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Abstract

in neutrophils for ANCA-mediated activation.

of C5a-primed neutrophils activated with ANCA.

role in neutrophils for ANCA-mediated activation.

Introduction: C5a plays an crucial role in antineutrophil cytoplasmic antibody (ANCA)-mediated neutrophil recruitment
and activation. The current study further investigated the interaction between C5a and sphingosine-1-phosphate (S1P)

Methods: The plasma levels of STP from 29 patients with ANCA-associated vasculitis (AAV) in active stage and in
remission were tested by enzyme-linked immunosorbent assay (ELISA). The generation of S1P was tested in
C5a-triggered neutrophils. The effect STP receptor antagonist was tested on respiratory burst and degranulation

Results: The plasma level of circulating S1P was significantly higher in patients with AAV with active disease
compared with patients in remission (2034.2 +438.5 versus 1489.3 + 547.4 nmol/L, P < 0.001). STP can prime
neutrophils for ANCA-induced respiratory burst and degranulation. Compared with non-triggered neutrophils,
the mean fluorescence intensity (MFI) value for CD88 expression was up-regulated significantly in STP-triggered
neutrophils. STP receptor antagonist decreased oxygen radical production in C5a primed neutrophils induced by
ANCA-positive IgG from patients. Blocking S1P inhibited C5a-primed neutrophil migration.

Conclusions: S1P triggered by C5a-primed neutrophils could further activate neutrophils. Blocking S1P could
attenuate C5a-induced activation of neutrophils by ANCA. The interaction between S1P and C5a plays an important

Introduction

Antineutrophil cytoplasmic autoantibody (ANCA) is closely
associated with systemic small vessel vasculitis charac-
terized by segmental vessel wall necrotizing inflammation
and a paucity of immunoglobulin deposition [1]. Patients
with ANCA-associated vasculitis (AAV) can on the
basis of clinical and pathological features be classified
as granulomatosis with polyangiitis (GPA, previously
named Wegener’s granulomatosis), microscopic polyan-
giitis (MPA) and eosinophilic granulomatosis with polyan-
giitis (EGPA, previously named Churg-Strauss syndrome).
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ANCAs against either proteinase-3 (PR3) or myeloperoxi-
dase (MPO) are hallmarks of AAV [2].

Cumulating evidence suggests that ANCA-induced neu-
trophil activation plays a crucial role in the pathogenesis
of AAV [3-7]. In an anti-MPO antibody-induced mouse
vasculitis model, ANCAs are proven to be pathogenic [8].
Furthermore, neutrophils are the primary effector cells in
AAV [89].

Recent studies, both in the mouse model and in
humans, demonstrated that complement activation via
the alternative pathway is indispensable in the develop-
ment of AAV [10-14]. Schreiber et al. further found that
recombinant C5a dose-dependently primes neutrophils
for ANCA-induced respiratory burst. As such, the inter-
action between C5a and the neutrophil C5a receptor
(C5aR, namely, CD88) compose an amplification loop,
and is one of the central contributing factors in ANCA-
mediated neutrophil recruitment and activation [15].
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Regardless of the fact that C5a-C5aR axis may repre-
sent an attractive target for immunosuppressive therapy,
little is known about the intracellular molecular mecha-
nisms responsible for the Cb5a-triggered physiological
events or key molecules in ANCA-mediated activation
of C5a-primed neutrophils [16].

It has become clear that sphingolipids are sources of
important signaling molecules [17]. Sphingosine-1-phos-
phate (S1P) is a potent bioactive sphingolipid metabolite
that regulates diverse cellular processes that are important
for inflammation and immune responses. Various acti-
vated plasma-membrane receptors, such as the platelet-
derived growth factor (PDGF) receptor [17,18], FceRI and
FcyRI antigen receptors [19], tumor necrosis factor
receptor 1 (TNFR1) [20-22] and N-formyl-methionyl-
leucyl-phenylalanine (FMLP) receptor [23], respectively
upregulate sphingosine kinase (Sphk) and generate S1P.
S1P is not only an agonist of five specific G protein-
coupled SIP receptors (SIPR1-5) that activate diverse
downstream signaling pathways, but also has important
intracellular (second messenger) actions [22,24-26]. It had
previously been demonstrated that S1P plays an important
role in autoimmune diseases, such as rheumatoid arthritis,
inflammatory bowel disease, multiple sclerosis and asthma
[21,22,27-29]. In addition, Sphkl plays the crucial role in
regulating the balance between expression of CD88 and
Cba receptor-like 2 (C5L2) in endotoxin-induced lung in-
flammatory injury [30]. Antisense knockdown of sphkl in
human macrophages inhibits C5a receptor-dependent sig-
nal transduction [31].

Therefore, we hypothesized that S1P triggered by Cba-
primed neutrophils could further activate neutrophils;
the interaction between S1P and C5a might be involved
in ANCA-mediated neutrophils respiratory burst and
degranulation.

Methods

Patients and blood samples

Plasma samples from 29 consecutive patients with active
AAV at initial onset, diagnosed at Peking University First
Hospital from 2010 to 2011, were collected before im-
munosuppressive treatment. All these patients met the
Chapel Hill Consensus Conference (CHCC) nomen-
clature of AAV [2]. Patients with secondary vasculitis or
with comorbid renal diseases, such as anti-glomerular
basement membrane (GBM) nephritis, were excluded.
All the above-mentioned 29 patients received corticoste-
roids and cyclophosphamide for the induction therapy
and achieved remission. Plasma samples from these pa-
tients at the remission stage were also collected at their
regular ambulatory visits. The time of sampling was
11.5+ 3.0 months after remission was achieved. When
sampling at remission, all of them still received oral
azathioprine for maintanence therapy. Twenty-nine age-
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and gender-matched healthy blood donors were enrolled
as normal controls. The blood samples from patients
and controls were drawn into ethylene diamine tetraace-
tic acid (EDTA) tubes and put on ice immediately. The
blood samples were centrifuged at 2000 g for 15 minutes
at 4°C within 30 minutes after collection and the plasma
samples were stored at —70°C until use. Disease activity of
AAV was assessed according to the Birmingham vasculitis
activity score (BVAS) [32]. Remission was defined as
‘absence of disease activity attributable to active disease
qualified by the need for ongoing stable maintenance im-
munosuppressive therapy, as described previously [33].

Preparation of immunoglobulin (1g)G

Normal IgG and ANCA-positive IgG were prepared from
plasma of normal volunteers and patients with active
MPO-ANCA- or PR3-ANCA-positive primary small ves-
sel vasculitis, using a High-Trap-protein G column on an
AKTA-FPLC system (GE Biosciences, San Francisco, CA,
USA). None of these patients had dual positivity of PR3-
ANCA and MPO-ANCA. Preparation of IgG was per-
formed according to the methods described previously
[34,35]. Containers and solution for IgG preparation did
not contain lipopolysaccharide (LPS). The concentration
of LPS in ANCA-positive IgG was below 0.1 ng/ml.

Neutrophil isolation

Neutrophils were isolated from heparinized venous blood
from healthy donors by density gradient centrifugation on
Lymphoprep (Nycomed, Oslo, Norway). Erythrocytes were
lysed with ice-cold ammonium chloride buffer, and neu-
trophils were washed in Hank’s balanced salt solution
(HBSS) without Ca®*/Mg ** (HBSS—/—; Chemical reagents,
Beijing, China). The purity of the neutrophils was above
95%. Neutrophils were then suspended in HBSS with
Ca®*/Mg** (HBSS+/+; Chemical reagents) to a concen-
tration of 2.5 x 10’ cells/ml and used for ANCA antigen
translocation analysis, respiratory burst measurements,
neutrophil degranulation and detection of S1P in neutro-
phil supernatant [35]. This research was in compliance
with the Declaration of Helsinki and approved by the
clinical research ethics committee of the Peking University
First Hospital. Written informed consent was obtained
from each participant.

Inhibition of the S1P receptor

Previous studies have showed that neutrophils express
S1PR1, 4 and 5 [36]. VPC23019 (Tocris, Louis, USA) is
a specific antagonist for SI1P receptor 1 and 3 [37].
CYM50358 (Tocris) is a specific antagonist for S1P recep-
tor 4 [38]. FTY720 is a structural analog of sphingosine, as
well as being phosphorylated by Sphk, which then acts
with four S1P receptors (S1P,, S1P3, S1P, and S1P5) [28].
FTY720 (Selleck, Houston, USA) could abolish the
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biological effect of S1IP and cover all types of S1P receptors
on neutrophils. The concentration of the above-mentioned
S1P receptor antagonists was first investigated. Cells were
incubated with VPC23019 or CYM50358 at different doses
(25nM; 50nM; 100nM; 200nM) for 15 minutes. VPC23019
and CYM50358 inhibited S1P-primed neutrophils for
ANCA-induced activation at 100nM for 15 minutes. The
highest inhibition rates of VPC23019 and CYM50358 were
26% and 27%, respectively. The highest inhibition rate of
FTY720 (50nM, 15 minutes) in S1P-primed neutrophils
for ANCA-induced activation was 68%.

In C5a-primed neutrophils for ANCA-induced activa-
tion, cells were incubated with FTY720 for different doses
and time points (10nM, 5 minutes; 50nM, 5 minutes;
100nM, 5 minutes; 10nM, 15 minutes; 50nM, 15 minutes;
100nM, 15 minutes). We selected FTY720 (50nM) at
15 minutes for the experiments because we found the in-
hibition rate (83%) was highest. The toxicity of FTY720 to
neutrophils had been examined by fluorescence-activated
cell sorting (FACS) using a Cell Apoptosis Detection Kit
(BD Biosciences, CA, USA). Pre-incubated with FTY720,
the proportion of living cells was higher than 90%. Cells
were pre-incubated with 50nM FTY720 or its vehicle,
dimethyl sulfoxide (DMSO) as the control, followed by
other treatments. The inhibition rate was calculated ac-
cording to the following formula:

Inhibition rate = (MFIpmso-csat+anca—MFIery7a0+csaranca)
/(MFIppmsotcsatanca—MFIpmso) X 100%

where MFI is the mean fluorescence intensity.

Membrane expression of PR3 and MPO on neutrophils
after priming

Flow cytometry was used to evaluate PR3 and MPO ex-
pression on neutrophils. Cells were incubated with C5a
(100 ng/ml) (Biovision, San Francisco, CA, USA) or buffer
control for 45 minutes at 37°C. For S1P priming groups,
cells were incubated with S1P (100, 500 and 1000 nmol/L)
(Sigma-Aldrich, Louis, USA) or buffer control for 30 mi-
nutes at 37°C. Doses for S1P stimulation were all above
the dissociation constant for the receptors. All further
steps were performed on ice and washing steps were car-
ried out using HBSS +/+containing 1% bovine serum al-
bumin (BSA). Neutrophils were incubated with 0.5 mg/ml
heat-aggregated goat IgG for 15 minutes to saturate Fcy
receptors. Next, cells were stained with a saturating dose
of mouse monoclonal IgG1 antibody directed against hu-
man PR3 (Clone number: WGM2) or MPO (Clone num-
ber: 2C7) (Abcam, Cambridge, UK) or with an irrelevant
IgG1 control antibody (Biolegend, CA, USA) for 30 mi-
nutes. Neutrophils were then incubated with phycoery-
thrin (PE)-conjugated goat anti-mouse antibody (Abcam,
Cambridge, UK) in the presence of 0.5 mg/ml heat-
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aggregated goat IgG. Fluorescence intensity of PE was an-
alyzed using flow cytometry assessment of ANCA-antigen
expression. Samples were analyzed using the FACScan
(Becton Dickinson, Heidelberg, Germany). Neutrophils
were identified in the scatter diagram, and data were col-
lected from 10,000 cells per sample. The level of PR3- or
MPO-expression was calculated as the MFI of specific
binding of the isotype control antibody. For the inhibition
test, cells were pre-incubated with FTY720 (50nM) or its
vehicle, as control, followed by other treatments [35].

Detection of MPO in neutrophil supernatant by ELISA
MPO in the S1P or Cb5a-primed neutrophil supernatant
was tested by ELISA using a commercial kit (USCNK,
Wuhan, China). Cells were incubated with S1P (100, 500
and 1000 nmol/L) (Sigma-Aldrich) or buffer control for
30 minutes at 37°C. Supernatant fluids were collected and
used for ELISA analysis. In brief, the microtiter plate pro-
vided in this kit has been pre-coated with an antibody spe-
cific to MPO. The cloaked antibody was a monoclonal
antibody in this assay. The detection antibody was a poly-
clonal antibody. Supernatants of neutrophils at dilutions
of 1:200 and standards were then added to the appropriate
microtiter plate-wells with a biotin-conjugated antibody
preparation specific for MPO. Next, Avidin conjugated to
horseradish peroxidase (HRP) was added to each micro-
plate well and incubated. After 3,3'-5,5" tetramethylben-
zidin (TMB) substrate solution was added, only those
wells that contained MPO, biotin-conjugated antibody
and enzyme-conjugated Avidin would exhibit a change in
color. The enzyme-substrate reaction was terminated by
the addition of sulphuric acid solution and the color
change is measured spectrophotometrically at a wave-
length of 450 nm. The concentration of MPO in the
samples was then determined by comparing the optical
density (OD) of the samples to the standard curve.

Detection of S1P by ELISA

S1P was tested by ELISA using a commercial kit (Echelon,
Utah, USA). The 96-well microtiter plate was coated with
S1P and blocked to reduce non-specific binding. Then we
mixed the S1P standard and samples with the anti-S1P
antibody before adding the mixture to the S1P-coated
plate. The antibody competes for binding to S1P bound to
the plate or in the sample. Following an incubation and
plate wash, streptavidin-HRP was added to the plate and
bound to all anti-S1P antibodies (labeled with biotin)
bound to the plate. After an additional incubation and
plate wash, TMB substrate was added to the plate and the
reaction stopped by the addition of sulfuric acid. The ab-
sorbance at 450 nm was measured. The concentration of
S1P in the samples was determined by comparison to the
standard curve [39].
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Measurement of respiratory burst by oxidation of
dihydrorhodamine (DHR) to rhodamine

The generation of reactive oxygen radicals was assessed
using DHR. This method was based on the fact that
reactive oxygen radicals cause an oxidation of the non-
fluorescence DHR to the green fluorescence rhodamine.
Isolated neutrophils were gradually warmed to 37°C and
incubated with 0.05 mM DHR123 (Sigma-Aldrich) for
10 minutes at 37°C. Sodium azide (NaN3) (2 mM) was
added in order to prevent intracellular breakdown of
H,O, by catalase. Then, neutrophils were primed with
S1P for 30 minutes or C5a for 45 minutes at 37°C and
incubated with patient-derived ANCA-positive IgG
(200 pg/ml), normal IgG for 1 h at 37°C. The reaction
was stopped by addition of 1 ml of ice-cold HBSS/1%
BSA. Samples were kept on ice and analyzed using a
FACScan. Neutrophils were identified in the scatter
diagram, and data were collected from 10,000 cells per
sample. The shift of green fluorescence in the FL-1
mode was determined. For each condition, the MFI
(representing the amount of generated reactive oxygen
radicals) was reported [34,35].

ANCA-activated S1P or C5a-primed neutrophils
degranulation

Lactoferrin, an iron binding multifunctional glycoprotein
that was an abundant component of the specific granules
of neutrophils, was considered as a biomarker of neutro-
phil degranulation [40-42]. Neutrophils were stimulated
with SIP or Cb5a followed by stimulation with MPO-
ANCA-positive IgG or PR3-ANCA-positive IgG, normal
IgG or buffer control for 1 h, respectively. Cells were pre-
incubated with the S1P receptor antagonist or its vehicle,
DMSO, as control for 15 minutes on ice before the prim-
ing. Lactoferrin in the neutrophil supernatant was tested
by ELISA using a commercial kit (USCNK) as a measure
of neutrophil degranulation. The ELISA procedure of
measuring lactoferrin was as described previously [43].
The concentrations of lactoferrin in the samples were then
determined by comparing the OD value of the samples to
the standard curve.

Membrane expression of CD88 on neutrophils

Flow cytometry was used to evaluate CD88 expression on
neutrophils. Cells were incubated with S1P (500 nmol/L)
(Sigma-Aldrich), supernatant of Cb5a- stimulated neutro-
phils or buffer control for 30 minutes. All further steps
were carried out using HBSS +/+containing 1% BSA.
Next, cells were stained with a saturating dose of PE-
conjugated mouse monoclonal IgG1l antibody directed
against human CD88 (Biolegend, CA, USA) or with an
irrelevant IgG1 control antibody (Biolegend, California,
USA) for 30 minutes. Fluorescence intensity of PE
was analyzed using flow cytometry assessment of CD88
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expression. Samples were analyzed using a FACScan
(Becton Dickinson, Heidelberg, Germany). Neutrophils
were identified in the scatter diagram, and data were col-
lected from 10,000 cells per sample. The level of CD88 ex-
pression was calculated as MFI of specific binding of the
isotype control antibody.

Neutrophil migration

To test the effect of S1P receptor antagonist on the C5a-
induced neutrophil migration, neutrophils were prein-
cubated with 50nM S1P receptor antagonist or vehicle
control for 15 minutes: 4 x 10° cells were loaded in the
upper chamber of a Transwell insert (Corning, NY, USA)
with 3.0-um pores in 12-well plates. C5a (100 ng/ml) was
placed in the lower chamber. The plates were then incu-
bated at 37°C with 5% CO, for 90 minutes. Neutrophils
without treatment of S1P receptor antagonist in the upper
chamber or wells without C5a in the lower chamber were
used as the controls. The number of neutrophils that
migrated across the filter was counted using FACS [44].

Statistical analysis

The Shapiro-Wilk test was used to examine whether the
data were normally distributed. Quantitative data were
expressed as means + SD (for data that were normally dis-
tributed) or median and range (for data that were not nor-
mally distributed). Differences in quantitative parameters
between groups were assessed using the t-test (for data
that were normally distributed) or Mann-Whitney U-test
(for data that were not normally distributed) as appro-
priate. Differences were considered significant at P <0.05.
Analysis was performed with SPSS statistical software
package (version 16.0, Chicago, IL, USA).

Results

Plasma levels of S1P were elevated in AAV patients in the
active stage compared with remission

Among the 29 patients with AAV, 14 (48.3%) were male
and 15 (51.7%) were female, with an age of 58.5 + 12.8 years
at diagnosis. Two patients were cytoplasmic ANCA
(cCANCA)-positive and all these sera recognized PR3; 27
patients were perinuclear ANCA (pANCA)-positive and all
these sera recognized MPO. The level of initial serum cre-
atinine was 312.7 + 237.6 (range 62.0 to 1301.0) pmol/L.
The levels of BVAS in the 29 patients were 22.3 £5.9 in
the active stage, and all were zero in remission. The plasma
levels of circulating S1P were significantly higher in AAV
patients with active disease compared with AAV patients
in remission and normal controls (2034.2 +438.5 versus
1489.3 + 547.4 nmol/L, P <0.001; 2034.2 +438.5 versus
254.3 +69.9 nmol/L, P <0.001, respectively). Except for
only one patient with AAV, the plasma level of S1P in the
active stage was higher than that in remission for each
AAV patient (Figure 1).
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S1P increased translocation of ANCA antigens

Expression of mPR3 on neutrophils of eight healthy blood
donors was analyzed. Neutrophils were incubated with dif-
ferent concentrations of S1P (100, 500 and 1000 nmol/L),
and mPR3 expression was determined by flow cytometry.
The level of mPR3 expression on neutrophils increased
(mPR3 expression on neutrophils were 138.0 +13.9,
141.0 £ 11.1, 180.0 + 12.4, 233.8 + 6.6 for 0, 100, 500 and
1000 nmol/L S1P, respectively, expressed as MFI). Com-
pared with non-primed neutrophils, the level of mPR3
expression was significantly higher on neutrophils primed
with S1P at concentrations of 500 and 1000 nmol/L
(P <0.05; P <0.01), respectively (Figure 2A). mMPO
expression on neutrophils was 141.5+8.3, 142.0 + 8.6,
144.3 £ 13.6, 149.3 £ 9.1 for 0, 100, 500 and 1,000 nmol/L
S1P, respectively, expressed as MFI). Increases in mem-
brane-bound PR3 expression were much stronger during
neutrophils priming compared with mMPO (Figure 2B).
Neutrophils were incubated with different concentrations
of SIP (100, 500 and 1000 nmol/L), and MPO concen-
tration in the SI1P-primed neutrophil supernatant was
detected by ELISA. The concentration of MPO in
the S1P-primed neutrophil supernatant increased (the
MPO concentrations were 2579.3 + 278.3, 2507.0 + 325.2,
3436.0 + 258.7, 3739.7+194.7, for 0, 100, 500 and
1,000 nmol/L SIP, respectively). Compared with non-
primed neutrophils, the concentration of MPO was sig-
nificantly higher in the neutrophil supernatant primed
with S1P at concentrations of 500 and 1,000 nmol/L
(P <0.05; P <0.01), respectively (Figure 2C).

S1P-primed neutrophils for ANCA-induced respiratory
burst and degranulation

We studied whether S1P primed neutrophils for ANCA-
induced respiratory burst and degranulation. ANCA-

postive IgG was prepared from three patients with active
MPO-ANCA -positive vasculitis and two patients with ac-
tive PR3-ANCA-positive vasculitis, respectively. Based on
the observation described above that SIP at a con-
centration of 500 nmol/L significantly increased mPR3
expression on neutrophils, this concentration of S1P was
employed for testing ANCA-induced respiratory burst
and degranulation. Compared with non-primed neu-
trophils, the MFI value for DHR oxidation increased
significantly in S1P-primed neutrophils activated with
ANCA -positive IgG (1,735.0 + 173.7 versus 4,190.5 + 294.6,
P <0.001; and decreased to 3,514.8 +194.4 (P <0.01),
3,533.0£408.3 (P <0.05) and 2,524.5+392.4 (P <0.001)
pre-incubation with CYM50358, VPC23019 and FTY720,
respectively) (Figure 3A). The highest inhibition rates of
VPC23019, CYM50358 and FTY720 were 26%, 27%, and
68%, respectively. No obvious respiratory burst activity was
observed with S1P alone. ANCA-induced neutrophil de-
granulation was determined by measuring the lactoferrin
concentration in the supernatant. In S1P-primed neu-
trophils induced by ANCA-positive IgG, the lactoferrin
concentration in the supernatant increased from 443.0 +
9.0 ng/ml in untreated cells to 1,366.0+30.3 ng/ml
(P <0.001) and decreased to 1,085.3+53.7 (P <0.01),
1,048.3 £ 60.2 (P <0.01) and 734.3 £61.9 (P <0.001) pre-
incubation with CYM50358, VPC23019 and FTY720,
respectively (Figure 3B).

S1P receptor antagonist inhibited C5a-primed neutrophils
for ANCA-induced respiratory burst and degranulation

Based on our previous study [45] that C5a at a concentra-
tion of 100 ng/ml significantly increased Cb5a-primed
neutrophils for ANCA-induced respiratory burst and de-
granulation, this concentration of C5a was employed for
this inhibition experiment. Neutrophils were incubated
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respectively). (B) Neutrophil respiratory burst induced by patient-derived myeloperoxidase (MPO)-ANCA-positive IgG or proteinase-3 (PR3)-ANCA-
positive IgG was measured by conversion of DHR-123 to rhodamine-123 in C5a-primed cells. Inhibition of STP reduced C5a-primed neutrophils
for ANCA-induced respiratory burst. (C) ANCA-induced neutrophil degranulation was determined by measuring the lactoferrin concentrations in
the supernatant of neutrophil degranulation reaction. Inhibition of STP reduced ANCA-induced lactoferrin release. Bars represent mean + SD of
repeated measurements of neutrophils from five independent experiments and donors.

with different concentrations of FTY720, and the MFI
value for DHR oxidation decreased compared with
Cbha-primed neutrophils for ANCA-induced activation
(Figure 4A). Compared with non-primed neutrophils, the
MEFI value for DHR oxidation increased significantly in
Cbha-primed neutrophils activated with MPO-ANCA-
positive IgG and PR3-ANCA-positive IgG (932.5 + 43.5 ver-
sus 501.0 + 36.4, P <0.001; 925.0 + 23.9 versus 501.0 + 36.4,
P <0.001, respectively). Neutrophils were pre-incubated
with the S1P receptor antagonist before the priming with
C5a and the subsequent stimulation with ANCA. Pre-
incubation of neutrophils with the S1P receptor antagonist
decreased oxygen radical production in C5a-primed neu-
trophils induced by ANCA-positive IgG from patients. Pre-
incubation of neutrophils with the S1P receptor antagonist
did not significantly decrease mPR3 expression and MPO
release in the C5a-primed neutrophil supernatant (data not
shown). In Cb5a-primed neutrophils, subsequently acti-
vating with MPO-ANCA-positive IgG, the MFI value
for DHR oxidation was 932.5 +43.5, which decreased
to 659.8 +48.4 upon pre-incubation with SI1P receptor
antagonist (compared with that without the antagon-
ist, P <0.001, the inhibition rate was 63.1 + 3.3%). For

PR3-ANCA-positive IgG, the MFI value for DHR oxi-
dation was 925.0+23.9 in Cb5a-primed neutrophils,
which decreased to 681.3+61.6 upon pre-incubation
with S1P receptor antagonist (compared with that
without the antagonist, P <0.001, the inhibition rate
was 57.3+7.1%) (Figure 4B).

Pretreatment with S1P receptor antagonist significantly
reduced MPO-ANCA-positive IgG-induced and PR3-
ANCA-positive IgG-induced lactoferrin release. The lacto-
ferrin concentration increased from 1,387.5+71.2 ng/ml
in the non-primed neutrophil supernatant to 3,059.8 +
109.0 ng/ml in C5a-primed neutrophils induced by MPO-
ANCA-positive IgG supernatant (P <0.001), and decreased
to 1,966.3+72.3 ng/ml upon pre-incubation with S1P
receptor antagonist (compared with that without the an-
tagonist, P <0.001, the inhibition rate was 65.2 + 3.1%). In
Cb5a-primed neutrophils induced by PR3-ANCA-positive
IgG, the lactoferrin concentration in the supernatant in-
creased from 1,387.5+71.2 ng/ml in untreated cells to
3,150.3+£41.9 ng/ml (P <0.001), which decreased to
1,982.3 + 64.7 ng/ml upon pre-incubation with S1P recep-
tor antagonist (compared with that without the antagonist,
P <0.001, the inhibition rate was 66.3 + 5.4%) (Figure 4C).
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Supernatant of C5a-stimulated neutrophils primed fresh
neutrophils for ANCA-mediated respiratory burst and
degranulation

Neutrophils were incubated with Cb5a-stimulated neu-
trophils supernatant and the effect was inhibited by the
S1P receptor antagonist. Compared with non-primed neu-
trophils, the MFI value for DHR oxidation increased sig-
nificantly in supernatant-primed neutrophils activated
with MPO-ANCA-positive IgG and PR3-ANCA-positive
IgG (425.2 £ 16.6 versus 242.2 + 13.0, P <0.001; 432.0 + 8.9
versus 242.2+13.0, P <0.001, respectively). Neutrophils
were pre-incubated with the S1P receptor antagonist, that
is, FTY720, before priming with supernatant and the
subsequent stimulation with ANCA. Pre-incubation of
neutrophils with the S1P receptor antagonist decreased
oxygen radical production in C5a primed neutrophils
induced by ANCA-positive IgG from patients. In super-
natant-primed neutrophils, subsequently activating with
MPO-ANCA -positive IgG, the MFI value for DHR oxida-
tion was 425.2+16.6, which decreased to 368.2+17.3
upon pre-incubation with S1P receptor antagonist (com-
pared with that without the antagonist, P <0.001). For
PR3-ANCA-positive IgG, the MFI value for DHR oxida-
tion was 432.0 £8.9 in supernatant-primed neutrophils,
which decreased to 376.2 + 18.2 upon pre-incubation with
S1P receptor antagonist (compared with that without the
antagonist, P <0.001) (Figure 5A).

Pretreatment with S1P receptor antagonist significantly
reduced MPO-ANCA-positive IgG-induced and PR3-
ANCA-positive IgG-induced lactoferrin release. The lacto-
ferrin concentration increased from 427.6 + 104.0 ng/ml in
the non-primed neutrophils supernatant to 1,105.0+
380.1 ng/ml in supernatant-primed neutrophils induced by
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MPO-ANCA-positive IgG supernatant (P <0.001), and
decreased to 731.0 £ 201.9 ng/ml upon pre-incubation
with S1P receptor antagonist (compared with that
without the antagonist, P <0.001). In supernatant-
primed neutrophils induced by PR3-ANCA-positive
IgG, the lactoferrin concentration increased from 427.6 +
104.0 ng/ml in untreated cells to 1,110.2 + 389.2 ng/ml
(P <0.001), which decreased to 750.4+224.1 ng/ml
upon pre-incubation with SIP receptor antagonist
(compared with that without the antagonist, P <0.001)
(Figure 5B).

S1P or supernatant of C5a-stimulated neutrophils
upregulated CD88 expression on neutrophils

CD88 expression on neutrophils increased after S1P en-
gagement. Compared with non-triggered neutrophils, the
MEFI values for CD88 expression were significantly higher
than in S1P-triggered neutrophils (369.8 £29.1 versus
4294+ 185, P <0.05). The MFI values for CD88 ex-
pression increased from 369.8 + 29.1 in the non-triggered
neutrophils to 420.0+27.5 in the supernatant-primed
neutrophils (P <0.05) (Figure 6A).

S1P receptor antagonist inhibited C5a-induced neutrophil
migration

To clarify the involvement of S1P on C5a-induced neutro-
phil migration, we investigated the effect of S1P receptor
antagonist on neutrophil migration. Pre-incubation with
S1P receptor antagonist significantly inhibited Cb5a-in-
duced neutrophil migration (the number of migrated
neutrophils was 110.5 +20.0 versus 200.0 + 13.5, P <0.01)
(Figure 6B).
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Figure 5 Sphingosine-1-phosphate (S1P) receptor antagonist inhibited supernatant (C5a-stimulated neutrophils) -primed neutrophils
for antineutrophil cytoplasmic antibody (ANCA)-induced respiratory burst and degranulation. (A) Neutrophil respiratory burst induced by
patient-derived MPO-ANCA-positive IgG or PR3-ANCA-positive IgG was measured by conversion of dihydrorhodamine-123 (DHR-123) to rhodamine-123
in supernatant-primed cells. Inhibition of S1P reduced supernatant (C5a-stimulated neutrophils)-primed neutrophils for ANCA-induced respiratory

burst. (B) Inhibition of S1P reduced supernatant (C5a-stimulated neutrophils)-primed neutrophils for ANCA-induced lactoferrin release. Bars represent
mean + SD of repeated measurements of neutrophils from five independent experiments and donors.
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Figure 6 Sphingosine-1-phosphate (S1P) or supernatant of C5a-stimulated neutrophils upregulated CD88 expression on neutrophils
and S1P receptor antagonist reduced C5a-induced neutrophil migration. (A) CD88 expression increased on neutrophils after STP or supernatant
of C5a-stimulated neutrophil engagement in neutrophils. Neutrophils were stimulated with STP 500 nmol/L, supernatant of C5a-stimulated neutrophils or
buffer control for 30 minutes. The expression of CD88 was determined by FACS. A representative example of five independent experiments is shown.

(B) Isolated neutrophils were pre-incubated with S1P receptor antagonist at 50 nM and loaded into the upper chamber. After the upper chamber
neutrophil co-incubation with C5a 100 ng/ml in the lower chamber, the migration was assayed through counting the number of migrated neutrophils
using FACS. Results are presented as the percentage of migrated neutrophils after C5a induced or pre-incubated with S1P receptor antagonist
compared with the blank. A representative example of three independent experiments is shown.
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Figure 7 Proposed working model for the interaction between C5a and sphingosine-1-phosphate (S1P) in antineutrophil cytoplasmic

antibody (ANCA)-mediated neutrophils activation. Neutrophils are primed by C5a to express ANCA antigens at the cell surface and supernatant.
ANCA antibodies interact with the ANCA antigens which result in primed-neutrophil activation. The ANCA-activated neutrophils release S1P that can

further activate neutrophils. S1P receptor antagonist may attenuate C5a-primed neutrophils for ANCA induced activation.
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Discussion

ANCA-induced neutrophil respiratory burst and degranu-
lation are important contributors to the development of
AAV. Recent studies, both in the mouse model and in
humans, suggest that complement activation is involved
in the pathogenesis of AAV [10-15,45-47]. In particular,
the interaction between C5a and C5aR (CD88) plays a
central role in ANCA-mediated neutrophil recruitment
and activation [15]. Our previous study confirmed this
observation by demonstrating that purified recombinant
Cba increased ANCA antigen translocation and ANCA-
mediated respiratory burst in C5a-stimulated neutrophils
[45]. However, the intracellular molecular mechanism trig-
gered by Cba in neutrophils has not been fully identified.

It is becoming more evident that certain classes of
membrane lipids can be modified in a regulated manner
to generate bioactive lipid second messengers. S1P is
generated by the conversion of ceramide to sphingosine
by the enzyme ceramidase and the subsequent conver-
sion of sphingosine to S1P, which is a potent bioactive
sphingolipid metabolite that regulates inflammation and
immune responses [48].

Several studies have reported that sphingosine acts as an
endogenous regulator of neutrophil functions [23,49,50]. It
was reported that low concentration of SIP promotes
inflammatory cell chemotaxis [51,52]. Furthermore, it has
been proposed that Sphk regulates neutrophil priming to
provide an essential defense against infections [50], and to
mediate neutrophil inflammatory responses [23,50]. The
current study found that the level of circulating S1P was
significantly higher in AAV patients with active disease
compared with those in remission. More importantly,
S1P was found to prime neutrophils for ANCA-induced re-
spiratory burst and degranulation. Therefore, we speculated
that SIP might promote the development of inflammation
and disease activity of AAV.

In our study, it was found that S1P receptor antagonist
downregulated C5a-induced neutrophil migration and
significantly attenuated Cb5a-primed neutrophils for
ANCA-induced respiratory burst and degranulation,
with an inhibition rate of about 80%, which suggests that
the S1P played an important role in C5a-primed neu-
trophils for ANCA-mediated activation. In addition,
S1P upregulated CD88 expression on neutrophils,
which suggests that there may be an S1P-C5a loop in
ANCA-induced neutrophil activation. It was reported
that SIP is involved in several immune responses of
C5a, which C5a rapidly stimulates the generation of
S1P, Sphkl activity, and membrane translocation
of Sphkl in human monocyte-derived macrophages
[53-56]. Bachmaier et al. reported that Sphkl regu-
lates the balance between expression of CD88 and
C5L2 on phagocytes in experimental lung inflamma-
tory injury [30].
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In the previous study, it was found that reactive oxygen
species increased in TNFa-primed human monocytes for
ANCA-induced activation [57]. Presumably, S1IP might
induce a similar effect on monocytes, which is of special
interest for further investigation.

Conclusions

S1P triggered by Cba-primed neutrophils could further
activate neutrophils. Blocking S1P may attenuate Cha-
induced activation of neutrophils by ANCA (Figure 7).
The interaction between S1P and Cb5a plays an impor-
tant role in neutrophils for ANCA-mediated activation.
The findings presented in this study opened a new
aspect to better understand the intracellular signaling
cascades triggered by Cb5a and indicated a potential
therapeutic candidate for controlling inflammatory in-
jury in AAV.
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