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Molecular imaging of rheumatoid arthritis:
emerging markers, tools, and techniques
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Abstract

Early diagnosis and effective monitoring of rheumatoid arthritis (RA) are important for a positive outcome. Instant
treatment often results in faster reduction of inflammation and, as a consequence, less structural damage. Anatomical
imaging techniques have been in use for a long time, facilitating diagnosis and monitoring of RA. However, mere
imaging of anatomical structures provides little information on the processes preceding changes in synovial tissue,
cartilage, and bone. Molecular imaging might facilitate more effective diagnosis and monitoring in addition to providing
new information on the disease pathogenesis. A limiting factor in the development of new molecular imaging
techniques is the availability of suitable probes. Here, we review which cells and molecules can be targeted in the RA
joint and discuss the advances that have been made in imaging of arthritis with a focus on such molecular targets as
folate receptor, F4/80, macrophage mannose receptor, E-selectin, intercellular adhesion molecule-1, phosphatidylserine,
and matrix metalloproteinases. In addition, we discuss a new tool that is being introduced in the field, namely the use of
nanobodies as tracers. Finally, we describe additional molecules displaying specific features in joint inflammation and
propose these as potential new molecular imaging targets, more specifically receptor activator of nuclear factor kB and
its ligand, chemokine receptors, vascular cell adhesion molecule-1, a5 integrin, P2X7 receptor, suppression of
tumorigenicity 2, dendritic cell-specific transmembrane protein, and osteoclast-stimulatory transmembrane protein.

Introduction

Anatomical imaging techniques have long been used to
diagnose and monitor rheumatoid arthritis (RA). Over
the past decade, these techniques have dramatically im-
proved. For example, it is now possible to detect bone
erosions within 6 to 8 weeks after arthritis onset. Never-
theless, pure anatomical imaging of even the earliest
structural damage misses the preceding molecular, cellu-
lar, and physiological changes in the very early stages of
RA pathogenesis. Molecular imaging, currently being de-
veloped in many domains of medical research and diag-
nostic practice, offers the possibility to visualize the early
functional changes in RA [1]. This non-invasive tech-
nique allows early diagnosis, disease monitoring, guid-
ance of treatment strategy, and possibly prediction of
the outcome following the selected treatment. For ex-
ample, patients can be selected for receiving a certain
drug on the basis of the presence of the corresponding
drug target, as was suggested for treatment of refractory
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monoarthritis patients with TNF-a antagonists after im-
aging with Pmiechnetium (Tc)-infliximab [2]. Some RA
drugs are relatively expensive; hence, it is important to
determine which patients may respond to a proposed
therapy and which ones will not. Additionally, patients
who are likely to develop a more severe disease can be
identified and selected for more intensive treatment or
more frequent monitoring. Molecular imaging of joint
pathology both in human and in animal models of arth-
ritis will improve our knowledge of the pathogenesis of
the disease. In animals, imaging can be performed before
and at different time points after the clinical onset of
arthritis in the same animal with minimal perturbation
of the experiment, and therefore more information can
be obtained with fewer animals. Questions such as
‘which are the earliest processes taking place in the
pathogenesis of arthritis? and ‘which cells are most im-
portant in the disease process at which stage? might be-
come answered by live-animal imaging with specific
probes. In addition, imaging of early-onset inflammation
requires sensitive techniques characterized by limited
background and non-specific signals.
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Review

The pathogenesis of arthritis — which cells can we target?
RA is a chronic autoimmune disease, affecting approxi-
mately 1% of the population worldwide. The disease is
characterized by polyarthritis of the diarthrodial joints,
primarily the small joints of hands and feet. A hallmark
of RA is inflammation of the synovium (synovitis) with
influx of mainly macrophages, T cells and B cells [3,4].
The synovial fluid is likewise enriched in immune cells,
predominantly neutrophils [5] (Figure 1).

Macrophages are central effectors of synovial inflamma-
tion in RA and their abundance and degree of activation
are correlated with disease severity [6]. Macrophages act
through release of inflammatory factors, phagocytosis, and
antigen presentation [4]. In RA, precursors from the
monocyte/macrophage lineage are attracted from the
blood to the inflamed joint and fuse to become active
multinucleated osteoclasts, causing bone destruction.

T cells represent approximately 40% of immune cells
in the synovial infiltrate of RA joints and have been im-
plicated in different steps of RA pathology; they promote
development of an autoimmune response and produc-
tion of autoantibodies. Another role of T cells is the pro-
duction of cytokines and induction of cytokine
production by other cells [7]. B cells contribute to RA
by the production of autoantibodies, antigen presenta-
tion, and T-cell activation [8]. They are indispensable for
the development of arthritis as evident from the
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observation that the depletion of B cells abrogates the
development of collagen-induced arthritis (CIA), an ani-
mal model for RA [9], and by the effectiveness of the B
cell-depleting antibody, rituximab, that binds the CD20
surface molecule on B cells and inhibits the disease [10].

Synovial fibroblasts contribute to RA pathology by re-
leasing matrix-degrading enzymes, including matrix me-
talloproteinases (MMPs) and cathepsins, which cause
cartilage destruction [11]. Osteoblasts differentiate from
mesenchymal stem cells and produce bone matrix. At
their surface, these cells express receptor activator of nu-
clear factor-kappa-B ligand (RANKL), which is essential
for osteoclast formation [12]. Blood vessel formation is
elevated in RA joints and is associated with increased
numbers of endothelial progenitor cells. Endothelial cells
express cell adhesion molecules that facilitate rolling,
binding, and transendothelial migration of leukocytes [13].

The evolution of arthritis imaging

Anatomical imaging techniques

Conventional radiography is readily available, inexpen-
sive, and reproducible. It allows the visualization of ana-
tomical changes in established RA, such as erosions,
joint space narrowing, and juxta-articular bone loss [14].
Ultrasonography (grey-scale imaging, power Doppler)
has been in use for over 30 years. It can be routinely
used in the clinic and was found to be more sensitive
and accurate than clinical examination or conventional
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Figure 1 Schematic overview of specific cells and molecules that can be targeted in the rheumatic joint. The rheumatoid synovium is
characterized by the influx of inflammatory cells and release of cytokines. Surface molecules that are expressed on these cells can be used as
markers to target and visualize the different cell types in the inflamed joint. DC-STAMP, dendritic cell-specific transmembrane protein; ICAM-1,
intercellular adhesion molecule-1; IL, interleukin; MMP, matrix metalloproteinase; MMR, macrophage mannose receptor; OC-STAMP, osteoclast-
stimulatory transmembrane protein; RA, rheumatoid arthritis; RANK, receptor activator of nuclear factor-kappa-B; RANKL, receptor activator of nu-
clear factor-kappa-B ligand; ST2, suppression of tumorigenicity 2; TNF-a, tumor necrosis factor-alpha; VCAM-1, vascular cell adhesion molecule-1.
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radiography [15]. This technique provides information
on bone degradation, synovitis, and inflammation of ten-
dons and entheses. Since ultrasound cannot penetrate
bone, osteitis cannot be detected [16]. Practical impedi-
ments are the lack of standard protocols for evaluation of
RA and, therefore, strict dependence on the physician’s
skills. Hence, implementation studies in daily practice are
still needed. When magnetic resonance imaging (MRI)
was introduced, it soon became evident that this tech-
nique outperforms radiography in detecting early bone
erosions [17,18]. MRI images are two- and three-
dimensional and have a higher contrast resolution, conse-
quently soft tissues can be distinguished more efficiently.
With MRI it is possible to detect synovial hyperplasia,
bone changes, and cartilage degradation but also signs of
RA in the pre-erosive phase [14]. It has now become the
gold-standard modality for imaging synovitis in patients
with early arthritis. Interestingly, several publications re-
port accurate prediction of radiographic damage by MRI
assessment of erosions or inflammation [19,20]. In a study
of 42 patients with early RA, baseline MRI erosion scores
could predict the development of erosions that became
visible by radiography after 1 year. Absence of MRI-
detectable erosions predicted the absence of erosions after
this time period [21].

Molecular imaging - state of the art

Structural imaging techniques, though very useful, fail to
provide information on the underlying biochemical pro-
cesses. Therefore, novel imaging modalities using mo-
lecular probes such as optical imaging (bioluminescence,
fluorescence, and near-infrared, or NIR; 600 to 750 nm)
or nuclear imaging (scintigraphy; positron emission tom-
ography, or PET; and single-photon emission computed
tomography, or SPECT) are currently being improved
for arthritis imaging.

The term optical imaging encompasses techniques, such
as bioluminescence and fluorescence, that use light as the
primary imaging method. Bioluminescence enables
visualization of biological processes in vivo. It is a power-
ful tool for preclinical imaging but less applicable in a clin-
ical setting as it requires administration of foreign
enzymes. Fluorescence imaging holds more promise for
clinical applications, especially since the development of
NIR probes that allow deeper penetration into tissues and
less background interference. Nuclear imaging techniques,
such as scintigraphy, PET, and SPECT, use markers that
are labeled with radioisotopes. Radioactive tracers provide
the advantage of deep tissue penetration and low back-
ground compared with optical imaging techniques. PET
and SPECT produce three-dimensional images and are
more sensitive than structural imaging. SPECT is less ex-
pensive than PET and uses radiotracers with a longer half-
life but has a lower resolution. Additionally, linkage of
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SPECT tracers requires modifications that might interfere
with binding of the marker to the target.

Use of molecular imaging methods might facilitate
early diagnosis, disease monitoring, and guidance of
treatment strategy, but studies unequivocally demon-
strating their value in daily practice are needed. Molecu-
lar imaging could be very useful for the selection of
patients in phase II clinical trials that evaluate new drugs
in a small patient group. The imaging allows measure-
ment of the expression of a given therapeutic target in
each individual patient. The level of this expression may
be used to select those patients who are most likely to
respond to the new therapy. Such an analysis may limit
the number of patients who are required in a phase II
proof-of-concept trial and may improve the chances of
success, but will depend on factors such as the inter-
individual variability and the response stratification pre-
diction of the imaging. Imaging is also a powerful tool
for animal experimentation; it enables researchers to
gather data over a period of time in the same animal.
Since the 1990s, molecular imaging has been applied to
study arthritis in preclinical imaging of experimental
animal models and has evolved from the use of simpler
methods, such as autoradiography and planar gamma
camera imaging, to more advanced techniques, including
fluorescence, PET, and SPECT imaging, that show
higher sensitivity and provide more detailed information.
The development of the necessary equipment allowing
small animal imaging has led to important progress in
the field. Fluorescence imaging has greatly advanced as a
whole-animal imaging technique and this is due mostly
to the development of NIR fluorophores. The back-
ground signal in lower wavelengths strongly decreases
sensitivity of fluorescence imaging but is significantly
less in the NIR range. Nuclear imaging has become
more accessible for preclinical research as well; PET and
SPECT scanners have been adapted for imaging of small
animals.

Emerging techniques and markers to facilitate
molecular imaging of arthritis

Probes for molecular imaging

Molecular imaging probes should hold some key proper-
ties (that is, rapid binding with high affinity and specifi-
city for the target, rapid clearance of unbound
molecules, high target-to-background ratio, high stabil-
ity, low immunogenicity and toxicity, and feasibility with
respect to production and cost). Probes can be con-
structed from small molecules, peptides, proteins, anti-
bodies, the antigen-binding region of antibodies (Fab
fragments), nanobodies, and nanoparticles (Figure 2).
Antibodies are frequently used for specific targeting as
they have several advantages over other probes. Generic
processes for production of monoclonal antibodies are
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Molecular imaging probes:
Small molecules Low molecular weight substances (<900 Da) that are .VH
synthetised by chemical reactions between organic and/or . ‘
inorganic compounds, e.g. methylene diphosphonate.
Peptides Natural or synthetic compounds containing two or more amino
acids, e.g. arginine-glycine-aspartic acid (RGD) tripeptide.
Proteins Compound consisting of one or more chains of amino acids,
€.g. annexin.
Antibodies Proteins, immunoglobulins, that recognize and bind with high
affinity to the antigen they were raised against. Antibodies
consist of two heavy chains and two light chains (~150 kDa),
e.g. anti-TNF-o antibodies.
Antibody fragments  Proteins comprising only one constant and one variable domain -
of the heavy and light chains of an antibody (~50 kDa), e g.
anti-E-selectin Fab fragments.
Nanobodies The cloned Vyy; domain of a heavy-chain antibody occuring in
certain animal species (~15 kDa), e.g. MMR-targeting
nanobodies.
Nanoparticles Particles of 1 to 100 nm that possess unique material
characteristics, e.g. chitosan nanoparticles.
Figure 2 Probes can be composed of small molecules, peptides, proteins, antibodies, antibody fragments, nanobodies, and
nanoparticles. A schematic overview of a conventional antibody, a heavy-chain antibody, Fab fragments, and a nanobody is given. Cy, heavy
chain constant domain; C, light chain constant domain; Fab, antigen-binding domain; Fc, constant domain; MMR, macrophage mannose recep-
tor; TNF-a, tumor necrosis factor-alpha; V, heavy chain variable domain; Vi, heavy chain only antibody V, light chain variable domain.
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well established, and monoclonal antibodies are highly
specific as they recognize a single molecular epitope. On
the downside, antibodies may bind non-specifically via
their Fc domains. Antibody administration can trigger
undesirable anti-immune responses. To increase target
specificity and reduce immunogenicity, Fab fragment
probes, comprising only one constant and one variable
domain of the heavy and light chains, can be used in-
stead of the complete antibody (Figure 2). An emerging
technique in molecular imaging is the use of nanobodies
(that is, functional variable fragments of single-chain
antibodies that are produced by camelids) (Figure 2).
The single-variable domain can be cloned relatively eas-
ily from lymphocytes of immunized animals. Nanobodies
possess full antigen-binding capacity and are very stable
[22]. Their small size (15 kDa) enables them to reach
epitopes that are shielded for larger antibodies and add-
itionally allows rapid clearance of unbound tracer from
the body. Nanobodies can easily be formatted to meet
the needs of several applications [23]. For SPECT
imaging, their high intrinsic thermostability and
carboxy-terminal hexahistidine tail allow straightforward
#MTe-labeling using tricarbonyl chemistry [24,25]. In
addition, nanobodies have been validated as tracers for
other imaging modalities (for example, NIR-labeled
nanobodies for optical imaging [26] and nanobody-
coupled microbubbles for ultrasound [27]). Imaging with
labeled nanobodies has proven its value in preclinical
models for atherosclerosis and tumors. SPECT imaging

with ?*™Tc-labeled nanobodies targeting vascular cell
adhesion molecule-1 (VCAM-1) in apolipoprotein
E-deficient mice identified aortic arch atherosclerotic
lesions [28]. Nanobodies against the macrophage
mannose receptor (MMR) (CD206) were successfully
used in SPECT imaging to specifically visualize a sub-
population of tumor-infiltrating macrophages in mam-
mary adenocarcinoma and Lewis lung carcinoma models
in mice [29].

Development of new molecular imaging probes for
introduction into the clinic is challenging. The regula-
tory pathway for diagnostics shares features with that
for new therapeutics, but the potential revenue from
commercialization is lower.

The use of molecular imaging in the clinic

General tracers

A frequently used PET tracer is '® F-fluoro-2-deoxy-D-
glucose (** F-FDG), which is used to image glucose
metabolism. Glucose is normally taken up by cells and
phosphorylated by hexokinase. '® F-FDG, on the other
hand, cannot be metabolized and therefore accumu-
lates in cells [1]. PET with *® F-FDG is used in experi-
mental models as well as in the clinic to study
inflammation of joints by detecting its accumulation in
activated macrophages, neutrophils, and proliferating
fibroblasts [1,30]. The technique has been successfully
used to image RA-related inflammation and even to
predict the response to therapy of patients with RA. A
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correlation was noted between PET activity 2 weeks
after initiation of infliximab treatment and the disease
activity score 28 after 14 and 22 weeks of treatment
[31]. Increased uptake of I8F_FDG in the joints is not
specific for RA, as this also occurs in infectious and
degenerative forms of osteoarthritis [32]. Radiolabeled
diphosphonates do not locate primarily to inflamma-
tory sites, but detect alterations in bone metabolism,
especially increased pathological osteoblast activity
[33,34]. SPECT imaging with °**™technetium-methylene
diphosphonate (**™Tc-MDP) is clinically approved for
the assessment of bone damage in RA and is used to
monitor patients with active arthritis [33] (Figure 3).
This tracer has proven to be useful for arthritis im-
aging in the past but provides limited insight into the
disease process. Furthermore, uptake of “*™Tc-MDP
occurs in all joints, making discrimination with mild
arthritis difficult and precluding differentiation between
active synovitis and inflammation secondary to joint
destruction in chronically affected joints. Other general
probes (discussed in Table 1) have yielded positive re-
sults in trials with patients with RA, but many have
not been further developed for this application, mostly
as a result of the limited information they provide in
addition to clinical assessment in comparison with
more specific probes. Consequently, additional imaging
probes are being evaluated for assessment of synovitis
in patients.
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Radiolabeled biologicals

Several biologicals approved for the treatment of RA
have been radiolabeled and evaluated for imaging, and
this provides a number of advantages. These drugs are
already being developed commercially, and their safety
has been assessed. Radiolabeled therapeutics might pro-
vide an earlier, more specific diagnosis and facilitate
monitoring of treatment efficacy. Importantly, confirm-
ation of the presence of the target in the patient before
treatment initiation provides the possibility of personal-
ized therapy, which can significantly reduce treatment
costs. In this context, anti-CD3 [46-48], anti-CD4
[42-45], anti-CD20 [53,54], and anti-TNF-a (infliximab
[2,50] and adalimumab [51,52]) have been evaluated for
imaging of RA, and most perform relatively well. An ex-
ception is IL-1 receptor antagonist (anakinra), which
failed to show any specific localization in synovia of RA
patients as compared with healthy synovia [49]. As evi-
dent from clinical trials, uptake of radiolabeled monoclo-
nal anti-CD3 antibodies (OKT-3), which target all T
cells, was detectable in inflamed joints of patients with
RA and levels correlated with inflammation scores from
physical examination [46-48]. Anti-CD4 antibodies
(MAX.16H5) target a more specific subset of T lympho-
cytes. These antibodies were also evaluated for
visualization of inflammatory foci in patients with RA
[42-45]. Early studies on the specificity of the antibody
signal yielded conflicting results [73], but this specificity

99m.

is found in metacarpophalangeal joints.

Figure 3 Bone scintigraphy in a patient with active rheumatoid arthritis. Imaging was performed at 3 hours after injection of 740 MBq
technetium-methylene diphosphonate. The image shows increased tracer uptake in the wrists and joints of the fingers. The highest intensity
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Table 1 Available imaging agents for rheumatoid or experimental arthritis

Tracer Target Developmental phase Reference
General tracers
18 F-fluoro-2-deoxy-D-glucose Glucose metabolism, inflammation Clinical use for detection of inflammation and cancer [1,35]
#MTe-diphosphonates Alterations in bone metabolism, osteoblastic activity Clinical use for bone scanning [33,34]
C-choline Cell membrane synthesis, inflammation Clinical use for detection of prostate cancer [36,37]
Trial in 10 patients with inflammatory joint disease
%’Ga-citrate Circulating blood plasma proteins and Clinical use for detection of inflammation [14]
leukocytes, inflammation
#MTe-polyclonal human immunoglobulin G Increase in vascular permeability, hyperemia, Multiple trials in patients with rheumatic disorders [38,39]
inflammation
#9MTe/"In-labeled leukocytes Influx of leukocytes into inflamed tissue Clinical use for infectious and inflammatory disorders [40]
Multiple trials in patients with RA
9OMT-RP128 Leukocytes (binds to receptors on Trial with 10 patients with RA 41
neutrophils and mononuclear phagocytes)
Radiolabeled biologicals
PMTc-anti-CD4 mAb T cells Case study in 1 patient with RA, trial in [42-45]
6 patients with RA
#MTc-anti-CD3 mAb T cells Trials in 7 patients with RA, 2 psoriatic arthritis [46-48]
patients, and
38 patients with RA
12311-1Ra Inflammation Trial in 4 patients with active RA [49]
M Tc-anti-TNF-a Inflammation Multiple trials with patients with RA [2,50-52]
Phase 3 study (NCT01590966)
M7 e-/124-anti-CD20 mAb B cells Trials in 6 patients with RA and 20 patients (53,54]
with chronic inflammatory autoimmune disease
Specific molecular markers
#MTc-acetylated poly-(1,3)-D-galactoside Mononuclear phagocyte trafficking Trials for tumoral, inflammatory and infectious diseases [55]
(binds CD14 and CD11b) . ) . ) .
Preclinical, rabbit antigen-induced arthritis
mTe-/"Mn-octreotide Endothelium activation and macrophage recruitment Clinical use for detection of tumors (56]
(binds to somatostatin receptor) Trial in 14 patients with RA
C-(R)-PK11195 Monocytes and macrophages (binds to peripheral Trials in 11 patients with RA, 6 patients with RA, and [57,58]

benzodiazepine receptors)

29 patients with arthralgia
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Table 1 Available imaging agents for rheumatoid or experimental arthritis (Continued)

"In-E-selectin-binding peptide
9MTc-anti-E-selectin Fab/(Fab’), fragment
NIR-anti-E-selectin Ab

%9MTc-annexin V

Cy5.5-anti-F4/80
99MTc-anti-IL-6R
#MTcfolic acid (EC20)

NIR2-folate
'8 F_PEG-folate

%1Cu-/"® F-galacto-arginine-
glycine-aspartic acid

NIR-matrix metalloproteinase-
specific probe
99MTc-anti-macrophage
mannose receptor

Activated vascular endothelium
Activated vascular endothelium
Activated vascular endothelium

Apoptosis (binds to phosphatidylserine)

Macrophages
Inflammation

Activated macrophages, folate receptor

Activated macrophages, folate receptor

Activated macrophages, folate receptor

Activated macrophages, osteoclasts, endothelial cells

Sites of matrix degradation and inflammation

Subset of macrophages

Preclinical, rat adjuvant arthritis

Trial in 26 patients with RA

Preclinical, CIA, and TNF-a-induced paw edema
Multiple trials in cancer patients

Preclinical, CIA

Preclinical, AIA

Preclinical, murine arthritis model

Phase 2 study in patients with autoimmune disease
(NCT00588393)

Mouse arthritis models

Preclinical, methylated bovine serum
albumin-induced arthritis

Clinical use, tumor angiogenesis

Preclinical, osteopetrosis, and osteoporosis
mouse models

Preclinical, CIA, rat OA

Preclinical, CIA

(71]

[72]

99MTe, #Mtechnetium; Ab, antibody; AlA, antigen-induced arthritis; CIA, collagen-induced arthritis; IL, interleukin; mAb, monoclonal antibody; NIR, near-infrared; OA, osteoarthritis; RA, rheumatoid arthritis; TNF-a, tumor

necrosis factor-alpha.
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was later confirmed in a study using Fab fragments. A
higher accumulation of anti-CD4 Fab' fragments compared
with control Fab’ fragments was clearly shown in adjuvant-
induced arthritis [74]. Rituximab, a chimeric monoclonal
anti-CD20 antibody, is licensed for treatment of RA and
has demonstrated good efficacy in a subset of patients [75].
99MTe-rituximab was shown to localize in inflamed joints of
patients with RA [53,54]. Here, an interesting intra-
articular and inter-individual variability was exposed, pro-
viding an explanation for the failure of anti-CD20 therapy
in certain patients [54]. Finally, with respect to anti-TNF-a,
imaging of patients with active RA by using *”™Tc-anti-
TNF-a showed a high correlation with inflammation de-
tected by MRI and proved to be more sensitive than clinical
examination [52]. In addition, Conti and colleagues [2] re-
ported that imaging with anti-TNF-« in patients with active
arthritis just before treatment with infliximab could predict
the efficacy of the anti-TNF-a therapy.

As evident from Table 1, these radiopharmaceuticals have
been evaluated in trials dating back several years; for some
of them, no real implementation in imaging has been re-
ported in recent years. Further development of radiolabeled
drugs for imaging purposes is subjected to important limita-
tions: (a) the safety issues of murine and chimeric monoclo-
nal antibodies; problems with immunogenicity are now
being handled by humanization of the antibodies. (b) The
safety profile of the pharmaceutical. Administration of anti-
CD3 antibodies, for example, may cause serious adverse ef-
fects in some patients, such as the cytokine release syn-
drome. (c) The inefficacy of certain drugs in patients with
RA. As mentioned, anti-CD4 antibody was demonstrated to
have potential for location of inflammatory regions, but the
lack of therapeutic results in RA has halted further develop-
ment for imaging. (d) The high costs associated with devel-
opment and production of these therapies.

In our opinion, radiolabeled anti-CD20 and anti-TNF-
a antibodies show the most potential for clinical use.
Their effectiveness as treatment for RA has been estab-
lished, and the first results on identification of patients
who will respond to therapy look promising. Further im-
plementation studies demonstrating their value in select-
ing patients for specific therapies are needed. Currently,
conflicting results are found in the literature - coming
mostly from registries - about switching to another
mode of action or to another TNF blocker in patients
failing their first anti-TNF treatment [76,77]. In the fu-
ture, the use of radiolabeled antibodies in appropriate
randomized studies could help to produce more solid
data that might give guidance to clinicians.

Specific tracers for imaging of arthritis in preclinical
models

Molecular imaging in animal models is necessary for the
development of new tracers but can also be used as an
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additional objective parameter to assess arthritis in an
experimental context, thereby providing detailed infor-
mation on the disease process. Tracers have evolved to
target molecules more specifically than '® F-FDG or **™Tc-
MDP, which visualize general processes (glucose metabol-
ism and bone turnover), and we can see an evolution in the
use of more sophisticated techniques for preclinical re-
search. An example of the technical evolution can be seen
in the development of tracers that target the folate receptor,
a 38-kDa glycosyl-phosphatidylinositol-anchored protein
that binds folic acid [65]. The folate receptor is expressed at
very low levels in most tissues in homeostatic conditions,
except for the kidneys and placenta. Under these circum-
stances, folic acid is taken up by carriers [78]. Expression of
the folate receptor in pathogenic conditions seems to be re-
stricted to several cancer cells and activated macrophages.
Interestingly, high-level expression of this receptor was
found in activated synovial macrophages from patients with
RA [79], a feature that has been exploited in imaging. In
2002, Turk and colleagues [66] published a study in which
the folate receptor was targeted in rats with adjuvant-
induced arthritis by using **™Tc-labeled folic acid. Gamma
scintigraphy was applied to produce images of the inflamed
paws, and uptake could be detected in arthritic joints [66].
However, the resolution of this technique is very low. Chen
and colleagues [68] developed a fluorescence-labeled folate
probe (NIR2-folate) that allowed improved resolution in
two mouse models of arthritis and the possibility of detect-
ing arthritis at an early time point. So far, however, fluores-
cent imaging is being hindered by limited tissue
penetration and is not yet optimized for use in patients with
RA. Recently, an improved PET tracer (*®F-polyethylene
glycol-folate) targeting the folate receptor was shown to
hold promise for imaging RA in patients, as it was success-
fully used in an antigen-induced arthritis model [69]. A fol-
ate receptor-targeting agent, ™ Tc-EC20 (FolateScan), has
been produced and evaluated in the clinic for the assess-
ment of inflammation in joints of patients with RA or other
diseases [67,80]. In a study including 40 RA patients with
active and inactive disease, joint involvement was assessed
by screening with FolateScan. The number of actively in-
volved joints identified by FolateScan correlated with
erythrocyte sedimentation rates and C-reactive protein
levels. Larger numbers of actively involved joints were de-
tected with FolateScan than were identified by clinical
examination. It was concluded that imaging with FolateS-
can may be a more sensitive method than physical examin-
ation for assessing disease activity [67]. Upregulation of the
folate receptor in activated macrophages is also being
exploited for targeting of folate-linked drugs to these mac-
rophages in RA [81,82]. Imaging with FolateScan might
help to predict the success rate of this technique.

F4/80, a member of the epidermal growth factor trans-
membrane 7 family, is expressed on a variety of
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macrophage subsets. Macrophages that accumulate in
inflamed joints express F4/80. In a mouse model, im-
aging with NIR-labeled antibodies targeting F4/80 visual-
ized macrophage accumulation in arthritic joints, with
some background in healthy paws [63]. The MMR is a
175-kDa C-type lectin expressed predominantly by ma-
ture macrophages and certain endothelial and dendritic
cells. It is detected in spleen, liver, and lymph nodes and
its primary functions are endocytic clearance of certain
glycoproteins and phagocytosis of unopsonized microor-
ganisms [83]. Our research group recently reported the
successful use of radiolabeled nanobodies targeting
MMR for in vivo SPECT/CT imaging of mice with CIA
(Figure 4) [72]. We were able to visualize CD11b"F4/80"
macrophages in the inflamed joints of these mice,
thereby providing a means to quantify the inflammation
in an objective manner and obtaining more knowledge
on the pathogenesis of arthritis, since MMR had previ-
ously not been shown to be expressed in the rheumatic
synovium [72].

Vascular endothelium, activated in inflammatory pro-
cesses, transiently expresses the surface glycoprotein E-
selectin in response to cytokines such as IL-1p and
TNFEF-a. Selectins facilitate tethering and rolling of leu-
kocytes on endothelium. These mechanisms commence
early in the pathogenesis of arthritis. Fluorescently la-
beled anti-E-selectin antibodies were successfully used
for imaging in a mouse model for RA, enabling detec-
tion of subclinical manifestations, monitoring effects of
therapy, and quantification of disease [61]. In patients
with RA, *™Tc-anti-E-selectin-Fab appeared to be suit-
able for scintigraphic imaging of synovitis and showed
a higher specificity than **™Tc- hydroxymethylene
diphosphonate bone imaging [60].
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Intercellular adhesion molecule-1 (ICAM-1) is another
potential target for imaging of arthritis as it was demon-
strated to be expressed on synovial endothelial cells and
mice deficient in ICAM-1 showed a reduction in arth-
ritis incidence and severity [84]. In CIA, antibodies tar-
geting ICAM-1 were conjugated to gadolinium
diethylenetriamine pentaacetic acid and were able to de-
tect early inflammatory symptoms before the onset of
the chronic destructive phase [85].

In arthritic joints, increased apoptotic cells are de-
tected in the synovial membrane [86]. These cells can be
imaged by the use of radiolabeled annexin V that binds
to phosphatidylserine, which is associated with the inner
leaflet of the plasma membrane. It was found that
9MTc_annexin could visualize arthritic joints before the
onset of bone destruction [62].

Inflammatory cytokines, such as IL-13 and TNF-q,
stimulate the production of MMPs that degrade the
extracellular matrix. Levels of MMPs increase in the
serum and the synovial fluid of patients with RA. MMP-
1, -2, -3, -9, and -13 appear to be most important in
RA. Recently, Ryu and colleagues [71] demonstrated the
use of an MMP-3-specific polymeric probe for
visualization of arthritis by NIR fluorescence imaging.
The probe was developed by the conjugation of a NIR
dye, an MMP substrate peptide, and a quencher to chi-
tosan nanoparticles. Imaging with this probe allowed
early diagnosis of arthritis in mice with CIA. More spe-
cifically, at 2 weeks after immunization, before any signs
of structural or anatomical changes, a signal from the
MMP-3 probe could be detected [71].

Development of these molecular markers is still in its in-
fancy; many have only recently been evaluated for imaging
of arthritis in preclinical models. Some show potential for

Asymptomatic mice
MMR BCII10

with collagen-induced arthritis. Single-photon emission computed tomo
3 hours after injection of *™technetium-labeled MMR-targeting nanobodie
mice) or mice with arthritic joints (B) (symptomatic mice). Nanobodies agai

cine [72]. © by the Society of Nuclear Medicine and Molecular Imaging, Inc.

Figure 4 In vivo imaging with macrophage mannose receptor (MMR)-specific nanobodies visualizes MMR expression in joints of mice

as a non-targeting control. MMR staining is apparent in knees, ankles, and metatarsal joints of symptomatic mice (arrows) in addition to the signal
in lymph nodes, liver, and spleen that is also detectable in asymptomatic mice. This image was originally published in the Journal of Nuclear Medi-

Symptomatic mice
BCII0

graphy and micro-computed tomography imaging was performed at
s in mice without clinical symptoms of arthritis (A) (asymptomatic
nst the B-lactamase BCIl enzyme of Bacillus cereus (BCII10) were used
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further development, such as MMP-specific probes, which
are being commercialized and are entering research labs.
Others are less promising for the future and this is due
mostly to lower specificity. The targeted cell type might
not be exclusively expressed in the inflamed joint or the
probe might bind to irrelevant targets, resulting in non-
specific signals and low target-to-background ratios.

Potential new targets to be considered for in vivo
imaging of arthritis

Molecules in the following section were chosen for dis-
cussion because they have been shown, or suggested, to
be involved in the pathogenesis of arthritis through
functional preclinical studies and expression studies in
animal models or patients.

RANK and RANKL

RANKL is a type I-membrane protein of the TNF recep-
tor superfamily, expressed on osteoblasts and T cells.
RANKL knockout mice exhibit severe osteopetrosis be-
cause of a complete absence of osteoclasts. Furthermore,
the importance of RANK-RANKL signaling for bone de-
struction in arthritis has been demonstrated in several
studies [87,88]. Inhibition of RANKL by denosumab, a
human monoclonal antibody, has been effective for the
treatment of RA-associated bone loss [89] and bone me-
tastasis in cancer [90]. The receptor for RANKL, RANK,
can be detected on pre-osteoclasts in the blood as well
as on mature osteoclasts [91]. Importantly, RANK has
already proven to be a potential marker for the detection
of bone metastasis [92-94]. RANK and RANKL can thus
be considered valuable molecular targets for the treat-
ment of bone loss and have great value as markers for
RA-associated bone pathology.

Chemokine receptors

Chemokines and their receptors are involved in the re-
cruitment of leukocytes to the site of inflammation; they
are key molecules in the pathogenesis of RA and present
possible targets for imaging. CCR1 and CCR5 are the
ones most implicated in RA. CCR1 is abundantly
expressed by macrophages in the inflamed synovium
and peripheral blood monocytes of patients with RA,
suggesting an important role in recruitment of leuko-
cytes from the circulation. A trial involving 160 patients
with RA showed evidence of a beneficial effect of treat-
ment with the small-molecule CCR1 antagonist
CCX354-C [95]. CCR5 is highly expressed in the
rheumatoid synovium, particularly by T helper (Th)l
lymphocytes [96]. Antagonists of CCR5 have proven to
be capable of inhibiting the development of collagen-
and adjuvant-induced arthritis [97,98].
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Surface molecules involved in cell adhesion and cell
signaling

VCAM-1 is thought to be responsible for recruitment
and retention of leukocytes in the inflamed synovium. It
is found on fibroblast-like synoviocytes in the synovial
lining layer and is upregulated upon stimulation with
various cytokines [99]. As mentioned, nanobodies target-
ing VCAM-1 have proven their worth in imaging of ath-
erosclerotic lesions. The expression of VCAM-1 in
arthritis suggests that these nanobodies might also be
useful in imaging of arthritic joints.

Integrins, a large family of heterodimeric transmem-
brane glycoproteins, mediate cell-cell and cell-matrix in-
teractions. Their expression is upregulated in the pro-
inflammatory environment of the rheumatoid synovium
and leads to production of matrix-degrading enzymes
and cytokines [100]. Vitaxin, a humanized monoclonal
antibody that blocks the interactions of o,f3; with its li-
gands, was tested as treatment for RA in clinical trials
[101]. Mature and active osteoclasts express o,f3; conse-
quently, inhibition or deficiency of the B; integrin was
shown to cause impaired differentiation and function of
osteoclasts [102]. Imaging studies were performed with
the tripeptide Arg-Gly-Asp (RGD), which binds with
high affinity to o,fs. PET imaging with ®*Cu-labeled
RGD allowed detection of changes in osteoclast numbers
in mouse models for osteopetrosis or osteoporosis [70],
suggesting that ®*Cu-RGD may be suitable for imaging
of osteoclast changes in RA.

Another cell surface molecule implicated in the patho-
genesis of RA is the purinoreceptor P2X7, which was
shown to be expressed by synoviocytes from RA joints.
P2X7 is expressed by various cells, including osteoblasts
and osteoclasts, and has been implicated in the forma-
tion of multinuclear cells. Triggering of this receptor re-
sults in enhanced IL-6 secretion and its absence was
shown to result in a loss of ATP-dependent leukocyte
function, including IL-1p production and L-selectin
shedding [103]. In animal models of arthritis, deficiency
of the P2X7 receptor is associated with lower incidence
and severity of arthritis [104].

Suppression of tumorigenicity 2 (ST2) is a member of
the Toll-like/IL-1 receptor superfamily that participates
in inflammatory processes, such as production of Th2
cytokines. The ST2/IL-33 pathway has been implicated
in RA pathogenesis, and treatment of CIA with ST2-Fc
fusion protein ameliorated the disease and downregu-
lated production of IL-6, IL-12, and TNF-« [105].

Dendritic cell-specific transmembrane protein (DC-
STAMP) and osteoclast-stimulatory transmembrane pro-
tein (OC-STAMP) are highly expressed by osteoclasts
and essential for the fusion of macrophages to multinu-
clear cells and bone degradation [106]. DC-STAMP was
suggested to be a marker for circulating osteoclast
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precursors in inflammatory arthritis as it was found to
be increased on peripheral blood mononuclear cells of
patients with psoriatic arthritis [107]. DC-STAMP and
OC-STAMP could be valuable for therapy development
and imaging of osteoclasts in arthritis.

Challenges for development of new molecular probes
High selectivity of molecular imaging probes is
mandatory and represents the most important aspect to
consider when developing new candidates for imaging.
A second challenge to consider is resolution; theoretic-
ally, molecular imaging could also help in showing spe-
cific localizations of inflammation, distinguishing
enthesitis from arthritis in spondyloarthritis versus RA,
but this would require techniques with better resolution.
To qualify the cost-effectiveness of a new marker, the
molecular imaging method should have an impact on
patient management. As stated above, molecular im-
aging methods might be of help in designing and evalu-
ating proof-of-concept phase I and II trials assessing
specific targets. The use of these tools, however, will be-
come established only if they facilitate daily treatment
practice in making an appropriate choice for the best
treatment option or are able to guide the physician in ta-
pering expensive treatment if a specific state of pro-
longed remission has been reached. Ultimately, as stated
in a recent editorial by Smolen and Aletaha [108], better
markers will be needed to make a transition toward real
personalized medicine.

Conclusions

The field of molecular imaging has grown substantially
in the past two decades; tools and techniques have
evolved, and new molecular markers are being identified.
Molecular imaging will be of help in a preclinical con-
text by offering a reliable and subjective manner to as-
sess the disease severity and by providing more detailed
knowledge of the disease process. Some of the markers
will enter the clinic to facilitate diagnosis, monitoring of
disease progression, and determination of treatment
strategy in a subset of patients. Finally, an important role
for molecular imaging may be situated in the assessment
of efficacy of new drugs and in the design and evaluation
of clinical trials.
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