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Abstract

Introduction: Discrimination of rheumatoid arthritis (RA) patients from patients with other inflammatory or
degenerative joint diseases or healthy individuals purely on the basis of genes differentially expressed in
high-throughput data has proven very difficult. Thus, the present study sought to achieve such discrimination
by employing a novel unbiased approach using rule-based classifiers.

Methods: Three multi-center genome-wide transcriptomic data sets (Affymetrix HG-U133 A/B) from a total of 79

individuals, including 20 healthy controls (control group - CG), as well as 26 osteoarthritis (OA) and 33 RA patients,
were used to infer rule-based classifiers to discriminate the disease groups. The rules were ranked with respect to
Kiendl's statistical relevance index, and the resulting rule set was optimized by pruning. The rule sets were inferred
separately from data of one of three centers and applied to the two remaining centers for validation. All rules from
the optimized rule sets of all centers were used to analyze their biological relevance applying the software Pathway
Studio.

Results: The optimized rule sets for the three centers contained a total of 29, 20, and 8 rules (including 10, 8, and 4
rules for ‘RA’), respectively. The mean sensitivity for the prediction of RA based on six center-to-center tests was
96% (range 90% to 100%), that for OA 86% (range 40% to 100%). The mean specificity for RA prediction was 94%
(range 80% to 100%), that for OA 96% (range 83.3% to 100%). The average overall accuracy of the three different
rule-based classifiers was 91% (range 80% to 100%). Unbiased analyses by Pathway Studio of the gene sets obtained

serine/threonine kinase 10.

by discrimination of RA from OA and CG with rule-based classifiers resulted in the identification of the
pathogenetically and/or therapeutically relevant interferon-gamma and GM-CSF pathways.

Conclusion: First-time application of rule-based classifiers for the discrimination of RA resulted in high performance,
with means for all assessment parameters close to or higher than 90%. In addition, this unbiased, new approach
resulted in the identification not only of pathways known to be critical to RA, but also of novel molecules such as

Introduction

Rheumatoid arthritis (RA) and osteoarthritis (OA) are the
most common forms of arthritis [1]. In spite of different
pathogeneses, these arthritides exhibit phenotypic simi-
larities and overlapping cellular and molecular characteris-
tics [1,2]. RA is a progressive, chronically inflammatory,
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destructive joint disease of still unknown etiology, perpet-
uated by an invasive synovial membrane (also known as
pannus tissue) [3]. Various activated or semi-transformed
cell types in the synovial membrane (monocytes/macro-
phages, osteoclasts, T cells and B cells, dendritic cells and
endothelial cells, synovial fibroblasts) contribute to the de-
velopment and progression of RA by secretion of proin-
flammatory cytokines and tissue-degrading proteases [4,5].
Similarly, OA is characterized by progressive destruction
of cartilage and bone and dysregulation of synovial func-
tion [6]. OA arises from the damage of articular cartilage
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induced by physical injury and is subsequently influenced
by a variety of intrinsic (for example, genetic, cellular, or
immunologic) factors [7]. The OA synovial membrane
also shows an inflammatory component, although clearly
less pronounced than in RA [2,7].

Compatible with these similarities, the synovial tissue of
OA and RA patients contains mesenchymal precursor cells
and attempts to regenerate damaged cartilage and subchon-
dral bone in the adult organism. In contrast to fetal healing,
however, the synovial tissue may require inflammation to
sustain and control the fibroproliferation [8].

Although these overlapping features have led to the de-
velopment of pharmacological or surgical therapies effect-
ive in both diseases [9-12], the similarities at the same
time impede a reliable discrimination of the two arthriti-
des. Diagnostic methods classically include radiography
[13], histopathological assessment of synovitis [14], detec-
tion of rheumatic nodules, selected laboratory values such
as rheumatoid factor and citrullinated peptides [15,16],
and evaluation of the patients’ individual and family his-
tory [17]. Recently, an improved ultrasound-based scoring
system has also been proposed [18]. In general, American
College of Rheumatology criteria for RA [15,19] or for OA
[16] are often used for diagnostic purposes, although they
were originally intended as classification criteria, for ex-
ample, for the comparison of cohorts in different clinical
studies [20]. However, an appropriate discrimination of
RA and OA is particularly difficult at later stages of the
diseases, and the recent revision of the respective criteria
has not significantly improved their diagnostic capability
[20]. For instance, the presence of rheumatoid factor as a
marker for RA has been questioned due to its high vari-
ability and should be replaced by the level of anti-
citrullinated protein antibodies [21].

An easier discrimination of different forms of arthritis
has been attempted by molecular approaches, in particu-
lar, disease-specific gene expression profiling. These at-
tempts have partially focused on the expression of
selected candidate molecules with a known influence on
the respective diseases; for example, type I interferon
family members [22,23], tumor necrosis factor superfam-
ily and bone morphogenetic protein family members
[24], citrullinated synovial proteins [25], and proteases
such as metalloproteinases or cathepsins [26]. Although
these studies have indicated the existence of individual
or combined biomarkers for RA, the validity of this ap-
proach has not been universal. Some of the studies have
succeeded in discriminating RA from normal controls,
but not from other arthritides, while other studies have
successfully discriminated RA from other forms of arth-
ritis (such as spondylopathy or psioriatic arthritis), but
not from OA [24].

In parallel to candidate gene analyses, broader, un-
biased genome-wide gene expression profiles [27] have
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been used to identify disease-specific signatures and hid-
den biomarkers in rheumatology with microarray-based
methods [28]. This has been applied to discriminate
early versus late RA [29] and to discriminate RA versus
OA [30,31]. In addition, differentially expressed genes
have been successfully used to predict the response of
RA patients to therapeutic approaches, for example, the
capability of certain (type I interferon-responsive) genes
to predict rituximab nonresponders [32] and anti-tumor
necrosis factor nonresponders [33] or to define homoge-
neous subgroups within a heterogeneous disease such as
RA [22]. However, most studies were not designed to
identify gene expression patterns as a potential diagnos-
tic tool, but rather to elucidate the underlying transcrip-
tional networks [34]. The validity of the identified genes
as markers for RA or OA was generally also not validated
in replication cohorts. Finally, differentially expressed re-
spectively regulated genes or pathways common to RA
and OA remain a major challenge [30].

These obstacles may be overcome using microarray data
from several analytic centers to identify sets of differen-
tially expressed genes for the reliable diagnosis of different
arthritides. For this purpose, bioinformatic methods
suitable to process and interpret the large amounts of
high-dimensional data, and also algorithms for the identi-
fication of rules concerning the expression of disease-
specific genes, are of utmost importance [35].

In personalized medicine and theranostics, the gener-
ation of decision rules is a well-established method for
the design of clinical decision support systems and/or
for the discovery of relevant relationships among patho-
genetically relevant genes in large databases [36,37]. This
approach is intended to identify strong rules using differ-
ent measures of so-called interestingness, for example,
specificity for a certain disease entity. To select interest-
ing rules from the set of all possible rules, constraints on
various measures of significance can be used, such as
thresholds on support and confidence. In our hands
[38], the relevance index introduced by Kiendl and co-
workers [39-43] is able to generate robust rule sets with
high predictive strength from data of high dimension
(for example, number of genes) but of low sample num-
ber. A deterministic decision rule R, is defined by ‘IF P,
(y) THEN C,’, where P, describes a premise evaluating
the observations y (that is, the enhanced expression of a
given gene) and C, is the set of possible conclusions (for
example, the prediction of a disease status of a given in-
dividual). In the present work, C, is a categorical variable
defined by the set of three clinical states {{CG’ — control
group, RA’ — rheumatoid arthritis, ‘OA’ — osteoarthritis}
and each premise P, is defined by the expression of only
one gene (uniconditional rules).

This rule-oriented approach may represent a more
suitable alternative to the widely used identification of
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differentially expressed genes to generate a sorted list of
candidate genes of interest. The approach thus combines
three major advantages: i) by avoiding the application of
differentially expressed genes, it is more robust in its dis-
criminative capacity to data heterogeneity among different
donors or patients; ii) due to separate normalization and
independent rule set generation, it is capable of eliminat-
ing center-specific effects, thus yielding higher sample
sizes in study cohorts; and iii) cross-validation among dif-
ferent clinical centers is possible, independently of individ-
ual differentially expressed genes.

In this study, three multicenter genome-wide tran-
scriptomic datasets from 79 individuals were used to
infer rule-based classifiers to discriminate RA, OA, and
healthy controls. The rule sets were inferred separately
from one center and were applied to the other centers
for validation. This novel approach resulted in high per-
formance (close to 90% for specificity, sensitivity, and ac-
curacy) for the discrimination of RA. Unbiased analysis
of the biological relevance of the underlying rules by
Pathway Studio (Elsevier, Munich, Germany) and gene
enrichment analysis succeeded in identifying pathways
with pathogenetic or therapeutic relevance in RA.

Materials and methods

Patients

Synovial membrane samples were obtained either from
postmortem joints/traumatic joint injury cases (control
group (CQ); n =15 and n =5, respectively) or from RA/OA
patients (all Caucasian) upon joint replacement/synovect-
omy at the Jena University Hospital, Chair of Orthopedics,
Waldkrankenhaus ‘Rudolf Elle, Eisenberg, Germany (n = 33,
dataset Jena’), at the Department of Orthopedics/Institute
of Pathology/Department of Rheumatology and Clinical
Immunology, Charité-Universitdtsmedizin Berlin (n = 30,
dataset ‘Berlin’), and at the Department of Orthopedics/
Institute of Pathology, University of Leipzig (n = 16, dataset
‘Leipzig’). After removal, tissue samples were frozen and
stored at -70°C.

The study was approved by the respective ethics
committees (Jena University Hospital: Ethics Committee
of the Friedrich Schiller University Jena at the Medical
Faculty; Charité-Universitatsmedizin Berlin: Charité
Ethics Committee; and University of Leipzig: Ethics
Committee at the Medical Faculty of the University of
Leipzig) and informed patient consent was obtained. RA
patients were classified according to the American
College of Rheumatology criteria valid in the sample
assessment period [15], OA patients were classified
according to the respective criteria for OA [16]. The
patients/donors were assigned to one of the three terms
(categorical values): ‘CG’, RA,, or ‘OA’ (for clinical
characteristics of the donors/patients, see Table 1).
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Data

Data for 79 patients/donors were obtained from three
clinical groups located in Jena, Berlin, and Leipzig, re-
spectively, as presented in Table 2.

Isolation of total RNA

Tissue homogenization, total RNA isolation, and treat-
ment with RNase-free DNase I (Qiagen, Hilden, Germany)
were performed as described previously [44].

Microarray analysis

Gene expression was analyzed using HG-U133 A/B RNA
microarrays (Affymetrix, Santa Clara, CA, USA) for the
datasets ‘Jena’, ‘Berlin’, and ‘Leipzig’ — a total of 79 micro-
arrays. Labeling of RNA probes, hybridization, and wash-
ing were carried out according to the supplier’s
instructions. Microarrays were analyzed by laser scanning
(Gene Scanner; Hewlett-Packard, Palo Alto, CA, USA).

Pre-processing of microarray data

Gene expression data were pre-processed by MAS5.0
(Affymetrix Microarray Suite). The data are accessible
through Gene Expression Omnibus series [GSE:55235]
(Haeupl; ‘Berlin’ data), [GSE:55584] (Stiehl; ‘Leipzig’
data), and [GSE:55457] (Kinne; ‘Jena’ data).

For the study group ‘Jena_all; all probe sets independent
of their Affymetrix ‘present call’ were used for further ana-
lysis. For the study groups ‘Jena’, ‘Berlin’, ‘Leipzig’, and “Total’,
further analyses were restricted to those genes qualified by a
‘present call’ in all samples of the respective study group (as
calculated by MAS 5.0). The data were separately normal-
ized for the three different study groups ‘Jena), ‘Berlin’, and
‘Leipzig’ by dividing the gene expression signals for a given
gene i and sample/patient j by the median over all probe sets
in this sample and were subsequently logarithmized (logy),
yielding the values y;. By performing completely independ-
ent normalization and rule set generation (see Rule set gen-
eration) in the three different clinical datasets, potential
problems related to differences in sample preparation and
wet laboratory conditions were avoided [45].

Clustering

The data were separately clustered for each probe set
(gene) using a modified fuzzy C-means algorithm and two
clusters. Here, the fuzzy C-means algorithm [46] was ap-
plied for the normalized and logarithmized (log,) gene
expression data (y;) of a given gene for every patient be-
longing to the respective group (that is, Jena_all’, Jena’,
‘Berlin’, ‘Leipzig’, or ‘Total’) to estimate membership de-
grees (M;;) ranging from O to 1 for unequivocal assign-
ment to one of the groups ‘low” or ‘high’ gene expression.
The centers (CT;; CT;; < CT)) of the respective gene ex-
pression clusters (CLy, k=1 for the cluster labeled ‘low’
and k=2 for that labeled ‘high’) were also estimated.
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Table 1 Clinical characteristics of the patients at the time of synovectomy/sampling

Patients Gender Age Disease RF ESR CRP? Number of ARA- Concomitant
(total number) (male/female) (Years) duration (years) (+/-) (mm/1 hour) (mg/l) criteria (RA) medication (n)
Control group
(n=20) 15/5 547+40 03+03° nd. nd. nd. na. NSAIDs (n=1)
(n.d.=13) None (n=7)
(nd.=12)
Osteoarthritis
(n=26) 4/22 710+£14 7013 3/18 224+27 53+£15 0201 NSAIDs (n=16)
(nd. =1 (nd.=5) (nd.=5) (nd.=3) None (n=10)
Rheumatoid arthritis
(n=33) 8/25 570£27 125+20 21/7 427 +45 214+41 5203 Prednisolone (n = 23)
(nd.=7) (nd.=10) (nd.=3) Methotrexate (n=18)
Sulfasalazine (n=15)
Chloroquine (n=2)
Leflunomide (n=2)

Cyclosporine (n=1)
Gold (n=1)
NSAIDs (n=22)

For the parameters age, disease duration, ESR, CRP, and number of ARA criteria (RA), means + standard error of the mean are given; for the remaining parameters,
numbers are provided. ARA, American Rheumatism Association (now American College of Rheumatology); n.a., not applicable; n.d., not determined; NSAID,
nonsteroidal anti-inflammatory drug; RA, rheumatoid arthritis; RF, rheumatoid factor; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein.

“Normal range, <5 mg /I.
PDisease duration in joint trauma patients.

Subsequently, a modified membership degree was used
(M5 with M;;"=1 and M =0 if y;<CTy; with
M "=0and M =1 if y; > CTj; with My = My other-
wise; that is, for all data in between the two centers).

Rule set generation

First, all uniconditional rules were generated independently
for the three different clinical study groups ‘Jena’, ‘Berlin’,
and ‘Leipzig’ using the formula ‘IF the premise P, is fulfilled
THEN the conclusion C, is reached. The premise P, is de-
fined as follows: the expression of gene i belongs to either
the cluster labeled ‘low’ (CL;;) or the cluster labeled ‘high’
(CLj). The three possible conclusions (C,; that is, in the
present study the prediction of the clinical status) are ‘CG’
(that is, no ‘RA’, no ‘OA)), RA’, or ‘OA.

These rules were ranked using the relevance index R, in-
troduced by Kiendl and others [39-43]. Here, a rule ‘IF P,
THEN C, is ranked on the basis of RI,. In this case, RI, rep-
resents the normalized gap between the confidence interval

of the conditional probability of the conclusion C, under
the premise P, and the confidence interval of the (uncondi-
tional) probability of the conclusion C, as described in
Additional file 1. The calculation of the confidence interval
was done using a significance level alphas with a default
value 0.95, and a reduced alphag for ‘Jena’, ‘Berlin’, and
‘Leipzig’ in order to generate a sufficient number (>3) of
rules with RI,.> 0 for each conclusion (‘CG’, ‘RA, or ‘OA).
Next, it was checked and confirmed that alphag > alphas,.,.
domy Where at least one rule was generated for each of the
three conclusions using original pre-processed gene expres-
sion values y;, and a random assignment to the individual
conclusions (‘CG’, RA, and ‘OA) in the training set.

Rule set pruning

As a result of the primary rule set generation, a ranked
set of 7,,,:(C, S) rules was generated using the criterion
RI.>0.

Table 2 Number of clinical samples and transcriptome datasets

Study group S Control Osteoarthritis Rheumatoid arthritis Total Microarray platform?®
‘Jena’ 10 10 13 33 Affymetrix HG-U133 A
‘Berlin’ 10 10 10 30 Affymetrix HG-U133 A
‘Leipzig’ 0 6 10 16 Affymetrix HG-U133 A
Total 20 26 33 79

2From Affymetrix, Santa Clara, CA, USA.
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Rule set pruning was then applied in order to
minimize the numbers of both rules (r,,;) and ‘Errors’
(that is, false assignment to one of the three conclusions;
for more detail see Application of the rule sets and
Evaluation of a rule set). The number of rules in each
rule set was optimized by greedy search with the follow-
ing constraints: the numbers 7,,,(C, S) have to be at least
4 for each conclusion and not higher than the double of
the minimum number of rules in any of the respective
rule sets for the three conclusions — that is, 7,,/(C, S) 24
and r,,,/(C, S) < 2* ming(7,,,.x(C, S)).

The purpose of this step was also to generate rule sets
with a balanced number of rules for the three conclusions.

Application of the rule sets
The rule sets for the different conclusions were then ap-
plied to each sample (patient) j by voting in order to
achieve an individual prediction of its clinical status.
First, each rule ‘IF P, THEN C,” with the premise P,
(P, = ‘the expression y of gene i is assigned to cluster k
(i.e., “low” or “high”)) was weighted by application of
the aforementioned fuzzy membership degree (W,; = M;j
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‘(y5)) to the sample j (see earlier Clustering). These
membership weights (W,;; range from 0 to 1, with 1 in-
dicating an unequivocal prediction of the conclusion C,)
were visualized in a heat map for all samples (j) and all
rules (Figures 1, 2, 3, 4, 5A,B of the respective study
group).

Next, the weights W;('CG’), W;('OA), and W;(RA) for
each individual sample j were calculated by summing up
the respective membership weights (W,;) over all rules
(r) belonging to the rule set for a given conclusion.

Finally, the highest weight was used for the predic-
tion of the clinical status of each sample (so-called
‘defuzzification’):

Chredict, = arg max(W,»(‘CG’)7 W;(‘0A"), Wj(‘RA’))

This procedure is used for prediction of the clinical
status in both the original training set (y;) from a given
study group (for example, Jena’) and all subsequently an-
alyzed test sets from other study groups (for example,
‘Berlin” and ‘Leipzig’).

A Clinical status

B Clinical status
G OA RA
(10 | @0 (13

Classification
rules (with concl.)

fuzzy membership degree M,

o —
c 0 1

Clinical Status

Classification
rules (with conclusion)

CG | OA | RA | Sum
TN | FNgs | FNps
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©
E| on | FPos | TPos | FPos
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RA 0 0 13 13
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Errors 0 1 0 1

Figure 1 Heatmaps and confusion matrix for the study group ‘Jena_all'. Data for the study group ‘Jena_all’ (that is, utilizing all probe sets)
were obtained using the Jena patients (10 control group (CG), 10 osteoarthritis (OA), 13 rheumatoid arthritis (RA)) as the training set for the rule
generation and re-applying the respective rules to the same dataset. (A) Heatmap of the membership weights applying all rules of the primary
rule set (a=0.95; ‘CG, 45 rules; ‘OA’, seven rules; ‘RA’, 27 rules) for the prediction of the clinical status of the different samples; dashed red lines
indicate the lower limits of the respective pruned lists of rules subsequently applied in (B). (B) Heatmap of the membership weights applying
pruned lists of rules (a=0.95; ‘CG, ‘OA’, and ‘RA, seven top-ranked rules each) for optimized prediction of the clinical status of the different samples.
(C) Confusion matrix for the rule set displayed in heatmap (B). TP, true positives; TN, true negatives; FP, false positives; FN, false negatives.
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Figure 2 Heatmaps and confusion matrix for the study group ‘Jena’. Data for the study group Jena’ (that is, utilizing only the probe sets
with MAS 5.0 present calls in all samples) were obtained using the Jena patients (10 control group (CG), 10 osteoarthritis (OA), 13 rheumatoid
arthritis (RA)) as the training set for the rule generation and re-applying the respective rules to the same dataset. (A) Heatmap of the membership
weights applying all rules of the primary rule set (a=0.94; ‘CG, 31 rules; ‘OA’, 10 rules; ‘RA’, 20 rules) for the prediction of the clinical status of the
different samples; dashed red lines indicate the lower limits of the respective pruned lists of rules subsequently applied in (B). (B) Heatmap of the
membership weights applying pruned lists of rules (a=0.94; ‘CG, nine top-ranked rules; ‘OA’, 10 top-ranked rules; ‘RA’, 10 top-ranked rules) for
optimized prediction of the clinical status of the different samples. (C) Confusion matrix for the rule set displayed in heatmap (B). TP, true

Evaluation of a rule set
Comparing the predicted conclusions (C predice j) with
the observed clinical status (D;), the numbers of true
positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN) were counted individually for
the three states (‘CG’, ‘OA’, RA)) to set up the confusion
matrix. The sum of the TP and TN over the three states
gives a number called ‘Hits” and the sum of FN and FP a
number called ‘Errors’. The total sum (n= TP+ TN + FP +
FN) equals the number of samples.

The following measures were calculated to assess the
quality of the classification:

Sensitivity for the classification of RA = TPry / (TPga +
FNgy4 + FPpy); all values derived from the column
clinical status RA in the respective confusion matrix
Sensitivity for the classification of OA = TPo, / (TPo4 +
FNpy + FPry); all values derived from the column clinical
status OA in the respective confusion matrix

Specificity for the classification of RA = TN, / (TNga +
FPp4); with TNpy = TN + FNpy + TPoy + FPoy (latter
value derived from the column clinical status CG) and
with the value for FPg, representing the sum of the two
corresponding fields in the columns clinical status CG
and OA of the respective confusion matrix

Specificity for the classification of OA = TN, / (TN +
FPp,); with TNy = TN + ENgs + TPgu + FPra (latter
value derived from the column clinical status CG) and
with the value for FPp, representing the sum of the two
corresponding fields in the columns clinical status CG
and RA of the respective confusion matrix

Overall specificity (RA + OA) = TN/ATN + FPo4 + FPra);
all values derived from the column clinical status CG in
the respective confusion matrix

Accuracy = (TN + TPo + TPr4)/n

The sensitivities were calculated on the basis of the

numbers from the corresponding columns of the
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Figure 3 Heatmaps and confusion matrix for the study group ‘Berlin’. Data were obtained using the study group ‘Berlin’ (10 control
group (CG), 10 osteoarthritis (OA), 10 rheumatoid arthritis (RA)) as the training set for the rule generation and re-applying the respective
rules to the same dataset. (A) Heatmap of the membership weights applying all rules of the primary rule set (a=0.94; 'CG, 221 rules;
‘'OA’, four rules; ‘RA’, 29 rules) for the prediction of the clinical status of the different samples; dashed red lines indicate the lower limits
of the respective pruned lists of rules subsequently applied in (B). (B) Heatmap of the membership weights applying pruned lists of rules
(a=094; 'CG, eight top-ranked rules; ‘OA’, four top-ranked rules; 'RA’, eight top-ranked rules) for optimized prediction of the clinical status
of the different samples. (C) Confusion matrix for the rule set displayed in heatmap (B). TP, true positives; TN, true negatives; FP, false

confusion matrix (see above). FNp, represents the
number of classifications as ‘CG’ if the (‘true’) clinical
state was RA, and FNy, the number of classifications
as ‘CG’ if the (‘true’) clinical state was OA. For the
study group ‘Leipzig’, which contains no control
group (‘CQ’), FPp, represents the misclassifications as
‘RA, if the (‘true’) clinical status was OA, and FPpy,
represents the misclassifications as ‘OA’, if the (‘true’)
clinical status was RA.

Identification of biologically relevant molecules

Functional relations between the genes selected by the rule-
based approach (total of 57) were screened using Pathway
Studio (P9, version from 18 February 2013) following iden-
tification of synonyms in GeneCard (Weizmann Institute of
Science, Rehovot, Israel. In addition, gene enrichment ana-
lysis was performed using the tool DAVID [47] to identify
overrepresented GO-terms or KEEG pathways for the clin-
ical states ‘CG;‘OA; or ‘RA’ in the dataset “Total’.
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Figure 4 Heatmaps and confusion matrix for the study group ‘Leipzig’. Data were obtained using the study group ‘Leipzig' (O control group
(CQ), six osteoarthritis (OA), 10 rheumatoid arthritis (RA)) as the training set for the rule generation and re-applying the respective rules to the
same dataset. (A) Heatmap of the membership weights applying all rules of the primary rule set (a = 0.85; ‘CG, zero rules; ‘OA’, 72 rules; 'RA’, four
rules) for the prediction of the clinical status of the different samples; dashed red lines indicate the lower limits of the respective pruned lists of
rules subsequently applied in (B). (B) Heatmap of the membership weights applying pruned lists of rules (a = 0.85; ‘CG', zero top-ranked rules;
‘OA’, four top-ranked rules; ‘RA’, four top-ranked rules) for optimized prediction of the clinical status of the different samples. (C) Confusion matrix
for the rule set displayed in heatmap (B). TP, true positives; TN, true negatives; FP, false positives; FN, false negatives.

Results

In the first step, classifiers that discriminated between
‘RA’ patients, ‘OA’ patients, and healthy controls (‘CGQ’)
were separately trained for each of the study groups and
were subsequently applied (tested) for the other study
groups not initially used for training.

Training of the classifiers

The significance level alphas were set to the default
value of 0.95 for ‘Jena_all’ (n = 33 patients/samples) and
for “Total’ (n="79). For the other study groups, alphas
was reduced to 0.94 for ‘Jena’ (n=33) and ‘Berlin’ (1 =
30) and to 0.85 for ‘Leipzig’ (n=16), as described in
Materials and methods. alphas thus depended on both
the sample size n and number m of considered probe
sets (see below).

alphas;anaoms for which at least one rule was randomly
generated for each of the three conclusions, was between
0.01 and 0.10 smaller than the alphag used for gener-
ation of the primary rule sets (see Additional file 2 and
Materials and methods for details).

The training results obtained for the study group ‘Jena_all’
are shown in Figure 1. After primary rule generation, 45,
seven, and 27 rules were obtained for the clinical states
‘CG,‘OA, and ‘RA, respectively (that is, the numbers 7,,,,,
(‘CG, ena_all), 71,,,,(OA, ‘Jena_all)) and 7, (RA,
Jena_all')). The corresponding rule sets are listed in
Additional file 3. For each rule (r=1, ..., 7,,.,{(C, Jena_all’))
and each sample (total of 33 patients; 10 CG, 10 OA, and 13
RA), the membership weight (W;; calculated by the fuzzy
membership degree) is displayed as a heat map in
Figure 1A. After pruning, seven rules were selected for each
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Figure 5 Heatmaps and confusion matrix for the study group ‘Total’. Data were obtained using the study group Total’ (pooled data from
the three centers; 20 control group (CG), 26 osteoarthritis (OA), 33 rheumatoid arthritis (RA)) as the training set for the rule generation and
re-applying the respective rules to the same dataset. (A) Heatmap of the membership weights applying all rules of the primary rule set (a =0.95;
'CG, 281 rules; 'OA’, 25 rules; ‘RA’, 108 rules) for the prediction of the clinical status of the different samples; dashed red lines indicate the lower
limits of the respective pruned lists of rules subsequently applied in (B). (B) Heatmap of the membership weights applying pruned lists of rules
(a=0.95; 'CG, 21 top-ranked rules; ‘OA’, nine top-ranked rules; ‘RA’, 15 top-ranked rules) for optimized prediction of the clinical status of the
different samples. (C) Confusion matrix for the rule set displayed in heatmap (B). TP, true positives; TN, true negatives; FP, false positives; FN,

of the conclusions (Figure 1B). Figure 1C and Table 3 dis-
play the confusion matrix and quality parameters of the
training results. Except for the sensitivity for OA (90%) and
the accuracy (97%), all quality parameters reached 100%.

The following results are restricted to probe sets that
were qualified by a ‘present call’ for all samples of the re-
spective dataset. In the case of the dataset ‘Jena’, a num-
ber m of 7,768 probe sets was considered, for ‘Berlin’
5,159 probe sets, for ‘Leipzig’ 8,539 probe sets, and for
‘Total’ 4,982 probe sets.

Using the reduced dataset for ‘Jena’, a total of 61 rules
was generated (31 rules for ‘CG; 10 rules for ‘OA’, and
20 rules for ‘RA’) as shown in Figure 2A. This primary
rule set was pruned to a set of 29 rules, whose perform-
ance is displayed in Figure 2B,C. The rule set trained
with the data of the study group ‘Jena’ and applied to the
same dataset resulted in zero errors (Figure 2C) and an
optimization of all quality parameters to 100% (Table 3).

The same type of analysis (application of ‘present
calls’; rule set training) was performed for the study
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Study group S ‘Jena_all ‘Jena’ ‘Berlin’ ‘Leipzig’ ‘Total’
Figure 1 2 3 4 5
Number of rules for 'CG' 7 9 8 0 21
Number of rules for ‘OA’ 7 10 4 4 9
Number of rules for ‘RA’ 7 10 8 4 15
Sensitivity for RA (%) 100 100 100 100 97
Sensitivity for OA (%) 90 100 100 100 100
Specificity for RA (%) 100 100 100 100 100
Specificity for OA (%) 100 100 100 100 96.2
Overall specificity (RA + OA) (%) 100 100 100 n.a 95
Accuracy (%) 97 100 100 100 97.5

CG, control group; n.a., not applicable; OA, osteoarthritis; RA, rheumatoid arthritis. °See Additional file 3.

groups ‘Berlin’ and ‘Leipzig’ (Figures 3 and 4; sum-
mary in Table 3). Again, rule sets trained in and re-
applied to the same dataset resulted in zero errors
(Figures 3C and 4C). For the study group ‘Leipzig,
however, the overall specificity could not be estimated
due to missing data in the control group (‘CG’). Rule
set training in the pooled 79 samples from the study
groups ‘Jena’, ‘Berlin’, and ‘Leipzig’ (named study
group ‘Total’) resulted in the rules displayed in Fig-
ure 5 and in only two errors (77 truly classified sam-
ples; Figure 5C).

Table 4 Assessment of test results

Internal validation of pruned rule sets from the three
clinical centers by leave-one-out cross-validation and
bootstrapping resulted in acceptable error rates (see
Additional file 2).

Testing of the classifiers

The classifiers separately trained in the study groups
‘Jena’, ‘Berlin’, and “Leipzig’ (see Figures 2, 3 and 4) were
next applied to the respective other study groups not
used for training (Table 4). The average accuracy was ap-
proximately 91%, ranging from 80 to 100%. The mean

Training set from study group ‘Jena’ ‘Jena’ ‘Berlin’ ‘Berlin’ ‘Leipzig’ ‘Leipzig’
Test set from study group ‘Berlin’ ‘Leipzig’ 'Jena’ ‘Leipzig’ 'Jena’ ‘Berlin’
Number of rules for 'CG' 9 9 8 8 0 0
Number of rules for ‘OA’ 10 10 4 4 4 4
Number of rules for ‘RA’ 10 10 8 8 4 4
Sensitivity for RA (%) 100 100 923 100 92.3 90
Sensitivity for OA (%) 40 100 90 83.3 100 100
Specificity for RA (%) 100 100 80 833 100 100
Specificity for OA (%) 100 100 913 100 92.3 90
Overall specificity (RA/OA) (%) 100 n.a. 60 n.a. n.a. na.
Accuracy (%) 80 100 818 93.8 95.6 95
Test samples 30 16 33 16 23 20
Hits for CG 10 0 6 0 0 0
Hits for OA 4 6 9 5 10 10
Hits for RA 10 10 12 10 12 9
Hits total 24 16 27 15 22 19
Errors for CG 0 0 4 0 0 0
Errors for OA 6 0 1 1 0 0
Errors for RA 0 0 1 0 1 1
Errors total 6 0 6 1 1 1

CG, control group; n.a., not applicable; OA, osteoarthritis; RA, rheumatoid arthritis.
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sensitivity for the prediction of RA was 96%, ranging
from 90 to 100%; and that for the prediction of ‘OA’ was
86%, ranging from 40 to 100%.

The number of ‘Errors’ for the prediction of RA was
generally extremely small; in three cases (‘Jena’ — ‘Berlin’,
‘Jena’ — ‘Leipzig’, and ‘Berlin’ — ‘Leipzig’), no errors were
detected; in the remaining cases there was only one error
each (1/13, 1/13, and 1/10, respectively).

For the remaining two clinical states (that is, ‘CG’ and
‘OA’) more errors were detected. In the case of ‘Jena’ — °
Berlin’, six OA patients were misclassified as ‘CG’;
whereas in the case of ‘Berlin’ — ‘Jena’, three CG samples
were misclassified as ‘RA’ and one CG sample as, OA in
addition to one OA patient being misclassified as ‘RA’.

Molecular interpretation of the obtained rule sets

The complete overlap of all rules (that is, premises and
conclusion) resulting from the comparison of all study
groups before pruning is shown in Additional files 3 and
4 (please note the cross-table listing of the overlapping
genes in Table B of the sheet ‘Rule Overlap among Data
Sets’ in Additional file 3).

If, for the purpose of identifying biologically relevant
classifiers, the overlap analysis is focused on the three
independent study groups ‘Jena’, ‘Berlin’, and ‘Leipzig’, a
list of selected potential ‘key’ players can be extracted
(Table 5).

Whereas no overlap between these groups was found
for rules with the conclusion ‘OA’, remarkable overlap
was found for the conclusions ‘CG” and ‘RA’.

The rule ‘IF NFIL3 is highly expressed THEN CG’ (with
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protein) was generated with high relevance from both the
‘Jena’ and the ‘Berlin’ datasets (ranked in third and fourth
position, respectively; Table 5). In addition, the two genes
MAT?2A (methionine adenosyltransferase 2A) and TIPARP
(2,3,7,8-tetrachlorodibenvzo-p-dioxin (TCDD)-inducible poly
(ADP-ribose) polymerase) were identified in prominent rules
for ‘CG’, each only present in the pruned rule set of one
study group.

For the conclusion ‘RA, the rules concerning the ‘high’
expression of the genes STAT1, GBP1, PLCG2, CSF2RB,
and STK10 were highly ranked in pruned rule sets from
different study groups. STAT1 (signal transducer and ac-
tivator of transcription 1) was found in the pruned rule
set ‘Berlin’ (rank 1), and GBP1 (interferon-inducible gua-
nylate binding protein 1) in the pruned rule sets ‘Jena’
(rank 2) and ‘Berlin’ (ranks 2 and 8). PLCG2 (phospho-
lipase c-gamma-2) was found in the pruned rule set
‘Berlin’ (rank 5), and STK10 (serine/threonine kinase 10)
in the pruned rule set ‘Jena’ (rank 5).

Strikingly, the relevance of the rule TF CSF2RB is highly
expressed THEN RA’ (CSF2RB coding for the interleukin
3 receptor/granulocyte-macrophage colony stimulating
factor 3 receptor, beta was supported by three different
features: the rule was independently detected in the rule
sets derived from all three centers (Jena, ‘Berlin’, and
‘Leipzig’); the rule occupied the highest rank (rank 1) in
the rule set from ‘Leipzig’; and its complementary rule ‘IF
CSF2RB is low THEN OA’ was also detected in the rule
set ‘Leipzig’ with rank 3 (see Additional file 3).

To address a potential pathogenetic role of the genes
indicated in Table 5, their expression was compared

NFIL3 coding for the nuclear factor interleukin-3-regulated = among the three different clinical states (both
Table 5 Overlap between the three independent study groups
Gene Probe set name Expression ‘Jena’ ‘Berlin’ ‘Leipzig’ ‘Total’
symbol level rule rank rule rank rule rank rule rank
]
NFIL3 203574_at High 3 4 1
JUND 203752_s_at High 1 85 18
MAT2A 200768_s_at High 2 83 5
TIPARP 212665_at High 12 8
LEPROTL1 202594 _at Low 27 127 13
RA
STAT1 M97935_3_at [200887_s_at] High 19 1 (@& 10 2 (& 10)
GBP1 202270_at [202269_x_at] High 2 2 (&8) 5(&6)
PSMB9 204279_at High 13 17 1
PLCG2 204613_at High 14 5 4
LY75 205668_at High 12 26 8
CSF2RB 205159_at High 17 28 1 3
STK10 40420_at High 5 21 12

The genes belonging to at least one of the pruned rule sets of the three independent study groups are highlighted in bold, genes/rules detected by two different

probe sets are indicated by numbers in parentheses.
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individually for the three different clinical centers and
for the pooled study group ‘Total’ derived from all cen-
ters). In support of their relevance, all genes/rules char-
acterizing ‘CG’ were significantly overexpressed in CG as
compared with both RA and OA (Additional file 5) —
with the exception of the gene/rule LEPROTL1 (leptin
receptor overlapping transcript 1), which also showed
significant differences, but with an opposite orientation
(all P<0.05; Mann Whitney U test).

Strikingly, all genes/rules identified for RA also ap-
peared highly discriminative, as shown by a significant
overexpression in RA in comparison with both CG and
OA (P values between 10" and 0.05 for 41/42 compari-
sons; P =0.056 for the remaining comparison; Additional
file 5).

In addition to the analysis of the overlapping rules, all
57 rules generated from the different study groups after
pruning — that is, 29 rules trained from the dataset ‘Jena),
20 from ‘Berlin’, and eight from ‘Leipzig’ (highlighted in
the complete rule set in Additional file 3) — were screened
for functional relations using Pathway Studio following
identification of synonyms in GeneCard.

Since for three Affymetrix probe sets no gene names
were identified (see Additional file 6), only 54 genes
were analyzed using Pathway Studio. The results of the
Pathway Studio search for the conclusions ‘CG” and ‘RA’
are shown in Additional files 7 and 8, respectively.

Again, no relations were found for the conclusion ‘OA’.
For ‘RA, instead, three relations were found (Table 6). In
addition to the well-known relation JAK2 — STATI,
which regards various cell types including fibroblasts (total
of 70 references named by Pathway Studio), the relation
STAT1 — GBP1 [48-50] and the relation JAK2 — CSF2RB
[51-53] have only been addressed by a limited number of
publications.

Please note that JAK2 is not contained in Table 5 since
it was only detected in the rule set for ‘RA’ in the study
group ‘Jena’ (rank 3).

Gene enrichment analysis for molecular interpretation
of the obtained rule sets resulted in additional information.
In CG, for example, there was low expression of genes in-
volved in MHC class II antigen processing/presentation

Table 6 Interactions between the premises/genes of the
pruned rule sets generated from the ‘Jena’, ‘Berlin’, and
‘Leipzig’ data sets (total of 57 rules), as found by

Pathway Studio and exemplified for the conclusion ‘RA’

Relation Type Cell type Number of
references

JAK2 — STATT  Promoter binding Various (70)

JAK2 — CSF2RB  Regulation Hematopoietic cells (3)

STAT1 — GBP1  Protein modification Fibroblasts (3)

For more details, see Additional file 8. Pathway Studio from Elsevier, Munich,
Germany.
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(Additional file 9, sheets ‘CG Low BP’ and ‘CG Low
KEGG)). In RA, in contrast, there was high expression of
genes involved in immune response in general and
leukocyte/T-cell/B-cell activation (Additional file 10, sheets
RA High BP’ and RA High KEGG'), as well as pro-
grammed cell death (Additional file 10, sheets ‘RA High
BP’,'RA High KEGG;, and ‘RA Low BP).

As already observed for the sensitivity and accuracy, as
well as the rule overlap and molecular interpretation,
OA patients were again more difficult to discriminate, as
indicated by the almost complete absence of indicative
GO terms or KEGG pathways in gene enrichment ana-
lysis (Additional file 11).

Discussion

In the present study, three multicenter, genome-wide
transcriptomic datasets from a total of 79 individuals
were used to infer rule-based classifiers to discriminate
RA, OA, and healthy controls. In all cases, the rule sets
were inferred separately from one of three centers and
applied to the other centers for validation. This novel
approach resulted in a high performance (close to 90%
for specificity, sensitivity, and accuracy) for the discrim-
ination of RA. Unbiased analysis of the biological rele-
vance of the underlying rules by Pathway Studio resulted
in the identification of pathways with known pathogen-
etic or therapeutic relevance in RA. In addition, serine/
threonine kinase 10 (lymphocyte-oriented kinase) was
identified as a novel molecule with a potential role in
RA. Yet another novel contribution of the present study
is the identification of molecules that identify normal
synovial tissue, an aspect barely addressed to date.

New approach for the identification of discriminating
genes and/or rules

A novel rule-based approach was used to identify genes
(in combination with their expression status) suitable for
the discrimination of the clinical states healthy controls
(‘C@), ‘OA, and ‘RA. This approach has the major
advantage of skipping the identification of differentially
expressed genes on the basis of fold changes and/or
t-test or U-test analysis, a process highly sensitive to het-
erogeneity in the patient data and therefore often incap-
able of identifying relevant disease-specific genes.

The rule-based approach applied in the present study
is based on the relevance index of Krone and Kiendl
[40]; this relevance index has so far only been used for
rule generation in electrical control engineering [41] or
biotechnology [38]. In addition, there are only few exam-
ples for the application of this relevance index to omics
data (for example [54]) and, to our knowledge, none for
the application to data in the rheumatology field.

Rule set pruning, applied in order to minimize the
numbers of both rules and ‘Errors’, was successfully used
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to avoid overfitting and informative imbalance [55].
From our experience with heuristic rules, at least four
rules per conclusion were required [38,55].

Quality parameters of the training results

For the datasets ‘Jena’, ‘Berlin’, and ‘Leipzig’, the values
for disease-oriented sensitivity and specificity, overall
specificity, and accuracy were all 100%. This high per-
formance for the training of the classifiers was expected,
but still shows that this approach is suitable for the ana-
lysis of gene expression data from synovial tissue.

Interestingly, the disease-specific sensitivity for OA in
the ‘Jena_all’ dataset was only 90%, resulting in an accur-
acy of 97% (see Table 3), whereas the quality parameters
in the ‘Jena’ dataset all reached 100%. This is probably
due to the highly stringent approach of only using probe
sets with a ‘present call’ in all samples, deliberately
chosen to minimize false positives. This approach is fur-
ther supported by reduced error rates in the internal val-
idation of the “Jena’ dataset in comparison with the
‘Jena_all’ dataset (see Additional file 2).

The results for the quality parameters in the largest
possible dataset ‘Total’, containing 19 CG, 26 OA, and
32 RA, also proved highly satisfactory; that is, >295%.
This further underlines the suitability of the relevance
index approach for large-scale clinical studies with high
numbers of RA and OA patients [27,30].

Quality parameters of the test results

The quality parameters of the test results for the predic-
tion of RA were also highly satisfactory; that is, they
showed a mean close to or higher than 90% for all assess-
ment parameters (see Table 4). This shows that the real
challenge of the present study — that is, the prediction of
RA in test datasets independent of the training dataset —
can be met with a high accuracy and may indeed contrib-
ute to the identification of biomarkers for RA.

Notably, the mean sensitivity and specificity for the
prediction for OA was considerably lower than for RA,
due to both misclassification of OA as ‘CG’ (six cases) or
as ‘RA’ (two cases). This is consistent with the clinical
problem of properly differentiating burnt-out, possibly
more heterogeneous, OA with low inflammatory activity
from normal controls on one hand, and active, highly in-
flammatory OA from RA on the other [1,2].

Molecular interpretation of the obtained rule sets

The number of studies aimed at identifying disease-
specific signatures in rheumatology with microarray-
based methods is limited [30,31,35,56-60]. Also, very few
datasets addressing this question are publicly available
and have been repeatedly used for bioinformatic ana-
lyses. In addition, with one exception [57], these studies
have not analyzed matched multicenter datasets for
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rheumatic diseases. Finally, studies have resulted in the
identification of numerous and heterogeneous biomarker
genes or pathways with only limited overlap among the
results of the different studies.

In the present study, in contrast, several rules were
identified in more than one rule set generated in the
three clinical centers; that is, five rules for the prediction
of healthy controls (CG) and seven rules for the predic-
tion of RA (see Table 5). Notably, a total of seven of
these rules were represented not only in the primary rule
set of the centers, but also in one or more of the re-
spective pruned rule sets. Strikingly, no overlapping
rules were observed for ‘OA’, again underlining the
problem of properly differentiating OA from either CG
or RA (see above for the Quality parameters of the test
results).

In addition, automated analysis of interactions by Path-
way Studio between the molecules identified in the union
of all optimized rule sets (total of 57 rules; derived from
three clinical centers with either two or three disease
states) resulted in three interactions supported by at least
three references; that is, JAK2 — STAT1 (70 references),
STAT1 — GBP1 (three references) and JAK2 — CSF2RB
(three references; see Table 6). Please note that JAK2 was
only detected once at rank 3 in the ‘Jena’ rule set (see
Additional file 3) and is therefore not listed in Table 5.

Rules for the prediction of healthy controls (CG)

The genes identified above as overexpressed in CG may
represent a core set of markers of healthy tissue and re-
flect regulatory genes specifically involved in the down-
regulation/prevention of rheumatic diseases (that is, OA
or RA).

Nuclear factor interleukin-3-regulated protein

NFIL3 is a basic leucine transcription factor acting as a
regulator of genes associated with acquired and innate im-
munity (for example, interleukin (IL)-3 and interferon-
gamma (IFNy) [61]) or with the inhibition of proliferation
and senescence [62]. In particular, NFIL-3 negatively regu-
lates IL-12 p40 in macrophages and dendritic cells [63,64]
and suppresses TH2 cytokines [65], as well as the develop-
ment and maturation of NK cells [66]. In addition, NFIL3
exhibits anti-apoptotic features [67]. In particular, the role
of NFIL3 in limiting the production of proinflammatory
IL-12 may explain its upregulation in the normal CG. On
the other hand, its prominent influence on essential cellular
features (for example, metabolism, growth, viability) points
to a potential contribution to the pathogenesis of RA (and/
or OA) in the case of dysregulated underexpression.

Jun D proto-oncogene
Members of the JUN and FOS families are known as
immediate-early response proto-oncogenes, since they
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are rapidly induced by various activating agents and, on
the other hand, have a very short half-life (in the range
of minutes for both mRNA and protein) [68]. As in the
case of NFIL3, the transcription factor JunD also regu-
lates genes involved in acquired and innate immunity
[69], in proliferation and senescence [70], or in anti-
apoptotic effects [71,72].

Individual JUN/FOS family molecules show different
biological activities. Whereas C-JUN and C-FOS are
known as activating proto-oncogenes with transforming
activity [73,74], JUND also shows de-activating features
[68,73,75-77]. The effects of AP-1 complexes composed
of different JUN/FOS family members clearly depend on
the local promoter context of genes driven by AP-1 (for
example, MMP-1 [78,79]). JUND suppresses synovial fibro-
blast proliferation and even antagonizes Ras-mediated
transformation of the fibroblasts [77], and thus its overex-
pression may exert a protective role in the synovial mem-
brane of normal joints.

Methionine adenosyltransferase 2A

The importance of the overexpression of MAT2A in CG
samples is presently unclear. This molecule is involved in
the regulation of basic cellular functions, such as the syn-
thesis of polyamines (thought to play a role in nucleic acid
and protein synthesis) and developmental processes [80].

2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible
poly(ADP-ribose) polymerase (TIPARP)
Poly(ADP-ribosyl)ation physiologically contributes to the
survival of damaged proliferating cells by immediate,
DNA damage-dependent post-translational modification
of histones and other proteins in the nucleus. By this
process, poly(ADP-ribose) polymerases are involved in cel-
lular functions such as proliferation and cell death. It is to
be expected that the growing poly(ADP-ribose) polymer-
ase superfamily may become the target of pharmacological
strategies enhancing both antitumor efficacy and the treat-
ment of a number of inflammatory and neurodegenerative
disorders [81].

TiPARP (PARP-7) was originally identified by differen-
tial display as a TCDD-induced mRNA [82]. Although
the exact function of TiPARP is presently unclear, its
effects on T-cell function and its possible contribution
to tumor promotion suggest a role also in the normal or
arthritic synovial membrane [81].

Leptin receptor overlapping transcript-like 1

The leptin receptor overlapping transcript (also called
OB-RGRP [83]) is one of the three members of a gene
family [84,85]. Leptin receptor overlapping transcript
molecules are small proteins of 131 to 140 amino acids,
carrying four potential transmembrane domains.
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LEPROTLI, a gene widely expressed in human tissues,
including metabolic tissues such as muscle and liver
[83,84,86], has an influence on growth, plasma insulin-
like growth factor-1 levels, hepatic sensitivity to growth
hormone, and cell-surface growth hormone or leptin re-
ceptor expression and leptin signaling [87,88].

The high importance of LEPROTL1in protein trafficking
to the vacuole/lysosome of eukaryotic cells, a process ini-
tially regarded as pathogenetically relevant in RA [89-91],
and in the downregulation of membrane protein levels
suggests a phylogenetically conserved role for LEPROTLI1
[85]. Since LEPROTLI1 does not appear to act as a classic
leptin receptor, its role in the physiology and pathophysi-
ology of the synovial membrane is presently uncertain.

In the present dataset, the above-mentioned NFIL3,
JUND, MAT?2A, and TIPARP were indeed significantly
overexpressed in the synovial membrane of CG as com-
pared with both RA and OA (both individually for the
three different clinical centers and for the pooled study
group ‘Total’ derived from all centers; Additional file 5).
Interestingly, overexpression of JUND (OA vs. RA) has
not only been observed in synovial membranes, but also
in proinflammatory synovial fibroblasts isolated from
synovial tissue [92].

In contrast, LEPROTLI1 was the only gene significantly
underexpressed in the synovial membrane of CG as
compared with both RA and OA, suggesting that this
molecule may support inflammatory and/or degenerative
joint diseases. Similarly to JUND, however, in an oppos-
ite direction, differential expression of LEPROTL1 was
not only observed in synovial membranes, but also in
resident synovial fibroblasts [92].

Rules for the prediction of rheumatoid arthritis

The genes overexpressed in RA synovial tissue (see
Table 5) may represent biomarkers of RA and reflect
processes specifically involved in the pathogenesis and/
or progression of the disease. A disease specificity of the
markers is strongly supported by their significant over-
expression in RA, not only in comparison with CG but
also with the ‘disease’ control OA (see Additional file 5).
In the RA groups, genes especially associated with the
regulation of immunologic processes appear to be suit-
able as disease-specific identifiers.

Signal transducer and activator of transcription 1

STAT]1, a transcription factor regulating (amongst others)
immunity-mediating genes, is known to be upregulated in
RA patients [59,93]. In addition to other transcription fac-
tors (for example, NFKB or AP-1), STAT1 has long been
regarded as a pivotal transcription factor involved in joint
inflammation and destruction [60,94]. The identification
of these key factors underlines the robustness of the
present approach. This is further underlined by the fact
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that the rule ‘STAT1 high in RA’ appears a total of five
times in three different rule sets (rule set ‘Jena’, position
19; rule set ‘Berlin’, positions 1 and 10; rule set “Total’,
positions 2 and 10; see Table 5 and Additional file 4 for
details and the corresponding Affymetrix probe sets).

In addition, there was a reciprocal detection of the
complementary rule ‘IF STAT1 is low THEN OA’ in the
rule set ‘Leipzig’ with rank 12 (see Additional file 3).

Interferon-inducible guanylate binding protein 1

GBP1, a protein specifically binding guanylated nucleo-
tides with potential effects on GTPases involved in signal
transduction, has been already described as upregulated
in RA versus OA synovial tissue [95]. Also, this factor is
implicated in the pathogenesis of RA due to its upregu-
lation by IFNy [95,96]. As in the case of STATI, this
finding confirms that key mediators of rheumatoid in-
flammation have been identified in the present study.
This is again further underlined by the fact that the rule
‘GBP1 high in RA’ appears a total of five times in three
different rule sets (rule set ‘Jena’, position 2; rule set
‘Berlin’, positions 2 and 8; rule set “Total’, positions 5
and 6; see Table 5 and Additional file 4).

Proteasome (prosome, macropain) subunit, beta type, 9
(large multifunctional peptidase 2/low molecular mass
protein 2)

The proteasomal subunit PSMB9 (also known as LMP2;
see abbreviations) is involved in the regulation of proteo-
lytic specificity, especially in response to IFN-y, thus en-
abling the formation of immunoproteasomes and the
generation of peptides presentable by MHC I molecules
[97]. PSMB9 also enhances cytokine production (for ex-
ample, tumor necrosis factor, IL-1f3, IFNy [98]). Indeed,
this molecule shows a significant genetic association
with RA in ethnic Han Chinese from Yunan [99] and is
the target of autoimmune reactions in RA [100]. As for
STAT1 and GBP1, the validity of the rule ‘PSMB9 high
in RA’ is emphasized by the fact that it appears in three
different rule sets (rule set ‘Berlin’, position 13; rule set
‘Leipzig’, position 17; rule set “Total, position 1; see
Table 5 and Additional file 4).

Phospholipase C-gamma-2

The function of members of the phospholipase C family is
the hydrolysis of phospholipids into fatty acids and other
lipophilic molecules. The family members are grouped into
several subtypes and catalyze the hydrolysis of phos-
phatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphos-
phate and 1,2-diacylglycerol, which both have important
second messenger functions. Phospholipase C-gamma is
activated by phosphorylation in response to various growth
factors or immune signals, is broadly expressed, and
carries diverse biological functions in inflammation, cell

Page 15 of 21

growth, signaling/death, and maintenance of membrane
phospholipids. Activating mutations in the PLCG2 gene
have been shown to induce autoimmunity, inflammation,
and/or inflammatory arthritis in murine models [101,102].
PLCG2 has already been recognized as an excellent dis-
criminator of RA against other types of arthritis or auto-
immune diseases [103] and appears to be significantly
upregulated in RA synovial tissue as compared with the
normal synovial membrane [104]. As for STAT1, GBP1,
and PSMB9/LMP2, the validity of the rule ‘PLCG2 high in
RA’ was emphasized by its appearance in three independ-
ently established rule sets (rule set ‘Berlin’, position 5; rule
set ‘Jena, position 14; rule set “Total’, position 4; see Table 5
and Additional file 4).

Lymphocyte antigen 75

Ly75, a member of the human macrophage mannose recep-
tor family (also known as DEC205 or GP200-MR6), sup-
ports antigen presentation of dendritic cells [105] and
mediates anti-proliferative as well as promaturational ef-
fects in B lymphocytes [106]. This molecule is apparently
upregulated in monocytes derived from RA patients in
comparison with those from normal donors [107], but its
role in disease is currently unknown. Interestingly, however,
single nucleotide polymorphisms of the Ly75 antigen be-
long to the three single nucleotide polymorphisms most
significantly associated with type 2 diabetes mellitus, leaving
open a possible role of Ly75 in inflammatory disease [108].

CSF2RB (interleukin 3 receptor/granulocyte macrophage
colony stimulating factor 3 receptor, beta)

A most striking finding in the present study is the rule
‘CSF2RB high in RA. CSF2RB codes for a transmem-
brane protein and acts as a common receptor subunit
(also known as common beta chain) for granulocyte—
macrophage colony-stimulating factor (GM-CSE), IL-5,
and IL-3, which play a preeminent role in inflammation
and hematopoiesis [109,110]. One of the ligands of
CSF2RB (that is, GM-CSF) has long been implicated in
the pathogenesis of RA, and other rheumatic or auto-
immune diseases [60,111-119]. This has recently led to
the development of neutralizing therapeutic monoclonal
antibodies specifically directed against the a-chain of the
GM-CSF receptor, which have been successfully used for
the treatment of RA [120-122].

Notably, the rule ‘CSF2RB high in RA’ appeared in the
independently established rule sets of all analyzed cohorts
(rule set ‘Jena’, position 17; rule set ‘Berlin’, position 28;
rule set ‘Leipzig’, position 1; and, remarkably, rule set
‘Total’, position 3), again underling the validity of the
completely unbiased procedure of rule set generation. As
in the case of STAT1, there was a reciprocal detection of
the complementary rule ‘IF CSF2RB is low THEN OA’ in
the rule set ‘Leipzig’ with rank 3 (Additional file 3).
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Serine/threonine kinase 10 (lymphocyte-oriented kinase)
STK10 is a member of the Ste20 family of serine/threonine
protein kinases with similarity to several known polo-like
kinase kinases [123], which associates with and phosphory-
lates polo-like kinase 1 and whose functional inactivation
interferes with normal cell cycle progression. STK10 also
negatively regulates IL-2 expression in T cells via the
mitogen-activated protein kinase kinase 1 pathway [124].
Interestingly (and potentially relevant for RA), STK10 is
involved in the regulation of cytoskeletal rearrangement
through phosphorylation of the ezrin-radixin—moesin
proteins [125], a process also strongly emphasized by a
previous report [96] and by a relatively low expression of
the respective genes in the gene enrichment analysis in
the ‘CG’ group (see Additional file 9; sheet ‘CG low BP).
In addition, STK10 potentiates dexamethasone-induced
apoptosis [126] and may thus contribute to the dysregula-
tion of apoptosis possibly involved in RA [127]. Finally,
STK10 may play a role in autoimmune skin diseases [128],
although a direct involvement of this molecule in arthritis
has never been reported.

As in the case of rules for healthy control (CG), all genes
used for the prediction of RA were indeed significantly
overexpressed in the synovial membrane of RA as com-
pared with both OA and CG (both individually for the
three different clinical centers and for the pooled study
group ‘Total’ derived from all centers; see Additional file 5).
Interestingly, highly significant overexpression of CSF2RB
(RA vs. OA; P=5.4x 10"°) was not only observed in syn-
ovial membranes, but also in proinflammatory synovial fi-
broblasts isolated from synovial tissue [92].

Finally, in combination with JAK2, one of the most in-
fluential rules in the ‘Jena’ RA group (position 3; high in
RA), a subset of the genes (STAT1, GBP1, CSF2RB) can
be combined in a JAK/STAT-dependent gene regulatory
network [59,60,129-131]. This also indicates that the
rules identifying RA patients in the present study are
not generated randomly, but reflect a mechanistic rele-
vance within the context of RA pathogenesis. Concern-
ing JAK?2, its concrete relevance in RA is stressed by the
development of therapeutic approaches directed at the
JAK pathway [129].

Overall, the present study confirmed the involvement
of partially or well-known molecules/pathways in RA
(for example, STAT1, GBP1, PLCG2, CSF2RB), but also
identified molecules previously not associated with RA
(for example, STK10). Also, to our knowledge, there are
at present no reports on molecules/pathways positively
identifying the clinical status ‘CG’ in general, and the
NFIL-3 pathway in particular. Finally, the present study
presents for the first time a ‘unifying hypothesis’ by ad-
dressing the overlap of the highly ranked rules/genes
among different clinical centers and thus pinning down
molecules of universal relevance in heterogeneous
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patient cohorts from different centers. This is also sup-
ported by the representation of the top 12 rules of the
‘Total” dataset in the overlap table; that is, the largest in-
dependently analyzed cohort in the present study (total
of 79 donors (patients).

Conclusions

In this study, three multicenter, genome-wide transcrip-
tomic datasets were applied to infer rule-based clas-
sifiers/genes to discriminate RA, OA, and healthy
controls, and were subsequently analyzed for their bio-
logical relevance using Pathway Studio and gene enrich-
ment analysis. This novel approach resulted in a high
performance for the discrimination of RA and the iden-
tification of factors with known pathogenetic or thera-
peutic relevance in RA (for example, STAT1, GBP1,
IFNy, GM-CSE, and its receptor CSF2RB, as well as
JAK2, the latter pointing to a JAK/STAT-dependent
gene regulatory network). This indicates that the rules
identifying RA patients were not generated randomly,
but reflect (disease-specific) key biomarkers with mech-
anistic relevance for RA pathogenesis and progression,
some of them well established and already exploited for
therapeutic purposes.

The present study contributes to focusing the diagnos-
tic and therapeutic interest in RA on relevant and in-
novative molecules or pathways; for example, GM-CSF
and its receptor CSF2RB. The fact that such known
pathways have been identified in the present study for
the prediction of RA suggests a high sensitivity and val-
idity of the current approach. In addition, the present
study for the first time addressed a multicenter cross-
validation and may thus contribute to the identification
of molecules with universal relevance in heterogeneous
RA patient cohorts, possibly including the previously
undescribed STK10.

At a molecular level, the biomarkers were signifi-
cantly overexpressed in RA synovial tissue (mostly in
the study groups from all three centers), not only in
comparison with healthy controls, but also with the
‘disease’ control OA. In addition, significant overexpres-
sion was not limited to the synovial tissue as a whole,
but also occurred in isolated synovial fibroblasts, a cell
population regarded as highly important for chronic in-
flammatory RA.

In perspective, validation, refinement, and generalization
of the present rule-based, discriminative procedure in a
larger prospective cohort are necessary. The identified bio-
markers may prove useful for diagnosis or differential
diagnosis of RA patients (including potential subpopula-
tions), as well as for stratification and monitoring of
(responders and nonresponder) patients in routine or ex-
perimental clinical trials.
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Additional files

Additional file 1: Calculation of the relevance index.
Additional file 2: Internal validation of rule sets.

Additional file 3: List of the ‘complete primary rule sets’ for all
datasets, as well as the ‘Rule overlap among data sets’. The data are
displayed as either ‘complete primary rule sets’ with the pruned
(optimized) rules highlighted in bold (Sheet 1) or as the ‘Rule Overlap
among Data Sets’ (Sheet 2) with the rules/genes showing an overlap
between the three independent study groups Jena’, ‘Berlin’, and ‘Leipzig
highlighted in grey. In both cases, the rules were generated as stated in
Materials and methods (Rule set generation’) and the ranks of the
individual rules in the respective dataset are indicated.

.

Additional file 4: Listing of the overlap among the different rule sets.
The data are displayed as the ‘Rule Overlap among Data Sets’ including the
gene names. The ranks of the individuals rules in the respective dataset are
indicated and the rules/genes showing an overlap between the three
independent study groups ‘Jena’, ‘Berlin’, and ‘Leipzig’ are highlighted in grey.

Additional file 5: Log-fold change and P values for differentially
expressed genes. Log-fold change (log2 FC) and P values (Mann Whitney
U test, red: P = 0.05) for the genes differentially expressed among patients
with a different clinical status (genes significantly overexpressed in RA versus
both CG and OA are highlighted in grey; see also Table 6).

Additional file 6: Genes (original symbols) and the synonyms used as
input for the Pathway Studio 9 search for interactions among the genes.

Additional file 7: Interactions among the genes in the pruned rule sets
(CQ). Interactions found by Pathway Studio among the genes contained in
the pruned rule sets of the ‘Jena’ and ‘Berlin’ datasets for the conclusion ‘CG..

Additional file 8: Interactions among the genes in the pruned rule sets
(RA). Interactions found by Pathway Studio among the genes contained in
the pruned rule sets of the ‘Jena’, ‘Berlin” and ‘Leipzig’ datasets for the
conclusion ‘RA.

Additional file 9: Gene enrichment analysis for molecular
interpretation (CG). Gene enrichment analysis for molecular interpretation of
the obtained rule set for the conclusion ‘CG" using the GO terms biological
process (BP) and molecular function (MF), as well as KEGG pathways. The
analyses were performed separately for the ‘CG’ rules showing a high or

low expression level. Category = type of term (GO term/KEEG pathway);
Term = denomination of term (interesting terms highlighted in grey);
Count = list hits; number of genes in the rule set belonging to the term in
question; p value = EASE score (upper boundary of the distribution of
Jackknife Fisher exact probabilities given the actual Count, List Total, Pop Hits,
and Pop Total); Genes = gene symbols of included rules/genes; List

Total = number of genes in the rule set (for high and low expression,
respectively); Pop Hits = number of genes in the population background
belonging to the specific term; Pop Total = number of genes in the
population background; BH-adjusted p value = Benjamini-Hochberg adjusted
P value (threshold P < 005 indicated by fat frame).

Additional file 10: Gene enrichment analysis for molecular
interpretation (RA). Gene enrichment analysis for molecular interpretation of
the obtained rule set for the conclusion ‘RA" using the GO terms biological
process (BP) and molecular function (MF), as well as KEGG pathways. The
analyses were performed separately for the ‘RA’ rules showing a high or low
expression level. In the case of ‘RA’ rules showing a low expression level, there
were only results for the GO terms BP and MF. Category = type of term (GO
term/KEEG pathway); Term = denomination of term (interesting terms
highlighted in grey); Count = list hits; number of genes in the rule set
belonging to the term in question; p value = EASE score (upper boundary of
the distribution of Jackknife Fisher exact probabilities given the actual Count,
List Total, Pop Hits, and Pop Total); Genes = gene symbols of included rules/
genes; List Total = number of genes in the rule set (for high and low
expression, respectively); Pop Hits = number of genes in the population
background belonging to the specific term; Pop Total = number of genes in
the population background; BH-adjusted p value = Benjamini-Hochberg
adjusted P value (threshold P < 0.05 indicated by fat frame).

Additional file 11: Gene enrichment analysis for molecular
interpretation (OA). Gene enrichment analysis for molecular
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interpretation of the obtained rule set for the conclusion ‘OA” using the
GO terms biological process (BP) and molecular function (MF), as well as
KEGG pathways. The analyses were performed separately for the ‘OA’
rules showing a high or low expression level. There were only results for
the GO term MF in ‘OA’ rules showing a high expression level. Category
=type of term (GO term/KEEG pathway); Term = denomination of term;
Count =list hits; number of genes in the rule set belonging to the term
in question; p value = EASE score (upper boundary of the distribution of
Jackknife Fisher exact probabilities given the actual Count, List Total, Pop
Hits, and Pop Total); Genes = gene symbols of included rules/genes; List
Total = number of genes in the rule set (for high and low expression,
respectively); Pop Hits = number of genes in the population background
belonging to the specific term; Pop Total = number of genes in the
population background; BH-adjusted p value = Benjamini-Hochberg
adjusted P value.
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