized via the reverse transcription of mRNA, as de-
scribed previously [3]. Reactions were set up in triplicate in
96-well plates using 1 pL. of cDNA with SYBR Green PCR
Master Mix (Applied Biosystems, Carlsbad, CA, USA), to
which gene-specific forward and reverse PCR primers for
Wntl, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, WntlOa,

Table 1 Primers for real-time PCR
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Wnt10b, Wntl6, LRPS, LRP6, -catenin, LEF1, TCF4, TNF-
&, TNFRI and TNFR2 were added. The primers were syn-
thesized by (Takara Bio Inc, Otsu, Shiga, Japan) or (FAS-
MAC Corp, Atsugi, Kanagawa, Japan) and are shown in
Table 1. PCR reactions were performed in an Applied Bio-
systems 7500 Fast system, according to the manufacturer’s
instructions. A control gene, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), was used to normalize each sam-
ple, and the arbitrary intensity threshold (C,) of amplifica-
tion was computed. The expression scores were obtained
using the AAC; calculation method.

Gene-suppression studies using siRNA

We silenced p-catenin expression in nucleus pulposus
cells by using siRNA technology. In brief, nucleus pulpo-
sus cells were transferred into 24-well plates at a density
of 6x10* cells/well 1 day before transfection. The next
day, cells were treated with B-catenin siRNA or control
siRNA duplexes at a final concentration of 100 to 500 ng
using Lipofectamine 2000. Cells also received TNF-a pro-
moter constructs and the pGL4.74 plasmid at the time of
transfection. Six hours after transfection, the medium was
replaced with complete growth medium and the cells were
allowed to recover for 18 h. Cells were then cultured for
24 h and luciferase activity was measured.

Western blot analysis

Treated nucleus pulposus cells were placed immediately
on ice and washed with cold PBS. Proteins were pre-
pared using the CellLytic NuCLEAR extraction kit

Target NCBI number Forward primer, 5'-3' Reverse primer, 5'-3'
B-catenin AF_121265.1 GCCAGTGGATTCCGTACTGT GAGCTTGCTTTCCTGATTGC
Wntl NM_001105714.1 TCCTCATGAACCTTCACAATAACGA TTGCACTCTTGGCGCATCTC
Wnt3a NM_001105715.1 TGTGAGGTGAAGACCTGCTG AAAGTTGGGGGAGTTCTCGT
Wnt4 NM_053402.1 GAAACGTGCGAGAAGCTCAAAG AAAGGACTGTGAGAAGGCTACG
Wnt5a NM_022631.1 TGCCACTTGTATCAGGACCA TGTCTCTCGGCTGCCTATTT
Wnt5b NM_001100489.1 TGACTACTGCCTGCGAAATG AAAGCAACACCAGTGGAACC
Wnt6 NM_001108226.1 GTCGACTTTGGGGATGAGAA AAAGCCCATGGCACTTACAC
Wnt10a NM_001108227.1 GTTCCTAGCTCAGGCAGGTG AAGTCTGTGGAGGGGGAGAT
Wnt10b NM_001108111.1 CTGGTGCTGTTACGTGCTGT GGAGCCATGATTAACCGAAA
Wnt16 NM_001109223.1 TGGCTGTAACCTCCTCTGCT GAGGCAATCTCATGCTAGGC
LRP5 NM_001106321.2 CATCCATGCTGTGGAGGA TGTCTCGGGCACAAGGAT
LRP6 NM_001107892.1 CATGATACGAAGGCACAAGAA TCTGATTTGGAACCGAGCTT
LEF1 NM_130429.1 TGGTAAACGAGTCCGAAATCA TGTGTTTGTCCGACCACCT
TCF4 NM_053369.1 TCCAACCCTTCAACTCCTGT CGTTTCGAGACCAAACAGC
TNF-a NM_012675.3 TGAACTTCGGGGTGATCG GGGCTTGTCACTCGAGTTTT
TNFR1 NM_013091.1 AATGAGTGCACCCCTTGC CCTGGGGGTTTGTGACATT
TNFR2 NM_1304264 GAGGCCCAAGGGTCTCAG GCTGCCATGGGAAGAATC

Transcript and sequence of each primer used in the real-time RT-PCR experiments.
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(Sigma-Aldrich, St Louis, MO, USA). All of the wash
buffers and the final resuspension buffer included 1 x pro-
tease inhibitor cocktail (Roche, Basel, Switzerland), NaF
(5 mM), and NazVO, (200 pM). Nuclear or total cellular
proteins were separated on a sodium dodecyl sulfate
(SDS) polyacrylamide gel and were electrotransferred onto
nitrocellulose membranes (Bio-Rad, Hercules, CA USA).
The membranes were blocked with 5% BSA in Tris-
buffered saline and Tween 20 (TBST) (50 mM Tris,
pH 7.6, 150 mM NaCl, and 0.1% Tween-20) and incubated
overnight at 4°C in 5% BSA in TBST with anti-TNF-a
(number sc-1350. 1:200; Santa Cruz Biotechnology) or
anti-p-catenin (1:1,000 dilution; Cell Signaling Technol-
ogy) antibodies. Immunolabeling was detected with an
ECL reagent (Amersham Bioscience, Little Chalfont, UK).
The Western blot data were quantified using Image J pixel
analysis (NIH Image software). Data from the western
blots were presented as band density normalized to that of
the loading control (actin).

Transfections and dual-luciferase™ assay

Nucleus pulposus cells and annulus fibrosus cells were
transferred to 24-well plates at a density of 3 x 10* cells/
well 1 day before transfection. Cells were co-transfected
with 100 to 500 ng of expression plasmids or the back-
bone vector together with the reporter plasmids. Lipo-
fectamine 2000 (Invitrogen) was used as the transfection
reagent. Cells were cultured for 24 h and treated with a
specific concentration of TNF-a or BIO. The cells were
harvested 24 h after treatment and a Dual-Luciferase™
reporter assay system (Promega) was used for the se-
quential measurements of firefly and Renilla luciferase
activities. The results were normalized regarding trans-
fection efficiency and were expressed as a relative ratio
of luciferase to pGL4.74 activities (denoted as relative
activity). Nucleus pulposus cells were transfected with a
plasmid encoding green fluorescent protein, to check
transfection efficiency, which was 60 to 70% in nucleus
pulposus cells. The luciferase activities and relative ratios
were quantified using a Turner Designs Luminometer
Model TD-20/20 instrument (Promega).

Statistical analyses

Typically, data were compiled from at least three inde-
pendent triplicate experiments, each performed using
separate cultures and on separate occasions. The re-
sponses were presented as the fold change relative to the
untreated control. The data were presented as the mean
+ SD. Data were compared between groups using Stu-
dent’s ¢-test or analysis of variance, to assess variance.
Significance was accepted at P <0.05 and is denoted with
an asterisk in the figures.
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Results

Effects of Wnt signaling on TNF-a expression in nucleus
pulposus cells

Although Wnt signaling has been shown to play an
important role in nucleus pulposus cells, interactions be-
tween Wnt signaling and TNF-a in these cells have not
been described. Therefore, to study the relationship be-
tween Wnt signaling and TNF-a, initial experiments were
performed to investigate the role of Wnt signaling in the
transcriptional activity of TNF-a in nucleus pulposus cells.
Cells treated with different concentrations of BIO exhib-
ited an increase in the activity of the TNF-a promoter
(BIO 0.1 uM, 1.22 £ 0.25, P=0.2026; 0.5 uM, 1.81 +0.37,
P <0.001; 1.0 uM, 1.81+059, P <0.001) (Figure 1A).
Nucleus pulposus cells were transiently transfected with
plasmids encoding TNF-a and with a WT-B-catenin ex-
pression plasmid. Figure 1B shows that forced expression
of WT-B-catenin significantly induced TNF-a promoter
activity (WT-B-catenin 100 ng, 1.13+0.26, P=0.3801;
300 ng, 1.49 +0.30, P=0.0076; 500 ng, 1.36+0.30, P=
0.0304). To validate these findings, we performed loss-of-
function experiments using an siRNA for 3-catenin. Sup-
pression of gene expression was confirmed by real-time
RT-PCR (data not shown). TNF-a promoter activity
was inhibited in nucleus pulposus cells that were co-
transfected with the B-catenin siRNA (si-p-catenin 100 ng,
0.75+0.20, P=0.0041; 300 ng, 0.80+0.14, P=0.0244)
(P <0.05) (Figure 1C). To confirm the reporter assay data,
next we performed a real-time PCR analysis of TNF-a
mRNA expression after transfection with the WT-B-
catenin expression plasmid both in nucleus pulposus cells
and annulus fibrosus cells. Figure 1D shows that nucleus
pulposus cells and annulus fibrosus cells transfected with
WT-B-catenin exhibited a significant increase in the gene
expression of TNF-a compared with that observed in
untransfected control cells. The expression of TNF-a was
significantly higher in the nucleus pulposus than in the an-
nulus fibrosus.

Real-time RT-PCR analysis also showed that activation
of Wnt signaling by BIO increased the expression of
TNF-a mRNA 3-fold compared with untreated cells
(Figure 2A). Similarly, transfection of WT-p-catenin led
to an increase in the expression of the TNF-a mRNA
compared with untreated cells (data not shown). The ex-
pression of TNF-a mRNA was significantly higher (by
1.5-fold) in the annulus fibrosus than in the nucleus pul-
posus (P <0.01, Figure 2A). In addition, activation of
Wnt signaling increased the expression of TNFRI
mRNA and TNFR2 mRNA compared with untreated
cells (Figure 2B) (TNFRI mRNA, 1.25+0.28; TNER2,
1.32 £ 0.46) (P <0.05). To determine whether a concomi-
tant elevation in TNF-a protein expression was associ-
ated with Wnt signaling, the cells were evaluated using
western blotting (Figure 2C) and immunofluorescence
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Figure 1 Effect of Wnt signaling on TNF-a expression in nucleus pulposus cells. (A) Nucleus pulposus cells transfected with the TNF-a
reporter plasmid together with the pGL4.74 plasmid were treated with different concentrations of 6-bromoindirubin-3"-oxime (BIO) for 24 h.

(B and C) Nucleus pulposus cells were co-transfected with the TNF-a reporter plasmid together with WT-B-catenin (B), B-catenin siRNA
(si-B-catenin) (C), or empty vectors and the pGL4.74 vector. Cells were cultured for 24 h and luciferase reporter activity was measured. The results
were normalized for transfection efficiency and are expressed as a relative ratio of luciferase to pGL4.74 activity (denoted as relative activity).

(D) Real-time RT-PCR analysis of TNF-a mRNA levels in nucleus pulposus cells and annulus fibrosus cells transfected with the WT-3-catenin
expression plasmid. Amplification of the TNF-a PCR products was verified by correct melting temperature. Error bars represent the SD. ns,,

analysis (Figure 2D). As shown in Figure 2C, immuno-
blotting of nucleus pulposus cells treated with BIO
(1.0 uM, 24 h) showed an increased level of TNF-« pro-
tein compared with control nucleus pulposus cells. Simi-
larly, immunofluorescence analysis using an anti-TNF-a
antibody showed that BIO treatment (1.0 pM, 24 h)
promoted the nuclear translocation of TNF-a more
strongly in nucleus pulposus cells than in untreated
cells. TNF-a was localized to the nucleus in cells treated
with BIO (Figure 2D). To define a potential role of Wnt
signaling on TNF in nucleus pulposus cells, we also
used DKK-1, -2, -3, and -4 expression plasmids. No
change in TNF-a promoter activity was observed when
DKK-1 or DKK-2 plasmids were used (Figure 3A and
B). Conversely, transfection with DKK-3 and DKK-4 led
to a dose-dependent suppression in TNF-a promoter
activity (Figure 3C and D). Similarly, the BIO-mediated
induction of TNF-a promoter activity was suppressed
by transfection with the DKK-3 or DKK-4 plasmids
(Figure 3F and G). To validate these findings, we used a
Sclerostin (SOST) expression plasmid and measured
the activity of the TNF-a promoter in this condition; we
detected a significant inhibition of TNF-a promoter at a
concentration of 500 ng (Figure 3E and H).

TNF-a enhanced Wnt transcriptional activity in nucleus
pulposus cells

To investigate the role of the proinflammatory cytokine
TNEF-a in Wnt signaling in IVDs, we first examined the
soluble TNF-a protein levels after the stimulation of
TNF-a (10 ng/mL, 24 h) by western blotting. The re-
sults demonstrate that soluble TNF-a protein was sig-
nificantly elevated after the stimulation of TNF-a
compared to the control cells (Additional file 1). We
next determined whether TNF-a induced Wnt tran-
scriptional activity. We measured the activity of both
Topflash (containing the WT TCF binding sites) and
Fopflash (mutant Topflash) in nucleus pulposus cells
after TNF-a treatment. After 6 to 24 h, we measured the
activity of Topflash in nucleus pulposus cells. Figure 4A
shows that there was a dose-dependent increase in the
activity of Topflash upon TNF-a stimulation, whereas
Fopflash activity was not affected by TNF-a treatment
(Figure 4B). We then co-transfected nucleus pulposus
cells with plasmids expressing SOST along with both
Topflash and Fopflash reporter. Figure 4C shows that
overexpression of SOST results in a decrease in the ac-
tivity of Topflash, whereas overexpression of SOST has
no effect on Fopflash reporter activity. To explore the



Hiyama et al. Arthritis Research & Therapy 2013, 15:R189
http://arthritis-research.com/content/15/6/R189

Page 6 of 11

TNF mRNA

(Normalized to GAPDH)

Relative expression to control 3
(Normalized to GAPDH)
© a2 N ow oa w

Relative expression to control

Control BIO NP

c

24h

Mr(kba) o9 01 05 1.0 BIOuM)

Y

Relative protein levels
B

0.0

3
TNFmRNA 2= 20 .
. 85 .
k]
g 15
29
23 1.0
g8
X ®
g 05
g5
5% 00
AF &
Control TNFR1  TNFR2
BIO
Control
(untreated)
BIO
(1.0uM)

Figure 2 Wnt signaling enhanced the expression of the TNF-a gene and protein in nucleus pulposus cells. (A) TNF-a mRNA expression
after exposure of nucleus pulposus cells to 6-bromoindirubin-3"-oxime (BIO) (1.0 uM) for 24 h, as assessed by real-time PCR (left panel). Real-time
RT-PCR analysis of TNF-a mRNA levels in nucleus pulposus cells and annulus fibrosus cells (right panel). (B) TNFRT mRNA and TNFR2 mRNA
expression after exposure of nucleus pulposus cells to BIO (1.0 uM) for 24 h, as assessed by real-time PCR. (C) Western blot analysis of TNF-a
activation after treatment of nucleus pulposus cells with varying concentrations of BIO (0.0 to 1.0 uM). (D) Detection of TNF-a protein expression
by immunofluorescence microscopy. Nucleus pulposus cells were cultured with or without 1.0 uM BIO for 24 h, fixed, and stained with an
antibody against c-fos. Left: cells stained with an antibody to TNF-a; middle: cells stained with 4'6-diamidino-2-phenylindole (DAPI), to identify
healthy nuclei; right: cells stained with an antibody to TNF-a and with DAPI. Scale bar, 50 um (original magnification, 20x).

premise that TNF-a regulates SOST mRNA expression,
nucleus pulposus cells were treated with TNF-a and ex-
pression of SOST mRNA analyzed using real-time PCR.
Figure 4D shows that treatment with TNF-a for 24 h
significantly decreases SOST mRNA levels in nucleus
pulposus cells.

TNF-a enhanced Wnt related gene and protein expression
in nucleus pulposus cells

We examined further the expression of Wnt-related genes
via real-time PCR after treatment with TNF-a (10 ng/mL)
for 6 and 24 h. Real-time PCR analysis demonstrated that
TNEF-a treatment for 24 h increased the expression of the
Wnt5b, LRP6, LEF1, and TCF4 mRNA, but treatment for
6 h did not (Figure 5A). TNF-a significantly also increased
the expression of S-catenin mRNA at 6 and 24 h. In
addition, we determined the expression levels of the
[-catenin protein in nucleus pulposus cells after treatment
with TNF-a. Western blot analysis using an anti-p-catenin
antibody demonstrated that TNF-a treatment increased
the expression of the B-catenin protein (Figure 5B). Cells
were evaluated by immunofluorescence analysis to deter-
mine whether a concomitant elevation in [3-catenin protein
expression was associated with the activation of TNF-a.
Immunofluorescence analysis using an anti-p-catenin

antibody showed that TNF-a treatment (10 ng/mL, 24 h)
promoted the nuclear translocation of [-catenin more
strongly in nucleus pulposus cells than in untreated con-
trol cells (Figure 5C).

Discussion

The canonical Wnt signaling and the proinflammatory
cytokine TNF-a play critical roles in development, homeo-
stasis, and cancer [23-25]. However, the manner by which
the Wnt signaling and TNF-a components interact in the
complex network of biological communication that regu-
lates these processes remains unclear. Our findings dem-
onstrated for the first time that activation of Wnt
signaling was regulated by the proinflammatory cytokine
TNEF-a. Our studies also revealed that Wnt signaling and
TNF-a form a positive-feedback loop in nucleus pulposus
cells. TNFs constitute a family of about 20 cytokines that
bind to an increasing number of specific cell-surface
receptors [26,27]. TNFs are produced as type II integral
cell-surface proteins and exert their effects in a paracrine
fashion by binding to, and inducing the trimerization of
TNFRs. Through complex signaling networks, signal
transducers lead to the activation of transcription factors,
such as NF-«B, AP-1, and SP1, and their binding to the
promoters of specific genes [28]. Regarding its role, TNE-
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Figure 3 Wnt signaling-induced upregulation of TNF-a was antagonized by DKK and Sclerostin (SOST). (A-E) Nucleus pulposus cells were
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n.s., not significant.

a has been associated almost exclusively with inflamma-
tion or host defense. TNF-a was first described in IVDs in
association with sciatic pain. Subsequent studies showed
that TNF-a is widely expressed in humans with degenera-
tive disc degeneration [29], as well as in animal models.
Seguin et al. reported that TNF-a reduced the synthesis of
matrix molecules and upregulated the mRNA expression
of MMP-1, -3, and —-13 and ADAM-TS4 and ADAM-TS5
[30]. Studies performed by Alsalameh and colleagues [31]

on synovial fibroblasts from patients with rheumatoid
arthritis and patients with osteoarthritis have also indi-
cated there is a differential expression of the two TNF
receptors (TNF-R1 and TNF-R2) in these cells and that,
although both receptors can mediate the effect of TNF-a
on TIMP1 expression, PGE,, the regulation of IL-6, and
MMP-1 is mediated exclusively by TNF-R1.

Furthermore, Le Maitre et al. have shown that both
IL-1 and TNF-a are expressed in IVDs and are
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upregulated in the presence of degeneration [16]. TNF-a
can bind to, and signal through, either TNF-R1 or
TNE-R2. Although TNF binds to each with high affinity,
TNEF-R1 is more ubiquitously expressed and it is generally
believed that TNF-R1 is responsible for the majority of bio-
logical actions of TNF while TNF-R2 may function to
potentiate the effects of TNF-R1. Freemont et al. have also
reported that TNF-R2 is not expressed by IVD cells either
in normal or degenerate IVDs [32]. In addition, they have
demonstrated that human IVD cells are capable of
responding to TNF-a in vivo. However, no increase in
TNEF-R1 synthesis was seen during IVD degeneration.

The complexity of the Wnt signaling cascade should
enable the activation and/or repression of many specific
signals and targets. Remarkably, we found that Wnt sig-
naling, which suppresses the proliferation of nucleus pul-
posus cells and induces cell senescence, activated the
expression of TNF-a. Direct evidence for the activation of
TNF-a by Wnt signaling was obtained from experiments
such as a reporter assay, real-time PCR, western blotting,
et cetera. Furthermore, Wnt signaling was modulated by
several different families of secreted negative regulators.
The results of this study suggest that inhibition of Wnt
signaling may be able to contribute to the suppression of
disc degeneration, because Wnt signaling increased the
expression of TNF-a and TNF-a activated Wnt signaling.
Wnt antagonists can be divided into two functional clas-
ses. These two major classes function in quite different
ways: the secreted Frizzled-related protein (SFRP) class

binds to Wnt ligands, whereas the DKK or sclerostin
class binds to a component of the Wnt receptor. Thus,
in theory, the outcome appears to be that sFRPs inhibit
canonical ([-catenin-dependent) and noncanonical (B-ca-
tenin-independent) pathways, whereas DKKs or sclerostin
inhibit only the canonical pathway. The DKK family com-
prises four members (DKK-1 to DKK-4) in mammals
[33,34]. DKK proteins have been implicated in various dis-
eases, including retinal degeneration, malignancies, and
cerebral ischemia [35-37].

The most-studied member of the DKK family is DKK-1.
The binding of DKK-1 to the LPR5/6 receptor and a cell-
surface coreceptor, Kremen-1/2, promotes internalization
of the receptor complex and dampens the Wnt signal.
Both DKK-1 and DKK-2 bind to the LRP5/6 receptor,
which is expressed in cells and has higher affinity com-
pared with Fz and Wnt. The characteristic developmental
function of DKK-1 is its head-inducing activity. Previously,
Ye et al. reported that TNF-a increased the expression of
B-catenin and MMP-13, and significantly inhibited matrix
synthesis, which resulted in the degeneration of rabbit
IVD cells. These authors also showed that blocking Wnt/
[B-catenin signaling using DKK-1 protected the normal
metabolism of IVD tissues in rabbits [38]. However, the
present study showed an absence of changes in TNF-a
promoter activity when the DKK-1 plasmid was used.
These differences may be related to the age and species of
the animal from which the cells were isolated, and the en-
vironment in which the cell metabolism is studied.
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Figure 5 TNF-a enhanced the expression of Wnt-related genes and proteins in nucleus pulposus cells. (A) Wnt-related mRNA expression
after exposure of nucleus pulposus cells to TNF-a (10 ng/mL) for 6 and 24 h, as assessed by real-time PCR. (B) Western blot analysis of 3-catenin
activation after treatment of nucleus pulposus cells with TNF-a (10 ng/mL). "P < 0.05 indicates significant differences between groups. Error bars
represent the SD. n.s,, not significant. (C) Detection of (3-catenin protein expression by immunofluorescence microscopy. Nucleus pulposus cells
were cultured with or without 10 ng/mL TNF-a for 24 h, fixed, and stained with an antibody against c-fos. Left: cells stained with an antibody to
B-catenin; middle: cells stained with 4'6-diamidino-2-phenylindole (DAPI), to identify healthy nuclei; right: cells stained with an antibody to
B-catenin and with DAPI. Scale bar, 50 um (original magnification, 20x).

The Wnt-antagonizing activity of DKK-4 appears to be
indistinguishable from that of DKK-1, whereas DKK-3 has
distinct roles in regulating the Wnt pathway, depending on
the cell types examined. For example, DKK-3 potentiates
Wnt signaling in human Miller glia MIO-M1 and
HEK?293 cell lines [39], but inhibits Wnt signaling in PC12
and osteocarcinoma Saos-2 cells [40,41]. The biological
roles of DKK-3 in Wnt signaling remain unclear, because
it does not inhibit canonical Wnt signaling [33,42]. In
addition, DKK-3 does not interact with LRPs or Krm1/2
[42,43]. It also remains to be determined whether DKK-3
antagonizes other growth-factor pathways via mechanisms
that involve a direct association with ligands or transmem-
brane receptors in a manner similar to that by which DKK-
1 inhibits Wnt signaling. However, recent studies have
revealed that the effect of DKK antagonists is not quite so
simple. In fact, it may turn out that certain antagonists act
as such only when expressed at nonphysiological levels.
Therefore, there are clearly many unresolved issues regard-
ing this subject. Furthermore, we checked the effect of

sclerostin, which is a different inhibitor of Wnt signaling,
on TNF-a promoter activity in nucleus pulposus cells. The
results of this experiment showed significant inhibition of
the TNF-a promoter after treatment with high sclerostin.
Sclerostin is the product of the SOST gene. Similar to
DKK, sclerostin binds to Lrp5/6 and antagonizes canonical
Wnt signaling [44-46]. Low sclerostin expression leads to
bone growth, whereas high expression inhibits bone forma-
tion. Recently, TNF has been identified as an inducer of
sclerostin expression, but the current study showed that
TNEF-a suppressed the SOST gene. As a result, it might
have resulted in the activation of Wnt signaling in nucleus
pulposus cells.

Overall, our results indicate that inhibition of Wnt sig-
naling suppresses a catabolic response via the inhibitory
action of TNF-a in nucleus pulposus cells. However, it
remains to be determined which of the proposed recep-
tors for DKKs or sclerostin, including LRP-4, -5, and -6,
are important for the responses observed in our study
and whether the effect is dependent on canonical or
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noncanonical Wnt signaling, or on other types of signal-
ing. In addition to the limitation inherent in the use of
rats, because of the ambiguity of the notochordal cells in
this animal, the functions of the rat disc compared with
the functions of the human IVD need to be considered
in the interpretation of the findings of this study. Re-
garding this issue, additional studies using different
species are required to evaluate and conclude whether
the mechanism involving the expression of these mole-
cules is specific to nucleus pulposus cells, in particular
regarding the human situation.

Conclusions

Here, we have demonstrated that Wnt signaling regulates
TNF-a and that Wnt signaling and TNF-a form a
positive-feedback loop in nucleus pulposus cells. The re-
sults of the present study provide in vitro evidence that
the activation of Wnt signaling upregulates the proinflam-
matory cytokine TNF-a and might cause the degeneration
of nucleus pulposus cells. We speculated that blocking the
Wnt signaling might protect nucleus pulposus cells
against degeneration. The DKK or sclerostin families of
proteins are natural regulators of Wnt signaling and can
specifically block this pathway. These findings suggest that
overexpression of DKK-3, DKK-4, or sclerostin inhibit
TNEF-a expression by specifically blocking the Wnt chan-
nel. Inhibition of Wnt signaling using DKKs or sclerostin
exerts a protective and reversing effect in the TNF-a-
induced degeneration of IVD cells.

Additional file

Additional file 1: Figure S1. The soluble TNF-a protein levels after the
stimulation of TNF-a (10 ng/mL, 24 h) by western blotting. The results
demonstrate that soluble TNF-a protein was significantly elevated after
the stimulation of TNF-a compared to the control cells.
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