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Abstract

Introduction: Our objective was to utilise network analysis to identify protein clusters of greatest potential
functional relevance in the pathogenesis of oligoarticular and rheumatoid factor negative (RF-ve) polyarticular
juvenile idiopathic arthritis (JIA).

Methods: JIA genetic association data were used to build an interactome network model in BioGRID 3.2.99. The
top 10% of this protein:protein JIA Interactome was used to generate a minimal essential network (MEN). Reactome
FI Cytoscape 2.83 Plugin and the Disease Association Protein-Protein Link Evaluator (Dapple) algorithm were used
to assess the functionality of the biological pathways within the MEN and to statistically rank the proteins. JIA gene
expression data were integrated with the MEN and clusters of functionally important proteins derived using
MCODE.

Results: A JIA interactome of 2,479 proteins was built from 348 JIA associated genes. The MEN, representing the
most functionally related components of the network, comprised of seven clusters, with distinct functional
characteristics. Four gene expression datasets from peripheral blood mononuclear cells (PBMC), neutrophils and
synovial fluid monocytes, were mapped onto the MEN and a list of genes enriched for functional significance
identified. This analysis revealed the genes of greatest potential functional importance to be PTPN2 and STAT1 for
oligoarticular JIA and KSR1 for RF-ve polyarticular JIA. Clusters of 23 and 14 related proteins were derived for
oligoarticular and RF-ve polyarticular JIA respectively.

Conclusions: This first report of the application of network biology to JIA, integrating genetic association findings
and gene expression data, has prioritised protein clusters for functional validation and identified new pathways for
targeted pharmacological intervention.
Introduction
Juvenile idiopathic arthritis (JIA) is a common chronic
disease of childhood. It is not a single disease, but a term
that encompasses all forms of arthritis, of unknown origin,
that begin before the age of 16 years and persist for longer
than 6 weeks. It is the commonest form of chronic arth-
ritis in children and the cause of substantial morbidity.
JIA is a complex disease with both environmental factors,
currently unknown, and genetic contributions to its
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aetiopathogenesis. Of the clinical subtypes defined by the
International League Against Rheumatism (ILAR) clas-
sification of JIA [1] oligoarticular (both persistent and
extended forms) and rheumatoid factor (RF)-negative
(RF-ve) polyarticular arthritis are the predominant forms,
accounting for approximately half of all presenting cases
in the UK [2]. Factors that influence the susceptibility to,
and progression of, these major phenotypic forms are
currently unknown. Similarly, treatment options remain
limited with steroid joint injections and methotrexate
being most frequently employed. However, the relapse rate
is often high and over 40% of individuals continue to have
active disease as adults [3,4].
Replicated genetic loci from JIA candidate gene,

genome-wide association studies (GWAS) and fine
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Table 1 Glossary

Term Definitiona

Bottleneck A network position that limits the performance
of the system. Described by the mathematical
idea of betweeness centrality - a description of
the number of paths travelling through a
node in a network. An example would be a
rate-limiting enzymatic reaction.

Cluster A measure of the tendency of network nodes to
form groups. It manifests from a high density of
edges between nodes. In biological networks a
cluster could represent a protein complex.

Connectivity/degree The number of connections (see edge) made
by any node within a network.

Edge An interaction between two nodes. Commonly
represents a protein:protein interaction but can
also be representative of other biological
phenomena such as co-expression.

Interactome A network representing a whole set of direct
and/or indirect interactions related to a specific
biological phenomenon.

Minimal Essential
Network (MEN)

Top 10% of network protein nodes, as scored by
connectivity and bottleneck network properties.
Corresponds to highly functionally related
positions within the network.

Network analysis Analysis that relates the structural and
mathematical properties of a network to its
function.

Node A vertex within a network. In biological
networks a node will usually be a gene, protein
or metabolite.

Seed genes A starting set of genes or metabolites of interest
that are used to generate an interactome model
by inferring joining interactions algorithmically.

aFurther technical references are given in Stevens et al., [33].
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mapping genotyping are emerging [5-7]. In addition, a
limited number of gene expression studies have attempted
to establish changes in gene expression patterns with
oligoarticular or with RF-ve polyarticular JIA subtypes
[8-10]. Single nucleotide polymorphism (SNP) association
studies, be it by a candidate gene or a GWAS approach,
can identify variations that are associated with a particular
complex trait. However, multiple constraints exist in ex-
trapolating these observations forwards to any biological
significance. SNP analysis, in the main, is done only at the
single locus level. The associated variant may not be the
functional polymorphism. Furthermore, SNPs associated
with complex traits such as JIA, typically have small effect
sizes and account for only a very small fraction of the
genetic risk [11]. Thus, for most complex diseases, inclu-
ding JIA, an understanding of the underlying biology,
leading to better diagnosis and treatment, is unlikely to
arise by detailing the functional consequence of individual
SNPs. Therefore, a major challenge for JIA, as for other
complex diseases, is the integration of high-throughput
omic datasets and subsequent identification and prioritisa-
tion of disease-associated loci for additional investigation.
JIA, most likely, arises as a result of abnormalities in

genes, but more specifically, via the manifestation of per-
turbations in multiple protein networks that integrate cel-
lular processes, and those that also link cells within tissues,
and tissues within organ systems. An innovative approach
to identifying key contributing genetic loci, and potential
mechanisms of disease in patients with JIA, is the use of
network biology. Network analysis (see Table 1) can allow
the summation of various interactions and interdepen-
dencies between SNP associations and gene expression
data [12]. Defining such a network structure is relevant for
biological function. Topologically derived networks have
interacting proteins that tend to be co-evolving [13], co-
functional [14], and co-expressed [15,16].
It is recognised that for the majority of SNPs with a po-

tential functional role in disease the genome-wide signifi-
cance threshold for disease association (P <1 × 10−8) may
not be reached [17]. Therefore, despite not individually
reaching genome-wide statistical significance, SNPs that
cluster in networks can inform the underlying biology of a
complex genetic disease such as JIA. Studies now describe
how network biology place signature changes within the
human interactome, uncovering some of the complexities
of human diseases [12,18,19]. Furthermore, network ana-
lysis can inform drug discovery and drug targeting for
complex genetic diseases such as JIA [20,21].
In this present study we have performed network

analysis focussed on oligoarticular and RF-ve polyar-
ticular arthritis, integrating genetic association data with
gene expression data. This has been used to derive a JIA
interactome, and clusters of proteins of functional
relevance.
Methods
An overview of the approach taken is shown in Figure 1,
and the sections below are labelled in correspondence
with this figure. These sections detail the key processes
and stages in the work flow for the formulation of the
JIA subgroup specific network clusters of functional
importance.

Genetic association data
Initially, PubMed [22] and Web of Science [23] searches
were conducted and only validated SNP associations from
studies of oligoarticular and RF-ve polyarticular JIA were
selected. These included multiple well-replicated loci
initially associated with adult rheumatoid arthritis found
to be significantly associated with JIA [24-30]. In addition,
the top findings (P ≤1 × 10−4) from the largest GWAS
study in JIA have been used [6], together with loci repli-
cated by dense genotyping of immune-related disease
regions in JIA [7]. SNPs were assigned to genes using an
algorithm within Gene Relationships Across Implicated
Loci (GRAIL) [31,32] (Additional file 1: Table S1A). This
identified a total of 348 JIA-associated genes (Figure 1A).



Figure 1 Overview of the workflow used to identify protein clusters of functional importance in rheumatoid factor-negative (RF-ve)
polyarticular and oligoarticular juvenile idiopathic arthritis (JIA). This figure outlines each of the steps taken and gives cross references to
the specific tables and figures that provide further details of that particular step in the process. (A) JIA genetic association data of replicated single
nucleotide polymorphisms (SNPs) associated with RF-ve polyarticular JIA or oligoarticular JIA and JIA genome-wide association data findings were
ascertained. SNPs were mapped to genes using Gene Relationships Across Implicated Loci (GRAIL) software (n = 348) (Additional file 1: Table S1A and
B). (B) A JIA interactome network model (JIA Interactome) was inferred from JIA-associated genes using the BioGRID database (Figure 2A). (Bi) The top
10% of nodes, ranked by connectivity and bottlenecks, were used to derive a minimal essential network (MEN) of 248 genes (Figure 2B and Additional
file 3: Table S3A). The Reactome database and spectral partition clustering was used to determine clusters of genes within the MEN (Figure 2C). (Bii)
The Disease Association Protein-Protein Link Evaluator (Dapple) algorithm was used to identify Highly Connected Genes (Figure 3 and Additional file 3:
Table S3B). The overlap of genes between Bi and Bii was determined (n = 26 genes) (Additional file 3: Table S3B). (C) JIA gene expression data from
published sources, collated from the Gene Expression Omnibus database (GEO) (Additional file 2: Table S2 and Additional file 4: Table S4, Additional
file 5: Table S5, Additional file 6: Table S6), was integrated with the overlap of the genes from Bi and Bii. (D) A prioritised list of JIA-associated genes
with functionally associated network properties was identified from the integration of JIA genetic association and gene expression data (n = 3 genes)
(Table 2). (E) MCODE was used to determine RF-ve polyarticular and oligoarticular JI-specific network clusters, protein:protein interactions of functional
relevance (Figure 4A and B). GWAS, genome-wide association studies.
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These 348 JIA-associated genes were the seed genes,
that is, known genes that are used to generate an interac-
tome model from all known protein-protein interactions
(Additional file 1: Table S1B).

Building the JIA interactome
A JIA interactome was derived from the genetic asso-
ciation data using two independent methods (Figure 1Bi
and Bii). Interactome modelling uses seed genes, in this
case JIA-associated genes, to infer a network of protein:
protein interactions, which are derived from known in-
teractions between the seed genes and their near neigh-
bours [33].
Bi: the first approach used the BioGRID Cytoscape

Plugin [34] to create a filter for the BioGRID human inter-
actome model (3.2.99), based on the JIA-associated genes.
The resultant JIA interactome was visualised in Cytoscape
(version 2.8.3). The Cytohubba Cytoscape Plugin was used



Stevens et al. Arthritis Research & Therapy 2014, 16:R109 Page 4 of 13
http://arthritis-research.com/content/16/3/R109
to provide topological analysis of this network and
connectivity and bottlenecks were calculated. The JIA
interactome was then ranked for both connectivity and
bottleneck properties and these were used to evaluate the
relative importance of each node [35,36], and to generate
a minimal essential network (MEN) [33,37,38]. The top
10% of network nodes was chosen to define the MEN
(Figure 1Bi), as this represents the most functional ele-
ments of the network [33,37]. The Reactome FI Cytoscape
2.8.3 Plugin [39,40] was then used to determine clusters -
distinct groups of protein:protein interactions [41] and to
analyse the functional enrichment of biological pathways
within the MEN.
Bii: the second approach utilised the Disease Association

Protein-Protein Link Evaluator (Dapple) algorithm [42,43]
and InWeb database [44]. This approach revealed highly
connected genes within the JIA interactome by testing the
significance of biological networks using a permutation
method (10,000 permutations). The overlap of genes from
Bi and Bii was determined using a Venn diagram (Partek
Genomics Suite).

Gene expression data was integrated with the JIA
interactome
Gene expression analysis was conducted on a library of
gene expression datasets from children with JIA collated
from the NCBI Gene Expression Omnibus (GEO) data-
base (Additional file 2: Table S2). Selection was made
based on the phenotypic criteria of oligoarticular or RF-ve
polyarticular JIA and on control data being accessible.
Gene expression studies were downloaded from GEO

[45] and annotation was assessed using QlucoreOmics
Explorer 2.2 (Lund, Sweden). Sample comparisons were
grouped for disease versus controls, or disease versus
disease, using the data in the original peer-reviewed
study. Available covariates (confounding factors) as pro-
vided in the published data were used. Four separate
gene expression datasets were utilised [GEO:GDS711
[9], GSE:11083 [10], GSE:20307 [8], GSE:17755] [46].
The full details of these datasets are given in Additional
file 2: Table S2.
Probe-to-gene assignment was made using the appro-

priate Affymetrix annotation file (Netaffx.com). Dimen-
sional scaling using principal components analysis (PCA)
and Iso-map multidimensional scaling [47,48] were used
to demonstrate data homogeneity (Qlucore Omics Ex-
plorer 2.2) and to identify outliers using cross-validation.
Analysis of variance (ANOVA) was used to determine
differential gene expression between groups (P ≤0.05) and
functional associations were cross-referenced using In-
genuity Pathway Analysis software (IPA). Overlap of gene
expression data sets was performed separately for both
up- and down-regulated genes using Venn diagrams
(Partek).
Deriving a list of prioritised genes of functional relevance
Genes identified within the MEN by network topology
(Figure 1Bi) were overlapped with highly connected
genes defined using Dapple (P ≤0.05) (Figure 1Bii). This
step identified network positions with putative func-
tional importance using two semi-independent analytical
approaches. This overlap was then combined with gene
expression data (Figure 1C) to derive a prioritised list of
genes of functional relevance.

Identification of JIA subgroup-specific network clusters
RF-ve polyarticular JIA and oligoarticular JIA clusters were
identified from the JIA interactome using the MCODE al-
gorithm plugin for Cytoscape [49]. These clusters identify
the most highly related RF-ve polyarticular and oligo-
articular JIA subgroup-specific genetic and transcriptomic
data within the JIA interactome.

Statistics
Assessment of pathway associations was performed by
the hypergeometric test using the Benjamini-Hochberg
false discovery rate (FDR) correction (FDR correction-
modified P-value ≤0.05) [50].

Results
Deriving a minimal essential network of biologically
relevant JIA genes
A collated list of 348 JIA-associated seed genes was used
to derive a JIA interactome inferred from the BioGRID
human interactome database (3.2.99). This consisted of
the 348 seed genes (marked red in Figure 2A) along with
their immediate inferred interaction partners (protein:
protein interactions - purple in Figure 2A). This gave a
network of 2,479 proteins and 4,147 edges (Figure 2A).
The top 10% of nodes, ranked by connectivity and bot-
tleneck properties were selected to generate a minimal
essential network (MEN) (Figure 2B, Additional file 3:
Table S3A). The MEN represents the most functionally
related components of a network [33,37].
The JIA-associated clusters (same colour code in

Figure 2B and C; listed in Additional file 3: Table S3A)
within the MEN were mapped onto biological pathways
using the Reactome Cytoscape plugin to ascertain func-
tion. Six clusters were identified within the MEN, which
had clear associated biological pathways (FDR, p ≤0.05).
These include pathways related to growth factor sig-
nalling and antigen presentation, regulation of the cell
cycle and cytokine signalling (Figure 2C).

Permutation analysis of network topology
Network analysis of the JIA-associated genes was also per-
formed using the Dapple algorithm [42]. This was done to
calculate changes in connectivity in the inferred network
greater than those expected by chance. First an inferred
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Functional Group Module Pathway FDR
Angiogenesis 1.82E-05
MHC class II antigen presentation 1.92E-05
FGF signaling pathway 2.63E-05
Signaling by PDGF 2.94E-05
IGF1 pathway 5.56E-05
Signaling by NOTCH 8.33E-05
Wnt signaling pathway 9.09E-05
TGF-beta signaling pathway 2.00E-04
Regulation of Telomerase 2.50E-04
Glucocorticoid receptor regulatory network 3.33E-04
Regulation of DNA replication 1.11E-04
Cell cycle 1.43E-04
p53 pathway 5.00E-04
Cellular responses to stress 7.50E-04
Ubiquitin mediated proteolysis 1.00E-03
IL2 signaling events mediated by PI3K 4.76E-05
Chemokine signaling pathway 6.25E-05
IL8- and CXCR1-mediated signaling events 2.00E-04
IL8- and CXCR2-mediated signaling events 3.50E-04
Class I PI3K signaling events mediated by Akt 1.00E-03
Toll-like receptor signaling pathway 6.67E-05
FAS (CD95) signaling pathway 7.69E-05
MAPK signaling pathway 1.25E-04
TNF receptor signaling pathway 1.43E-04
NF-kappa B signaling pathway 1.67E-04

Translation 2.00E-04

Spliceosome 3.33E-04

RNA transport 5.00E-04

RNA Splicing

Growth Factor Signalling   

& Antigen Presentation

Signalling pathways

Cell Cyle Regulation

Cytokine Signalling

Immune response

Figure 2 Network analysis of juvenile idiopathic arthritis (JIA)-associated genes. (A) A collated list of 348 JIA-associated genes was used to derive an
interaction network inferred from the BioGRID model of the human interactome (3.2.99); red = JIA-associated gene, blue = inferred interaction (Figure 1B).
(B) Minimal essential network of top 10% of the genes from the JIA interactome, ranked by connectivity and bottleneck, colours represent clusters of related
genes calculated by spectral partition clustering [41] (Figure 1Bi). (C) Biological pathways associated with minimal essential network (MEN) clusters (colour of
cluster relates to Figure 2B), false discovery rate (FDR) P-value of hypergeometric test (P ≤0.05) (Figure 1Bi). MHC Major histocompatibility complex, FGF
Fibroblast growth factor, PDGF Platelet-derived growth factor IGF-1 Insulin-like growth factor 1, TGF beta Transforming growth factor beta, IL-2 Interleukin 2, IL-8
Interleukin 8 PI3K Phosphoinositide 3-kinase, TNF Tumour necrosis factor, CXCR1 chemokine (C-X-C motif) receptor 1, CXCR2 chemokine (C-X-C motif) receptor 2.
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interaction network was derived using the JIA genetic asso-
ciations as seed genes (Figure 1B). Permutation analysis of
this inferred network demonstrated an increase of seed gene
connectivity (P <0.002). The seed genes were ranked, by
P-value of increased connectivity (colour scale of ranking,
Figure 3; all seed genes listed in Additional file 3: Table
S3B).
Prioritisation of JIA-associated genes by integration of
the JIA interactome with gene expression data
The overlap between the genes present within the MEN
and the highly connected loci, identified by Dapple
(Figure 1Bi and Bii) was established. This identified 26
genes of the 248 genes that occur in the MEN, that are
ranked by Dapple with a P-value ≤0.05 (coloured orange



Gene names labelled 
and colour coded by  
p-value of change in 

connectivity  

Figure 3 Changes in connectivity of juvenile idiopathic arthritis (JIA)-associated genes. The Disease Association Protein-Protein Link
Evaluator (Dapple) algorithm was used to generate an inferred interactome network from the 348 JIA-associated genes, an iterative process was
then used to generate random networks and significant changes in seed gene connectivity were calculated. The JIA-associated seed genes are shown
coloured by significance of deviation of observed network connectivity from expected (red = highly significant to green = not significant) (Figure 1Bii).
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in Additional file 3: Table S3B). These 26 genes repre-
sent the most highly connected, and therefore, poten-
tially most functionally important loci, derived from
the genetic association findings. Then, in order to
prioritise these JIA-associated genes for future func-
tional investigation, gene expression data were aligned
(Figure 1C, Figure 2A - red nodes). Four different
gene expression series were identified that provided
data from RF-ve polyarticular, oligoarticular JIA and
controls in previously published studies (GEO). These
datasets allowed comparison between gene expression
in peripheral blood mononuclear cells (PBMCs), neu-
trophils or synovial fluid monocytes (SFM) (Additional
file 2: Table S2).
RF-ve polyarticular JIA versus controls
RF-ve polyarticular JIA gene expression data were com-
pared with controls. Four comparisons were made using
PBMC data and one using neutrophils (Additional file 2:
Table S2). Comparisons were made separately between
up-regulated and down-regulated genes. To increase
confidence in the statistical interpretation of the data,
and to reduce confounding effects, only genes with sig-
nificant differential expression in at least three out of the
five of these comparisons (Additional file 4: Table S4)
were mapped onto JIA-associated genes ranked by net-
work properties. In total this comprised 325 genes; 138
up-regulated and 187 down-regulated (Additional file 4:
Table S4).
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Oligoarticular JIA versus controls
Oligoarticular JIA gene expression was compared with
controls using PBMC expression data (Additional file 2:
Table S2). Comparisons were made separately between
up-regulated and down-regulated genes. Genes with sig-
nificant differential expression in both comparisons
(Additional file 5: Table S5) were then mapped onto the list
of JIA-associated genes ranked by network properties.
There were a total of 150 genes with altered gene ex-
pression, 46 being up-regulated and 104 down-regulated
(Additional file 5: Table S5).

Oligoarticular JIA versus RF-ve polyarticular JIA
Oligoarticular was compared to RF-ve polyarticular JIA gene
expression data. Two PBMC and one synovial fluid mo-
nonuclear cell expression data set were utilised (Additional
file 2: Table S2). Comparisons were made separately bet-
ween up-regulated and down-regulated genes. Genes with
significant differential expression in all three comparisons
(Additional file 6: Table S6) were then mapped onto the list
of JIA associated genes ranked by network properties. A
total of 108 genes were changed, 88 were up-regulated and
20 were down-regulated (Additional file 6: Table S6).

JIA subgroup-specific loci of greatest functional relevance
The JIA subgroup specific loci of greatest functional rele-
vance were identified as those loci that were present within
the overlap of the MEN and highly connected genes
(Figure 1Bi and Bii) with concomitant variation in gene ex-
pression (Figure 1C). These loci are listed in Table 2.
The network analysis identified KSR1 as the locus of

greatest potential functional relevance in RF-ve poly-
articular JIA, and PTPN2 for oligoarticular JIA (Table 2).
Signal transducer and activator of transcription 1 (STAT1)
is differentially involved in oligoarticular versus the poly-
articular subgroup. It has increased connectivity, indi-
cating a primary functional role, in oligoarticular JIA
compared with RF-ve polyarticular disease (Table 2).

Prioritised genes form JIA subgroup-specific functional
clusters
In order to determine functional clusters, that is, distinct
groups of protein:protein interactions in relation to the
Table 2 Genes of greatest potential functional relevance dete

JIA-associat
that lie with

RF-ve polyarticular JIA compared with controls KSR1

Oligoarticular JIA compared with controls PTPN2

Oligoarticular compared with RF-ve polyarticular JIA STAT1

Genes present within the MEN which also show altered gene expression in either rheu
with controls, oligoarticular JIA compared with controls, or between oligoarticular com
functional priority and the Disease association protein-protein link evaluator (Dapple) P
what would be expected by chance.
key prioritised genes, KSR1 for RF-ve polyarticular JIA
and Protein tyrosine phosphatase, non-receptor type 2
(PTPN2) for oligoarticular JIA the MCODE algorithm was
applied to the JIA interactome (Figure 1E). The MCODE
algorithm identifies highly connected regions of biological
networks representing clusters of related function that
include protein:protein interaction complexes [49]. This
approach identified two high scoring clusters each con-
taining <25 proteins. High-scoring clusters have a high
density of local connections and thus they represent a net-
work region with related function [33,51,52]. The cluster
score generated by an algorithm such as the MCODE al-
gorithm used in this case, ranks network clusters as a way
of prioritising function.
A cluster of 23 proteins contained PTPN2 and STAT1

(Figure 4A). Both PTPN2 and STAT1 are JIA-associated
genes (Additional file 1: Table S1) with concomitant sig-
nificant changes in gene expression in oligoarticular JIA
patients. PTPN2 was significantly down-regulated in
oligoarticular JIA compared with controls; STAT1 sig-
nificantly increased in expression in oligoarticular com-
pared to RF-ve polyarticular JIA cases (Additional file 6:
Table S6). The main biological pathways associated with
this cluster are cytokine signalling (P <1.8 × 10-4) and
DNA repair (P <1.4 × 10-3).
A second functional cluster of 14 proteins was identified

that contained KSR1 (Figure 4B). KSR1 is a JIA-associated
gene (Additional file 1: Table S1) with significant increased
expression in RF-ve polyarticular JIA patients (Additional
file 4: Table S4). The main biological pathways found to
be associated with the KSR1-related cluster are the RAF/
MAP kinase cascade (P <8.9 × 10-5), cell cycle checkpoints
(P <5.6 × 10-4), DNA replication (P <1.3 × 10-4) and cyto-
kine signalling (P <1.2 × 10-2).

Discussion
Recognising the necessity to move away from an approach
focussed around the determination of SNP function per se
we have utilised network biology approaches to reveal
highly connected regions within a derived JIA interactome
in order to identify the interplay of molecular elements
that leads to the phenotypic expression of RF-ve polyarti-
cular JIA or to oligoarticular JIA.
rmined by network analysis

ed genes with correlated expression data
in the minimal essential network (MEN)

Dapple P-value

0.0088

0.0112

0.0002

matoid-negative (RF-ve) polyarticular juvenile idiopathic arthritis (JIA) compared
pared with RF-ve polyarticular JIA are listed. Presence in the MEN indicates
-value assesses the statistical significance of network connectivity compared to



A

B

Figure 4 Identification of clusters of highly connected nodes within the juvenile idiopathic arthritis (JIA) interactome. Two clusters were
identified using the MCODE clustering algorithm. (A) The oligoarticular JIA cluster includes PTPN2 and STAT1; (B) the RF-ve polyarticular related
cluster contains KSR1. JIA-associated genes = red hexagons, blue circles = inferred genes within the JIA interactome (Figure 1E).
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We have used a comprehensive set of genetic loci as
the starting point to build the network. These loci are
replicated SNP associations from candidate genes and
the top statistical associations from recent GWAS and
fine-mapping studies. There are limited collections of
JIA patients worldwide to allow for subsequent GWAS
or future GWAS meta-analysis. Given the premise that
gene-gene interactions contribute to complex diseases,
combining modest association signals from GWAS ana-
lysis with biological data to build networks can help to
detect the joint effects of multiple genes [53]. Also, Hua
et al. recently described the relevance of incorporating
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GWAS SNPs with a P-value of lower than 0.01 in net-
work analysis [54].
The genetic network was initially built using the Bio-

GRID database. Subsequently, a MEN, representing the
core genetic clusters related to the JIA phenotype, was de-
rived using both connectivity and bottleneck network
properties [12,33,36-38,55]. Six biological groupings were
associated with the MEN, with a predominance of
immune-related and cellular signalling pathways being
represented (Figure 2). In addition, we utilised the ap-
proach described by Rossin et al. [42] to provide a statis-
tical measure to the MEN.
The value of network biology is the inter-relational

display of multiple omic datasets [56]. An integrated,
multi-omic approach reduces noise in the statistical in-
terpretation [57]. Furthermore, network biology focuses
on the importance of clusters [58-61] as a measure of
similarity rather than simply an overlap of gene sets. It is
also an approach that is robust to random variation in
the data [62] and to variation over different sizes of net-
works [60].
Our strategy has been to build the network from genetic

association findings and to refine and validate the SNP
data by overlaying stringently derived gene expression
data. In order to have the most stringent refinement of
the network we integrated the gene expression data with
the MEN [33,37,38], and then the Dapple algorithm [42]
was again employed to rank the gene expression loci that
aligned to the MEN, to provide a further level of statistical
robustness. This analysis identified JIA subgroup-specific
loci.
The key seed gene for RF-ve polyarticular JIA is the

scaffold kinase suppressor of Ras (KSR1). In three of the
five gene expression datasets KSR1 was over-expressed in
RF-ve polyarticular JIA (Additional file 4: Table S4). KSR1
acts as a location-regulated scaffolding protein connecting
MEK to RAF. It promotes MEK and RAF phosphorylation
and activity through assembly of an activated signalling
complex. By itself, however, it has not been demonstrated
to have kinase activity. Importantly, Fusello et al. estab-
lished that KSR1 knockout mice have reduced susceptibi-
lity to rheumatoid arthritis [63]. As KSR1-deficient T cells
are functionally impaired [64] Fusello tested Ksr-deficient
mice using a passive transfer model of arthritis. Their
findings showed that the induction of arthritis is impaired
in the absence of KSR1 and that this gene plays a role in
ERK activation during inflammatory and stress responses
both in vitro and in vivo. Using the MCODE algorithm,
KSR1 interacts with a sub-cluster of 14 other proteins in-
cluding a functional relationship with RAF1 (Figure 4B).
We propose that this sub-cluster is of key functional rele-
vance to the pathogenesis of RF-ve polyarticular JIA.
For oligoarticular JIA PTPN2 was the seed gene of im-

portance. PTPN2 was significantly altered (down-regulated)
in expression and mapped to the MEN (Additional file 5:
Table S5). The cluster in relation to PTPN2 is shown,
(Figure 4A), and consists of 23 proteins, the majority of
which have a role in cytokine signalling and DNA repair.
PTPN2 encodes for the ubiquitously expressed T cell

protein tyrosine phosphatase (TCPTP), a JAK/STAT and
growth factor receptor phosphatase that has been linked
with the pathogenesis of type 1 diabetes mellitus, rheu-
matoid arthritis and Crohn’s disease by GWAS findings
of non-coding SNP associations. Mouse and human
studies have shown that reduced expression of TCPTP
may drive autoimmune pathologies by enhancing signal-
ling downstream of the T cell receptor (TCR), cytokines,
or growth factors to produce a pro-inflammatory cyto-
kine milieu [65].
Hinks et al. reported the C5orf56-IRF1 region to show

differential association between oligoarticular and RF-ve
polyarticular JIA [7]. IRF1 is present in the MEN (Figure 2B
& Additional file 3: Table S3A) and IRF1 gene expression
is significantly increased in oligoarticular compared to
RF-ve polyarticular JIA (Additional file 6: Table S6). It has
borderline significance in post iterative modelling (Dapple)
(P = 0.07). STAT1, a signal transducer and transcription ac-
tivator that mediates cytokine activity and growth factor,
mapped within the MEN, was differentially expressed, with
higher expression occurring in oligoarticular compared to
RF-ve polyarticular disease, and met the FDR cut off for
Dapple assignment of P ≤0.05. STAT1 is present in the
oligoarticular JIA but not the RF-ve polyarticular JIA
sub-cluster. It appears, therefore, to represent a gene that
differentiates between the oligoarticular and RF-ve polyar-
ticular clinical subtypes. Further evaluation of IRF1 and
STAT1 in persistent versus extended oligoarticular JIA is
not possible as neither the genetic association nor the gene
expression studies have classified oligoarticular JIA cases
in this way.
The main observations from the GWAS analysis by

Thompson et al. [6] relate to the C3orf1 and JMJD1C
genes. We find the proteins for these loci to be peripheral
within our interactome network and they are not priori-
tised by Dapple. This implies that although these loci may
have a role in JIA pathogenesis their lack of connectivity
limits their druggable potential (reviewed in [66]).
Functional assessment of the RF-ve polyarticular and

oligoarticular clusters needs to be determined. Mounting
evidence indicates that biological systems are organised
as modular networks, in which genes, proteins, metabo-
lites and other factors operate in groups rather than as
single entities. There is increasing recognition that tran-
scription factors, micro RNAs, DNA methylation and
chromatin remodelling regulate the expression of large
numbers of genes in concert [67].
It is intriguing that preliminary analysis using the

TargetScan human database [68] shows that the three
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candidate genes prioritised by this study (KSR1, PTPN2 and
STAT1) are co-regulated by miR-30a-5p (P = 5.3 × 10-4).
Whilst hundreds of miRNAs have been identified to be
dysregulated in various disease tissues, only a fraction
have been functionally characterised. mIR 30a-5p been
shown to be differentially expressed and to have biological
function regulating expression of genes in a number of
diseases including systemic lupus erythematosus (SLE)
[69], rodent models of diabetes mellitus [70] glioma
growth [71] and carcinoma of the colon [72]. Individual
miRNAs can regulate several hundered transcripts with
effector molecules that function at various sites within
cellular pathways and networks, making them master re-
gulators of the genome. miRNA-based therapy is progres-
sing [73]. miRNAs of potential therapeutic value are those
that yield satisfactory efficacy in disease model systems
and mechanistic data to allow accurate placement of the
miRNA into disease-related pathways. The network ana-
lysis we have conducted so far allows us to begin to inves-
tigate the capacity of mIR 30a-5p in a targeted way in JIA.
Repositioning of drugs is another important thera-

peutic advantage that can be maximised from network
analysis [20,21]. The KSR1 sub-cluster (Figure 4B) could
be therapeutically targeted in RF-ve polyarticular JIA
patients, using small-molecule inhibitors of RAF1. Re-
purposing a drug such as sorafenib (nexavar), currently
licensed for the treatment of renal and hepatocellular
carcinoma, for the management of RF-ve polyarticular
JIA could therefore be considered.
There are limitations to the present analysis. First, we

have utilised data from a single GWAS, that is, the only
one that currently exists for JIA, and included SNP asso-
ciations of P ≤1 × 10−4. The widening of input data for
the generation of initial interactome networks is, how-
ever, acceptable and valid [53,54]. In addition, we have
used the data from dense genotyping of immune-related
loci [7]. Although only a proportion of the genes poten-
tially involved in JIA pathogenesis may be immune-
related, such pathways were highly significant within our
network (Figure 2C). Interactome network models can
be used to map associated biological function in a sen-
sitive and robust manner via network clusters using
stringent downstream analysis [33]. This is the strategy
we have applied. Furthermore, if subsequent JIA GWAS
or replication of new candidate gene associations do
emerge, our network model can readily be adapted to in-
corporate the additional findings.
Second, there were only four gene expression studies

suitable for inclusion. However, these four studies
allowed comparisons across different cell populations
(PBMCs, neutrophils, synovial fluid monocytes). Inclu-
ding gene expression data, significant across these sites,
with the genetic association data and network analysis is
a robust approach to identifying major contributing loci
to the disease phenotype. Such integrative approaches
have improved statistical power [56,57].
Third, the functional significance of the protein clusters

remains to be established. The collection of biological
material from oligoarticular and RF-ve polyarticular JIA
patients is now underway to facilitate this.

Conclusions
To our knowledge this is the first use of network analysis
to integrate JIA genetic and expression data for the prio-
ritisation of loci for further functional assessment. The
value of the use of network biology is to increase confi-
dence in the observations of differentially expressed genes,
and genetic findings, by correlation with functionally re-
lated network structure. This enhances the identification
of functional units or clusters and, critically, can inform
the targeting of new therapies. We have used different
software-based methods (BioGRID, Ingenuity, Reactome)
to infer relationships of differentially expressed genes and
genetic association data with known interactions in the lit-
erature or protein databases. Dapple has been used at two
stages in the analysis to add statistical robustness to our
findings.
Deciphering the basis of complex pathologies such as

JIA is challenging and although certain progress has been
made, much remains to be understood. Deriving a JIA
interactome model and sub-clusters, as described herein,
offers the potential for a new era in addressing the mecha-
nisms and future interventions for this chronic, disabling
condition.

Additional files

Additional file 1: Table S1. Single nucleotide polymorphism (SNP)
datasets: replicated loci showing association with oligoarticular and
rheumatoid factor-negative (RF-ve) polyarticular juvenile idiopathic
arthritis (JIA) were identified from published literature and collated with
top genome-wide association studies (GWAS) findings (A). The collated
list of genes (B) was used as the seed genes for the network analysis and
the generation of the JIA interactome (Figure 1).

Additional file 2: Table S2. Gene expression data: juvenile idiopathic
arthritis (JIA) gene expression datasets were identified from the Gene
Expression Omnibus (GEO). Details of the datasets include sample and
control numbers, comparisons made, number of probe sets identified by
analysis of variance (ANOVA) as significant (P <0.05), number of individual
genes with a gene expression change, confounding factors included as
covariants in the ANOVA and type of Affymetrix Chip. PBMC, peripheral
blood mononuclear cells: SFM, synovial fluid mononuclear cells; Neut,
neutrophils. Overlap groups used for comparisons are colour coded.

Additional file 3: Table S3. Network topology of the juvenile
idiopathic arthritis (JIA) interactome: (A) Genes from the minimal
essential network (MEN), that is, the top 10% of genes from the JIA
interactome (ranked by degree (Deg) and bottleneck score (BN)). (B) JIA
seed genes from the JIA interactome ranked by significance of deviation
of observed network connectivity from expected (Disease Association
Protein-Protein Link Evaluator (Dapple) algorithm, P ≤0.05). Orange = also
present in minimal essential network (Figure 2B).

Additional file 4: Table S4. Rheumatoid factor-negative (RF-ve)
polyarticular juvenile idiopathic arthritis (JIA) versus control gene

http://www.biomedcentral.com/content/supplementary/ar4559-S1.doc
http://www.biomedcentral.com/content/supplementary/ar4559-S2.doc
http://www.biomedcentral.com/content/supplementary/ar4559-S3.docx
http://www.biomedcentral.com/content/supplementary/ar4559-S4.docx
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expression: overlap of genes in RF-ve polyarticular JIA compared to controls
present in three of the five gene expression datasets analysed. Datasets
described in Additional file 2: Table S2. Red = up-regulated in JIA, green =
down-regulated in JIA.

Additional file 5: Table S5. Oligoarticular versus control gene
expression: overlap of genes in oligoarticular juvenile idiopathic arthritis
(JIA) compared to controls present in both gene expression datasets
analysed. Datasets described in Additional file 2: Table S2. Red = up-
regulated in JIA, green = down-regulated in JIA.

Additional file 6: Table S6. Oligoarticular versus rheumatoid factor-
negative (RF-ve) polyarticular juvenile idiopathic arthritis (JIA) gene
expression: overlap of genes in oligoarticular JIA compared to RF-ve
polyarticular JIA present in both gene expression datasets analysed.
Datasets described in Additional file 2: Table S2. Red = up-regulated in
JIA, green = down-regulated in JIA.
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