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Abstract

Introduction: Costochondral cells may be isolated with minimal donor site morbidity and are unaffected by
pathologies of the diarthrodial joints. Identification of optimal exogenous stimuli will allow abundant and robust
hyaline articular cartilage to be formed from this cell source.

Methods: In a three factor, two level full factorial design, the effects of hydrostatic pressure (HP), transforming
growth factor 31 (TGF-31), and chondroitinase ABC (C-ABC), and all resulting combinations, were assessed in third
passage expanded, redifferentiated costochondral cells. After 4 wks, the new cartilage was assessed for matrix
content, superficial zone protein (SZP), and mechanical properties.

Results: Hyaline articular cartilage was generated, demonstrating the presence of type Il collagen and SZP, and the

absence of type | collagen. TGF-31 upregulated collagen synthesis by 175% and glycosaminoglycan synthesis by
75%, resulting in a nearly 200% increase in tensile and compressive moduli. C-ABC significantly increased collagen

content, and fibril density and diameter, leading to a 125% increase in tensile modulus. Hydrostatic pressure
increased fibril diameter by 30% and tensile modulus by 45%. Combining TGF-31 with C-ABC synergistically
increased collagen content by 300% and tensile strength by 320%, over control. No significant differences were
observed between C-ABC/TGF-31 dual treatment and HP/C-ABC/TGF-31.

Conclusions: Employing biochemical, biophysical, and mechanical stimuli generated robust hyaline articular
cartilage with a tensile modulus of 2 MPa and a compressive instantaneous modulus of 650 kPa. Using expanded,
redifferentiated costochondral cells in the self-assembling process allows for recapitulation of robust mechanical
properties, and induced SZP expression, key characteristics of functional articular cartilage.

Introduction

The poor innate healing capacity of articular cartilage
often results in pain and loss of function. Cartilage le-
sions may originate from disease processes, from various
genetic and metabolic conditions, or may be traumati-
cally induced [1]. Whether originating from a disease
process or trauma, articular cartilage lesions generally
do not heal, or only partially heal resulting in inferior
fibrocartilage [1]. Engineered articular cartilage may have
the potential to replace degenerated tissues. However,
the clinical success of tissue engineering relies on the
development of mechanically and biochemically robust
tissues, capable of withstanding in vivo loads upon

* Correspondence: athanasiou@ucdavis.edu

'Department of Biomedical Engineering, University of California Davis,
451 E. Health Sciences Drive, Rm 2303, Davis, CA 95616, USA
“Department of Orthopaedic Surgery, University of California Davis,
4635 Second Avenue, Rm 2000, Sacramento, CA 95817, USA

( BioMed Central

implantation. Additionally, success relies on utilizing a
cell source that is unaffected by pathology and is feasible
for surgeons to isolate. Tissue engineering therefore pre-
sents a therapeutic approach that may address cartilage
lesions, with the objective of reducing pain, restoring
function, and halting joint degeneration.

Costal chondrocytes provide a clinically relevant cell
source that may be suitable for autologous tissue engi-
neering utilizing the self-assembling process [2,3]. Costal
cartilage is located at the anterior ends of the ribs. This
cartilage is unaffected by major pathologies of the diar-
throdial joints, and is frequently isolated and utilized in
reconstructive surgeries [4-6]. As a hyaline cartilage,
costal cartilage provides a differentiated, pure, primary
cell population, circumventing the need for differenti-
ation cues employed in conjunction with stem cells, and
altogether avoiding associated ethical challenges. Ob-
taining a purified, chondrogenically differentiated cell
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population from stem cells continues to be a significant
challenge. Stem cells have yet to be differentiated in vitro
in a consistent fashion to produce type II collagen [7]. Im-
portantly, costal chondrocytes may be expanded in vitro,
while maintaining the ability to generate hyaline carti-
laginous matrix [3,8,9]. While costal chondrocytes de-
monstrate phenotypic alterations in monolayers similar to
articular chondrocytes, including decreased type II col-
lagen and glycosaminoglycan expression [8,10], previous
work has shown that expansion and three-dimensional
redifferentiation culture conditions may be modulated to
enhance hyaline cartilaginous matrix production post ex-
pansion [3,8,9]. Specifically, third-passage costochondral
cells have demonstrated the ability to self-assemble to
generate neocartilage rich in type II collagen and glycos-
aminoglycans (GAGs) with compressive properties within
the range of native temporomandibular joint condylar car-
tilage [3]. However, engineered neocartilage has yet to
completely replicate the collagen content and tensile pro-
perties of native tissues. Various biochemical, biophysical,
and biomechanical exogenous stimuli have been utilized
with alternate cell sources to enhance the functional
properties of engineered tissues. Combining exogenous
stimuli with a clinically relevant cell source, costal chon-
drocytes, may improve the translational potential of engi-
neered cartilage.

Hydrostatic pressure (HP) enhances collagen synthesis
and the resulting tensile properties in articular chondro-
cytes [11,12], while its effects on matrix synthesis in costal
chondrocytes have not yet been investigated. In cartilage
engineered with articular chondrocytes, 10 MPa static HP
significantly increased the collagen and GAG content, as
well as both compressive and tensile properties [13].
Combining HP and transforming growth factor beta-1
(TGF-P1) led to an additive benefit in compressive and
tensile moduli and a synergistic benefit in collagen content
[13]. The mechanism of action of HP in articular chon-
drocytes is not fully characterized, but it is known that HP
does not deform cartilage. Rather, HP compresses void
spaces surrounding membrane-bound ion channels, and
alters channel activity and intracellular ion concentrations
[11,14-16]. With changes in intracellular ion concentra-
tions affecting gene expression and protein synthesis [17],
HP may initiate downstream upregulation of extracellular
matrix-specific genes and protein production [18]. HP
may offer an additional means of enhancing the functional
properties of expanded, redifferentiated costochondral cell
neocartilage.

TGE-P has been investigated for its benefits on chon-
drocyte matrix synthesis in various systems. TGF-f
controls an array of cell processes including cell prolife-
ration, differentiation, and developmental fate [19,20]. In
articular chondrocytes, TGF-B1 mediates cell survival
and matrix synthesis [21]. This factor has been shown to
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play a key role in maintenance of chondrocyte phenotype,
lubricating properties, and chondrocyte response to mech-
anical loading [22-24]. Exogenous application of TGF-B1 at
10 ng/ml to self-assembled primary articular chondrocytes
increased the GAG content and compressive properties
[13]; in fibrochondrocytes, it was shown to increase both
the collagen and GAG content along with mechanical
properties [25]. In primary costochondral cells, 1 ng/ml
TGEF-B1 increased proline, thymidine, leucine, and sulfate
incorporation [26]. However, 1 ng/ml TGF-f1 had no ef-
fect on mechanical properties of expanded costochondral
cell constructs [27]. TGEF-B1 has also been shown to in-
crease superficial zone protein (SZP) in articular chondro-
cytes [28]. SZP contributes to boundary lubrication and
protects the articular surface from cell and protein adhe-
sion [29-31]. A main objective in tissue engineering of
articular cartilage remains achieving lubrication [32].
TGF-P1 may be used to enhance articular chondrocyte
protein synthesis in vitro but its effect in costochon-
dral cells, specifically at a higher dose, requires further
examination.

Chondroitinase ABC (C-ABC) is a matrix remodeling
enzyme that facilitates maturational growth in cartilage
explants and engineered constructs [33,34]. C-ABC selec-
tively degrades chondroitin and dermatan sulfate [35].
While tensile properties of cartilage are largely associated
with the collagen network, the swelling pressure imparted
by proteoglycans plays an indirect role in tensile integrity.
In bovine articular cartilage explants, C-ABC treatment
immediately enhanced tensile stiffness and strength. With
further culture (13 days) in serum-containing medium,
the GAG content was restored, and collagen density and
tensile properties increased [34]. In engineered articular
chondrocyte constructs, 2 units/ml C-ABC treatment has
been shown to increase collagen density and tensile pro-
perties with no observed changes in gene expression [33].
C-ABC is a biophysical, matrix-remodeling enzyme that
may have the potential to enhance the maturational
growth and tensile properties of engineered costochondral
cell constructs.

The translational potential of engineered cartilage relies
upon developing tissue capable of withstanding in vivo
loads upon implantation and utilizing a clinically relevant
cell source, such as costochondral cells. This work presents
the first systematic analysis of the effects of three salient
mediators of cartilage formation: the mechanical stimulus
HP, the anabolic stimulus TGF-B1, and the catabolic stimu-
lus C-ABC in engineered articular cartilage. In a full-
factorial analysis of variance design, this study assessed the
effects of HP (10 MPa static, none), TGF-f1 (10 ng/ml,
none), and C-ABC (2 units/ml, none) on the neocartilage
matrix content, collagen fibril diameter and density, and
mechanical properties. We hypothesized that individually
TGEF-B1, HP, and C-ABC would significantly increase the
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collagen content and tensile properties; dual C-ABC/
TGF-B1, HP/TGE-B1, and HP/C-ABC treatments would
increase tensile properties and collagen content in an
additive manner, or greater; and full HP/C-ABC/TGEF-
B1 treatment would lead to a synergistic increase in col-
lagen content and tensile properties.

Methods

Cell isolation and expansion

Costal cartilage was obtained from the four caudal asternal
ribs (~5 c¢m) of Yorkshire—Hampshire cross pigs, Sus scrofa
(6 months of age) within 24 hours of sacrifice (UC Davis
Meat Sciences Facility, Davis, CA, USA). The perichon-
drium was excised and cartilage was minced in Dulbecco’s
modified Eagle’s medium. Tissue was digested in 0.2% col-
lagenase type II (Worthington, Lakewood, NJ, USA) with
3% fetal bovine serum (Atlanta Biologicals, Lawrenceville,
GA, USA) for 18 hours at 37°C in chemically defined chon-
drogenic culture medium (CHG) composed of Dulbecco’s
modified Eagle’s medium with 4.5 g/l glucose and
GlutaMAX (Gibco, Grand Island, NY, USA), 1%
penicillin—streptomycin—fungizone (BD Biosciences, Bed-
ford, MA, USA), 1% ITS+ premix (BD Biosciences), 1%
non-essential amino acids (Gibco), 100 nM dexamethasone,
50 pg/ml ascorbate-2-phosphaste, 40 pg/ml L-proline, and
100 pg/ml sodium pyruvate [36]. Cells were filtered (70 pm
filter; BD Biosciences), counted, and stored frozen in liquid
nitrogen until use; isolations yielded 15 x 10° to 20 x 10°
cells/set of four ribs with greater than 90% viability. Cells
were thawed and pooled from four animals (73% viability)
and seeded in T-225 flasks at 2.5 x 10* cells/cm?. Cells were
expanded in CHG supplemented with 1 ng/ml TGF-$1
(Peprotech, Rocky Hills, NJ, USA), 10 ng/ml platelet-
derived growth factor (Peprotech), and 5 ng/ml basic fibro-
blastic growth factor (Peprotech). This expansion cock-
tail was selected based on previous work in
chondrocytes demonstrating enhanced proliferation
throughout expansion and improved post-expansion
chondrogenesis [3,8,37,38]. Cells were passaged at 80
to 90% confluence with 0.5% Trypsin—ethylenedi-
amine tetraacetic acid (Gibco), followed by 0.2% col-
lagenase solution three times (passage 3).

Redifferentiation and self-assembly

After the third passage, cells were redifferentiated in ag-
gregate culture for 10 days to further enhance post-

Table 1 Exogenous treatment
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expansion chondrogenesis. The aggregate redifferentia-
tion technique was selected based on previously demon-
strated benefits in articular chondrocytes and meniscus
cells [39]. During aggregate culture, cells were main-
tained on agarose-coated (1% agarose in phosphate-
buffered saline; Fisher Scientific, Pittsburgh, PA, USA)
plates at 750,000 cells/ml in CHG containing 10 ng/ml
TGEF-B1 on an orbital shaker for the first 24 hrs. After
10 days, aggregates were digested for 45 minutes in 0.5%
Trypsin—ethylenediamine tetraacetic acid, followed by 1
hour in 0.2% collagenase type II solution (as described
above) to obtain a single-cell suspension.

Constructs were self-assembled in agarose wells of
5 mm diameter. The self-assembling process was utilized
to parallel chondrocyte condensation and development
[40], and to circumvent negative effects associated with
scaffold-based approaches [2]. 2 x 10° cells were seeded
into each well on day 0, and medium was changed daily.
At no time were cells embedded within the agarose. After
7 days, constructs were unconfined and moved into wells
coated with 2% agarose to prevent adhesion, and media
were changed every other day.

Exogenous stimuli application

Constructs were randomly assigned to each treatment or
control group (n = 8/group). This study employed a full
factorial 3 x 2 design: C-ABC (2 units/ml, no C-ABC);
TGE-B1 (10 ng/ml, no TGF-P1); and HP (10 MPa static,
no HP) (see Table 1). Groups receiving C-ABC were
treated with 2 units/ml C-ABC in CHG (4 ml per eight
constructs) for 4 hours on day 15. C-ABC was activated
with 0.05 M sodium acetate (Sigma, St. Louis, MO,
USA) and inactivated with 1 mM Zn** (Sigma). Con-
structs receiving TGF-B1 were treated continuously
throughout culture at 10 ng/ml.

For the application of HP, a custom bioreactor was
assembled as described previously [41]. Briefly, HP
treatment consisted of heat-sealing constructs in
sterilized bags (Kapak, Minneapolis, MN, USA) con-
taining CHG (with or without TGF-B1). Sealed bags
were submerged in a 1 L stainless steel pressure ves-
sel and pressurized to 10 MPa for 1 hour at 37°C
for 5 consecutive days (days 10 to 14 of culture)
[11]. After treatment, constructs were returned to
normal culture conditions.

Treatment Control HP C-ABC TGF-B1 HP/C-ABC HP/TGF-B1 TGF-1/C-ABC  HP/C-ABC/TGF-f1
HP: 10 MPa, static, days 10 to 14 X X X X
C-ABC: 2 units/ml, 4 hours, day 15 X X X X
TGF-B1: 10 ng/ml, continuous, days 0 to 28 X X X

C-ABC, chondroitinase ABC; HP, hydrostatic pressure; TGF-B1, transforming growth factor beta-1.



Murphy et al. Arthritis Research & Therapy 2013, 15:R214
http://arthritis-research.com/content/15/6/R214

Histology and biochemistry

Construct samples were evaluated after 4 weeks of cul-
ture. Samples from each treatment group, as well as ma-
ture porcine articular and costal cartilage, were frozen in
Histoprep Frozen Tissue Embedding Media (Fisher
Scientific). Samples were sectioned at 14 pm and stained
with picrosirius red for collagen or Safranin-O/fast-green
for GAGs. Additionally, samples were assessed immuno-
histologically for type I and type II collagen, as described
previously [3]. Samples were assessed for SZP using
mouse anti-PRG4 monoclonal antibody (clone 2A6) at
1:100 dilution (Sigma).

Collagen, GAG, and DNA contents were quantified in
engineered cartilage. Samples were digested in 125 pg/ml
papain (Sigma) in phosphate buffer (pH 6.5). Samples
were hydrolyzed in 4 N NaOH for 20 minutes at 110°C,
and a modified hydroxyproline assay was used to quantify
the collagen content. A Blyscan glycosaminoglycan assay
kit (Biocolor, Westbury, NY, USA) was used to quantify
sulfated GAG, and cellularity was quantified using the
Quant-iT Picrogreen double-stranded DNA assay kit
(Invitrogen, Carlsbad, CA, USA).

Collagen fibril analysis

Samples from each group and from native porcine costal
cartilage and articular cartilage were fixed in 3% glutaral-
dehyde (Sigma) in cacodylate buffer and stored at 4°C. Im-
mediately prior to imaging, specimens were dehydrated in
ascending exchanges of ethanol (25%, 50%, 75%, 100%).
Samples were critical point dried, mounted, sputter
coated, and imaged with a Philips XL30 TMP (E.E.L
Company, Hillsboro, OR, USA) scanning electron micro-
scope (SEM). After imaging, Image] (National Institute of
Health, Bethesda, MD, USA) analysis software was used to
measure the fibril density and diameter. The threshold
function was used to set threshold limits and the measure
function was used to quantify the percentage area occu-
pied by fibrils, which is reported as the fibril density. Also
using the threshold and measure functions, 10 fibrils were
randomly selected, and their diameters were measured in
each of six images per group.

Mechanical evaluation

Mechanical properties were evaluated in tension and
compression. Compression samples consisted of 2 mm
punches from the central region of each construct. Ad-
ditionally, 2 mm diameter compression samples were
taken from porcine costal cartilage and articular cartil-
age (samples obtained from four animals). In compres-
sive testing, samples were preconditioned with 15 cycles
of 5% compressive strain and then strained to 10% and
20% deformation, sequentially in a stress-relaxation test
using an Instron 5565 (Instron, Norwood, MA, USA). A
Kelvin solid viscoelastic model was fit to the data to
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establish compressive material properties at each strain
level as described previously [42]. Values for the instan-
taneous modulus, relaxation modulus, and coefficient of
viscosity were quantified. Tensile testing consisted of a
uniaxial pull-apart test and was conducted using a Test
Resources 840 L (Test Resources, Shakopee, MN, USA).
A dogbone-shaped specimen was obtained by taking a
second 2 mm punch adjacent to the first. This procedure
was repeated with costal cartilage and articular cartilage
to obtain native tissue values (samples obtained from
four animals). Paper tabs were used to establish a con-
sistent gauge length of 1.4 mm. Samples were elongated
at a strain rate of 1%/s. Stress—strain curves were deve-
loped from the load—displacement curve. Young’s mo-
dulus and the ultimate tensile strength (UTS) were
quantified.

Statistical analysis

Three-way analysis of variance was used to identify the
presence of significant differences in biochemical and bio-
mechanical properties (a = 0.05). Where indicated, Tukey’s
post-hoc test was used to identify differences between spe-
cific treatment groups (P <0.05). JMP 10 software (SAS
Institute Inc., Cary, NC, USA) was used to carry out statis-
tical analysis. Groups reported not connected by lower-
case letters are significantly different. All data are reported
as mean + standard deviation. Synergism is reported as a
combined treatment effect greater than the sum of the in-
dependent effects of each stimulus — that is:

(ﬂAB—ﬂCONTROL) > [(ﬂA‘ﬂCONTROL) + (ﬂB—ﬂCONTROL)])

where p is the average for each group. The presence of
statistically significant correlations was determined using
Pearson’s correlation coefficient with a two-tailed pro-
bability level (P <0.05).

Results

Gross morphology and histology

Gross morphology and histological staining are shown in
Figure 1. Homogeneous cylindrical cartilaginous tissues
were generated in all treatments. TGF-Bf1 and com-
binations containing TGF-p1 yielded a bowl-shaped mor-
phology that was associated with decreased construct
diameter. Control constructs demonstrated the largest tis-
sue diameter (5.9 +0.1) (Table 2). Histology and immu-
nohistochemistry showed an extracellular matrix rich in
GAG and collagen, specifically positive for type II collagen
and negative for type I collagen (Figure 1B). In control
and HP constructs, collagen staining was primarily peri-
cellular. In combinatorial treatments C-ABC/TGF-f1 and
HP/C-ABC/TGE-B1, collagen staining was more intense
and homogeneously distributed. With C-ABC treatment,
the GAG content was similar to control, but the GAG
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Figure 1 Neocartilage morphology and histology. (A) A flat disc-shaped construct was observed in control, hydrostatic pressure (HP) and
chondroitinase ABC (C-ABC) treatments. The addition of transforming growth factor beta-1 (TGF-31) resulted in a bowl-shaped construct.

(B) Histological staining demonstrated the presence of collagen (picrosirius red) and glycosaminoglycans (Safranin-O/fast-green) in all groups.
Immunohistochemistry demonstrated the presence of type Il collagen, and the absence of type | collagen, independent of the treatment regimen.
Immunohistochemical staining for superficial zone protein (SZP) demonstrated its presence in the superficial zone of articular cartilage, and its absence
in costal cartilage. Engineered neocartilage demonstrated the presence of SZP independent of treatment regimen. Morphology scale bar =5 mm,

histology scale bar= 100 um.

content appeared greater than control in C-ABC/TGF-$1
and HP/C-ABC/TGF-f1 treatments. Shown in Figure 1B,
immunohistochemistry confirmed the presence of SZP in
the superficial zone of porcine articular cartilage and
demonstrated its absence in costal cartilage. Independent
of the treatment regimen, neocartilage stained positively
for SZP.

Biochemical content

Collagen, GAG, DNA, and water contents are
reflected in Figure 2 and Table 2. The collagen con-
tent significantly increased with all single treatments,
only trending higher with HP. Collagen content was
greatest in the presence of C-ABC/TGF-f1 (2.1+
0.2%) and HP/C-ABC/TGF-f1 (2.2 +£0.3%) treatments.
As factors, only TGEF-B1 significantly increased

Table 2 Neocartilage dimensions, hydration, and cellularity

collagen/DNA while both C-ABC and TGEF-P1 signifi-
cantly increased collagen/wet weight. Compared with
control, the GAG content was reduced with C-ABC
(2.5+0.3%) and HP (2.4 +£0.2%), while it was signifi-
cantly increased with TGF-B1 (5.2 + 0.2%) and HP/TGEF-
Bl treatment (5.2 +0.3%). The HP/C-ABC and HP/C-
ABC/TGEF-P1 treatments recovered the GAG content to
control values. C-ABC and TGF-B1 were significant fac-
tors in GAG/wet weight, with TGF-PB1 increasing GAG
and C-ABC decreasing GAG. Cellularity trended higher
than control with all single and combined treatments, and
was greatest in HP/C-ABC/TGEF-1 treatment (2.4 £ 0.3 x
10° cells/construct). Water content was greatest in control
and HP-treated constructs (Table 2). Hydration was sig-
nificantly reduced with C-ABC and TGEF-P1 alone, and
with all combinatorial treatments.

Treatment Control HP C-ABC TGF-B1 HP/C-ABC  HP/TGF-f1  TGF-$1/C-ABC  HP/C-ABC TGF-B1
Diameter (mm) 59401  58+01°  55+01° 56+00° 56+01°  56+00° 53+0.1° 54+01°
Thickness (mm) 07+01°® 07401  05+01¢ 07401  05+00°  07+00° 05 +00“ 06+ 0.0
Hydration (% water) ~ 892+06° 894+09° 864+09°  863+06° 862+05° 868+06°  868+07° 86.1+14°

Cells x 10%construct~ 16+04%  18+02° 20401 204039 21402 22403  24+03® 24+03°

Data reported as mean * standard deviation. C-ABC, chondroitinase ABC; HP, hydrostatic pressure; TGF-B1, transforming growth factor beta-1. Lowercase letters de-
note significance. All groups not connected by a common letter are significantly different (P <0.05).
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Figure 2 Biochemical composition of neocartilage normalized to tissue wet weight and DNA. (A) Chondroitinase ABC (C-ABC) and

transforming growth factor beta-1 (TGF-31) individually enhanced collagen density (per wet weight (ww)), and C-ABC/TGF-31 and hydrostatic
pressure (HP)/C-ABC/TGF-1 treatments synergistically enhanced collagen density (per ww). (B) Reflecting phenotypic changes, TGF-1 led to the
greatest increase in collagen production per cell. (C), (D) TGF-31 additionally enhanced the glycosaminoglycan (GAG) content, normalized to ww
and DNA, while C-ABC and combined treatments containing C-ABC showed the lowest GAG/DNA. Data reported as mean + standard deviation.

All groups not connected by a common lowercase letter are significantly different (P <0.05).

Collagen fibril density and diameter

Collagen was imaged via SEM (Figure 3A) and the fibril
diameter and density were quantified (Figure 3B). The fi-
bril diameter significantly increased with HP (55.8 +
2.0 nm) and C-ABC (51.1 £2.9 nm) alone, and with all
combinatorial stimuli, compared with control. Fibril
density increased significantly with C-ABC (87.1 + 1.1%)
and TGF-B1 (85.6 £ 1.1%) alone, and with all combina-
torial treatments. HP, C-ABC, and TGF-$1 as factors
significantly increased fibril density, while HP as a factor

significantly increased fibril diameter. Native porcine
costal cartilage demonstrated an average fibril diameter
of 69.3 + 3.8 nm while articular cartilage demonstrated a
fibril diameter of 61.2 + 4.8 nm. Fibril density was found
to be 88.6 +1.4% in costal cartilage and 86.2 + 0.8% in
articular cartilage.

Mechanical properties
Tensile and compressive properties of engineered tissues
are shown in Figure 4. Tensile stiffness increased
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Figure 3 Scanning electron microscopy images and fibril analysis in neocartilage. (A) Samples were fixed and imaged after 4 weeks
culture. Scale bar=1 pm. (B) Chondroitinase ABC (C-ABC), hydrostatic pressure (HP), and all combinatorial treatments significantly increased the
fibril diameter. Fibril density was significantly increased over control in all treatments with the exception of hydrostatic pressure. Data reported as
mean + standard deviation. All groups not connected by a common lowercase letter are significantly different (P <0.05). TGF-B1, transforming
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Figure 4 Tensile and compressive mechanical properties of
neocartilage. (A), (B) Chondroitinase ABC (C-ABC)and transforming
growth factor beta-1 (TGF-31) significantly increased tensile stiffness
and strength, while tensile properties trended higher with hydrostatic
pressure (HP). The C-ABC/TGF-31 and HP/C-ABC/TGF-31 treatments
synergistically enhanced tensile strength. (C), (D) TGF-31 also
significantly increased compressive instantaneous and relaxation
moduli. Combined C-ABC/TGF-31 treatment synergistically increased
instantaneous modulus. GAG depletion with C-ABC treatment did not
compromise compressive properties below control. Data reported as
mean + standard deviation. All groups not connected by a common
lowercase letter are significantly different (P <0.05).

significantly with C-ABC and TGF-B1 treatments alone,
and trended higher with HP. Greatest stiffness was seen in
C-ABC/TGEF-p1 (2.1 £0.2 MPa) and HP/C-ABC/TGF-f1
(1.9 + 0.4 MPa) treatments; in both treatments, the com-
binatorial stimuli exceeded the effects of any single sti-
mulus. The UTS trended higher with HP and C-ABC
treatments alone, and significantly increased with TGF-p1.
The HP/TGF-f1, C-ABC/TGEF-f1, and HP/C-ABC/TGE-f1
treatments synergistically increased the UTS; each com-
bination increased the UTS in excess of the cumulative
effect of the single treatments. The instantaneous com-
pressive modulus significantly increased in the presence of
TGF-B1 (615+ 105 kPa) and synergistically increased in
TGE-B1/C-ABC treatment (727 + 134 kPa). The relaxation
modulus significantly increased with C-ABC and TGF-f31.
HP/TGE-p1 was the combination treatment with the
greatest relaxation modulus (91 +21 kPa). As factors,
C-ABC and TGF-f1 significantly increased tensile moduli
and strength, and compressive instantaneous moduli.
Additionally, statistically significant positive correlations
between collagen content per tissue wet weight and tensile
stiffness (R*=0.59, P <0.001) and between collagen con-
tent per tissue wet weight and strength (R*=0.57,
P <0.001) were detected in engineered neocartilage.

Mature porcine articular and costal cartilage were
tested in tension and demonstrated tensile moduli of
22.0£3.9 MPa and 6.4 +2.1 MPa, and tensile strengths
of 11.0+1.8 MPa and 2.9+09 MPa, respectively. In
compression, porcine articular and costal cartilage dem-
onstrated relaxation moduli of 190 + 50 kPa and 720 +
390 kPa, and instantaneous moduli of 5.4 + 0.5 MPa and
3.3 + 1.6 MPa, respectively.

Discussion

This study sought to investigate additive and synergistic
benefits of combined anabolic and catabolic stimuli to-
ward enhancing the functional properties of neocartilage
engineered using clinically relevant costochondral cells.
Costal cartilage offers a useful donor cell population that
is unaffected by diseases of diarthrodial joints. Costal
cartilage is currently isolated with minimal donor site
morbidity for use in reconstructive surgeries, and
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improvements in the biomechanical properties of cartil-
age engineered with costochondral cells may allow for
use in load-bearing joints. Toward this, the independent
effects of TGF-B1, C-ABC, and HP and their combinator-
ial benefits were examined in third-passage, redifferen-
tiated costochondral cell constructs. The overall
hypothesis was that expanded, redifferentiated costochon-
dral cells would respond beneficially to exogenous stimuli
by demonstrating enhanced collagen content and tensile
properties. The results of this study confirmed the hypoth-
esis, showing that TGF-f1 and C-ABC independently en-
hanced collagen content and tensile properties of
engineered constructs. Also, dual treatments further en-
hanced properties over single treatments. Furthermore,
the effects of the full HP/C-ABC/TGE-p1 treatment were
more pronounced than dual treatments, except for C-
ABC/TGEF-B1. Costochondral cells present a clinically
relevant cell source that, when expanded, redifferentiated,
and self-assembled, respond to exogenous stimuli to gen-
erate mechanically robust tissue suitable for load-bearing
joints.

TGEF-B1 treatment significantly increased the collagen
and GAG contents and both tensile and compressive
mechanical properties of expanded, redifferentiated costo-
chondral cell constructs. Previously, low-dose TGEF-$1
stimulation (1 ng/ml) of primary costochondral cells in-
creased proline, thymidine, leucine, and sulfate incorpor-
ation [26]. However, in expanded, costochondral cells,
low-dose TGF-B1 had no effect on mechanical properties
of engineered tissue [27]; this dose was an order of mag-
nitude lower than that used here. Additionally, the costo-
chondral cells in the present study underwent aggregate
redifferentiation following expansion, resulting in the pro-
duction of type II collagen, GAG, and SZP akin to arti-
cular chondrocytes (Figure 1). In articular chondrocytes,
TGF-P1 signaling has been shown to be dose dependent,
with concentrations greater than 1 ng/ml increasing type
IT collagen, aggrecan, and SZP secretion [28,43]. In the
present study, TGF-Bf1 stimulation at 10 ng/ml signifi-
cantly increased biochemical content and mechanical
properties of engineered costochondral cell tissue.

C-ABC enhanced collagen density, fibril diameter, and
tensile properties in engineered costochondral cell neocar-
tilage. While C-ABC did not affect collagen synthesis per
cell (Figure 2B), the total collagen content per tissue wet
weight increased by 50%. SEM analysis of the matrix re-
vealed that C-ABC significantly increased fibril diameter
by 18% and density by 17%. With C-ABC treatment, colla-
gen fibrils on average were 51.1+3.0 nm, approaching
that of mature porcine articular cartilage (61.2 + 4.8 nm).
Additionally, increased fibril diameter has previously been
shown to correlate positively with tensile modulus [44].
This supports the hypothesis that the 125% increase in
tensile modulus with C-ABC treatment resulted from
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biophysical changes including increased fibril diameter
and density.

C-ABC is suggested to act on a biophysical level
through the temporary depletion of small proteoglycans
to enhance tensile properties. In articular chondrocytes,
C-ABC similarly increased the fibril diameter and dens-
ity, while no effect on genetic signaling was observed
[33,45]. Small collagen-binding proteoglycans, whose
GAG chains are cleaved by C-ABC, are known to play a
role in collagen fibrillogenesis [46,47]. One such proteo-
glycan, decorin, mediates the fibril diameter and the
interaction between fibrils [47], including fibril adhesion
and sliding. In the present study, GAG depletion may
allow changes in the matrix organization as well as
fibrillogenesis, as evidenced by the compact, aligned
matrix seen with C-ABC treatment and the increased
fibril diameter. In self-assembled costochondral cells,
C-ABC is suggested to act through the temporary deple-
tion of proteoglycans to alter matrix characteristics and
enhance tensile properties.

TGEF-f1/C-ABC dual treatment synergistically enhanced
the collagen content and tensile strength in expanded
costochondral cell constructs. The combination of C-ABC
and TGF-P1 increased collagen density per wet weight by
300% over control, which was notably greater than the
effect of TGF-B1 (170%) or C-ABC (50%) alone. As a re-
sult of the observed matrix changes, the combined stimuli
enhanced tensile stiffness by 250% and strength by 320%,
over control. In articular chondrocytes, TGF-f1 has been
shown to act in the canonical pathway via SMAD sig-
naling to upregulate type II collagen synthesis [48,49],
while C-ABC has been shown to act on a nongenetic level
[33] to increase fibril density and diameter. In costochon-
dral cell constructs, the combination of an anabolic agent
that enhances biosynthesis (TGF-B1) and a catabolic agent
that acts in a biophysical manner to increase fibril density
(C-ABC) synergistically enhanced collagen content and
tensile strength.

HP increased the collagen fibril diameter and density
in costochondral cell constructs. Analysis of SEM images
revealed that HP increased the fibril diameter by 30%;
this was the greatest increase in fibril diameter observed
with any treatment. HP also significantly increased the
fibril density. In articular chondrocytes, HP has previ-
ously been shown to increase the collagen content and
tensile properties [13,18], while the fibril diameter and
density were not investigated. In the present system, HP
as a factor did not significantly increase tensile proper-
ties, although a trending increase in tensile strength was
observed (P =0.12). Additional investigation is required
to identify whether HP has a significant effect in this cell
system and whether alternate loading conditions pro-
duce more beneficial effects. Mechanisms downstream
of ion channel-based alterations may be one means by
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which HP increases fibril diameter and density in costo-
chondral cell constructs.

The extracellular signal-regulated kinase 1/2 (ERK1/2)
pathway may be a second mechanism of action for both
HP and TGEF-P1, with TGF-P1 responding more robustly.
In treatments containing both HP and TGF-p1, the bio-
mechanical benefits of HP were dominated by TGF-f1.
Previous work with articular chondrocytes stimulated by
HP via the regimen used here demonstrated that the
ERK1/2 pathway is required for tensile property enhance-
ment [18]. Inhibition of ERK1/2 by U0126 blocked the
tensile modulus enhancement observed with HP stimula-
tion. TGF-B1 has also been shown to activate matrix pro-
duction in articular chondrocytes via ERK1/2 [50]. In the
combined HP/TGF-B1 treatment, the collagen and GAG
contents and mechanical properties showed no significant
differences from TGF-P1 treatment alone. Additionally,
no significant differences were observed between C-ABC/
TGF-B1 and full HP/C-ABC/TGF-f1 treatment in bio-
chemical content or mechanical properties. With both of
these stimuli showing action through the ERK1/2 pathway
in articular chondrocytes, the effect of TGF-B1 may be
more robust in this cell population.

Engineered costochondral cell neocartilage demon-
strated tensile properties that correlated with collagen
content. In the present study, biomechanical, biophysical,
and biochemical stimuli were employed with an objective
of engineering robust tissues that would be capable of
withstanding in vivo loads from cells that normally do not
bear such loads. The results demonstrated that TGF-$1
upregulated collagen synthesis (175% increase in collagen/
DNA) associated with increased tensile properties. In con-
trast, C-ABC led to no change in collagen synthesis on the
cell level, yet increased tensile properties through modula-
tion of fibril diameter and density. The statistically signifi-
cant positive correlation between collagen content per
tissue wet weight and tensile stiffness (R* = 0.59, P <0.001)
and strength (R*=0.57, P <0.001) is thus a function of
both collagen synthesis and fibril compaction. Full HP/
C-ABC/TGE-B1 treatment achieved 2.2% collagen/wet
weight and a tensile modulus of 2 MPa. One may antici-
pate that further efforts to enhance collagen production,
maturation, and organization will result in further in-
creases in tensile properties of engineered tissues.

Costochondral cells present a clinically relevant cell
source that may be stimulated in vitro to generate robust
articular cartilage for use in load-bearing joints. Costal
cartilage may be isolated with ease surgically, and is un-
affected by pathologies of the articulating joints, including
arthritis. Costochondral cells may be expanded in mono-
layer to increase cell number, and, furthermore, chondro-
genic redifferentiation and self-assembly result in a cell
population that produces markers of articular cartilage:
type II collagen, GAG, and SZP. While SZP gene [51] and

Page 9 of 11

protein (Figure 1) expression is absent in costal cartilage
natively, engineered neocartilage demonstrated the pre-
sence of this protein, which functions in lubrication in
load-bearing, diarthrodial joints. Additionally, expanded,
redifferentiated costal chondrocytes respond to exogenous
stimuli similarly to articular chondrocytes [13,28,33,34].
Most notably, costal chondrocytes show a beneficial re-
sponse to TGF-B1, C-ABC, and HP individual treatments,
and a synergistic increase in tensile strength and collagen
content in dual C-ABC/TGF-f1 treatment. The presence
of SZP in engineered neocartilage further suggests that
nonarticular costochondral cells may be induced to act in
a manner reminiscent of articular chondrocytes. Ex-
panded, redifferentiated costochondral cells respond bene-
ficially to exogenous stimuli to generate robust articular
cartilage, indicating the potential of this cell source in en-
gineering load-bearing joint structures.

Conclusions

This study presents the first systematic analysis of the in-
dependent and combinatorial benefits of salient biochem-
ical, biomechanical, and biophysical stimuli in engineering
costochondral cell neocartilage tissue replacements. More-
over, this analysis was performed using a clinically relevant
cell population, costochondral cells, which are unaffected
by pathologies of articulating joints. HP, TGF-f1, and
C-ABC each enhanced functional properties of engineered
tissues, and dual treatments further enhanced the collagen
content, and tensile and compressive properties. Overall,
full HP/C-ABC/TGEF-B1 treatment achieved a tensile
modulus of 2 MPa, an instantaneous compressive modu-
lus of 650 kPa, and a relaxed modulus of 40 kPa with
a matrix composition most similar to native articular
cartilage.
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