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Targeting of viral interleukin-10 with an antibody
fragment specific to damaged arthritic cartilage
improves its therapeutic potency
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Abstract

a mouse model of arthritis.

egg lysozyme scFv (C7/vIL10).

Introduction: We previously demonstrated that a single-chain fragment variable (scFv) specific to collagen type Il (Cll)
posttranslationally modified by reactive oxygen species (ROS) can be used to target anti-inflammatory therapeutics
specifically to inflamed arthritic joints. The objective of the present study was to demonstrate the superior efficacy of
anti-inflammatory cytokines when targeted to inflamed arthritic joints by the anti-ROS modified ClI (anti-ROS-Cll) scFv in

Methods: Viral interleukin-10 (vIL-10) was fused to anti-ROS-ClI scFv (1-11E) with a matrix-metalloproteinase (MMP)
cleavable linker to create 1-11E/VIL-10 fusion. Binding of 1-11E/VIL-10 to ROS-Cll was determined by enzyme-linked
immunosorbent assay (ELISA), Western blotting, and immune-staining of arthritic cartilage, whereas vIL-10 bioactivity
was evaluated in vitro by using an MC-9 cell-proliferation assay. Specific in vivo localization and therapeutic efficacy
of 1-TTE/VIL-10 was tested in the mouse model of antigen-induced arthritis.

Results: 1-11E/vIL-10 bound specifically to ROS-Cll and to damaged arthritic cartilage. Interestingly, the in vitro
vIL-10 activity in the fusion protein was observed only after cleavage with MMP-1. When systemically administered
to arthritic mice, 1-11E/VIL-10 localized specifically to the arthritic knee, with peak accumulation observed after 3
days. Moreover, 1-11E/vIL-10 reduced inflammation significantly quicker than vIL-10 fused to the control anti-hen

Conclusions: Targeted delivery of anti-inflammatory cytokines potentiates their anti-arthritic action in a mouse
model of arthritis. Our results further support the hypothesis that targeting biotherapeutics to arthritic joints may
be extended to include anti-inflammatory cytokines that lack efficacy when administered systemically.

Introduction

The hallmark of rheumatoid arthritis (RA) is chronic syn-
ovial inflammation that results in progressive joint damage.
The pathogenesis of the disease is characterized by auto-
immunity, chronic inflammatory synovitis, and destruction
of the cartilage and the adjacent joint tissues [1]. These
pathogenic processes are due to an imbalance in the cyto-
kine network, where pro-inflammatory cytokines, such
as tumor necrosis factor (TNF)-a, IL-1f, and IL-6 are over-
expressed in the RA joint [2]. Homeostatic regulatory
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mechanisms in turn result in increased production of anti-
inflammatory cytokines, such as IL-10 and transforming
growth factor (TGF)-f, but this is not sufficient to counter
the pro-inflammatory cytokines produced [3].

With this in mind, two alternative therapeutic ap-
proaches have been investigated. One is to neutralize the
pro-inflammatory cytokines, and the other is to increase
the concentration of the anti-inflammatory cytokines. Sys-
temic treatment with TNF-a-blocking reagents is now a
standard treatment of patients with RA failing to respond
to conventional disease-modifying anti-rheumatic drugs
(DMARDs) [4]. However, increasing evidence suggests
that inhibition of TNF-a is associated with increased risk
of infections due to general immune-suppression [5,6].
Moreover, despite the established clinical efficacy of anti-
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TNF-a, a subset of patients (30% to 40%) does not re-
spond or has a suboptimal clinical response to anti-TNF-«
treatment [7].

Our hypothesis is that targeting of biologic drugs to the
inflamed joint will result in high local concentrations and
low systemic concentrations, increasing efficacy while
minimizing side effects. Additionally, a lower total dose
may be effective, thereby reducing the cost of treatment.
Targeting could be achieved by the identification of an in-
flamed joint tissue specific marker. We hypothesized that
the influx of infiltrating leukocytes consumes increased
amounts of oxygen and thereby generates high levels of
ROS [8]. In turn, the influx of ROS results in chemical
posttranslational modification of major specific cartilage
components such as CII, resulting in formation of ROS-
CII. ROS-CII would therefore be present in inflamed
joints, but not in healthy joints, and thus represents an in-
flamed joint-specific target. Targeting may therefore be
achieved by an ROS-ClI-specific antibody.

By using a phage display human antibody library, we have
developed a panel of human single-chain fragment variable
(scFv) that binds specifically to ROS-CII [9]. One of these
clones, 1-11E, localizes specifically in arthritic joints of
mice. Hence, 1-11E fused to the murine tumor necrosis fac-
tor receptor 2-Fc-fusion protein (mTNFR2-Fc), which
would scavenge pro-inflammatory TNF-a, had an enhanced
therapeutic effect on inflamed knee swelling compared with
mTNFR2-Fc fused to the nonrelevant anti-hen egg lyso-
zyme (HEL) scFv, (C7/mTNFR2-Fc), or mTNFR2-Fc alone.

The current study is built on the previous study with 1-
11E/mTNFR2-Fc to extend the range of targeted thera-
peutics to include an anti-inflammatory cytokine, IL-10.
IL-10 is a major anti-inflammatory cytokine that inhibits
the production of Thl cytokines, such as interferon-y,
Th17 cytokines, and IL-17 [10], while increasing produc-
tion of IL-1R, soluble TNF receptors, and enhanced re-
lease of Th2 cytokines. IL-10 also blocks NF-kB activity in
macrophages, decreasing the expression of major histo-
compatibility complex class II and co-stimulatory mole-
cules, and the production of TNF-q, IL-6, and IL-1 [11].
Systemic treatment of mice with collagen-induced arthritis
(CIA) with recombinant IL-10 was efficacious, whereas
anti-IL-10 antibodies exacerbated disease [12]. Viral IL-10
(VIL-10) has attracted attention for therapy, as it lacks some
immunostimulatory effects of IL-10, while retaining all of
the immunosuppressive actions of human IL-10 (hIL-10)
[13]. Indeed, native and vIL-10 on rabbit antigen—induced
arthritis (AIA) demonstrated equal efficacy [14].

Interestingly, gene therapy for CIA with adenoviral vec-
tors encoding vIL-10 had a negligible effect when adminis-
tered systemically, but significantly reduced disease when
delivered intra-articularly [15]. Unfortunately, trials of
IL-10 in RA were disappointing [16]. Efficacy might be
increased if IL-10 were delivered locally. However, due to
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the number and inaccessibility of many affected joints in
RA, direct injection of proteins or gene therapy vectors is
not a feasible option.

A step toward targeting IL-10 to arthritic joints was re-
ported by Trachsel and Schwarger et al [17,18]. They
fused human monoclonal antibodies specific to markers of
angiogenesis (L19) to IL-10, IL-2, or TNF-a. Although
L19/IL-2 and L19/TNF-« treatment led to increased arth-
ritic scores and paw swelling, the L19/IL-10 fusion protein
displayed therapeutic efficacy, which was superior to the
activity of IL-10 fused to an antibody of irrelevant specifi-
city in the CIA mouse. This work, however, targets IL-10
to an angiogenic marker, which is not exclusive to the
damaged joint tissue.

In this study, we describe the development of 1-11E/
vIL-10 fusion protein and the improved therapeutic effi-
cacy of IL-10 in mice with antigen-induced arthritis when
targeted to arthritic joints by anti-ROS-CII scFv, 1-11E.

Methods

Expression of 1-11E/vIL-10 fusion

The 1-11E/vIL-10 fusion was cloned into pcDNAG6 vector
(Invitrogen, Paisley, UK). vIL-10 was PCR with the follow-
ing primers: Forward: 5'-AAAGCGGCCG CAGGGGGAG
GCGGATCCCCGCTCGGGCTTTGGGCGGGAGGGGG
CTCACAATGT GACAATTTTCCC-3" and reverse: 5’
TTTTGCGGCCGCCCTGGCTTTAATTGTCAT-3". This
resulted in vIL-10 omitted from its signal peptide at the
5" end and replaced with the MMP cleavage site
(PLGLWA) flanked by Gly,Ser; linker from both sides
(Figure 1A). After cloning IL-10 into the Notl and Sacll
restriction sites, the scFv was amplified to contain the
TNEFR2 signal peptide (MAPAALWVALVFELQLWAT
GHT): forward: 5-ATATATAAGCTT ATGGCGCCC
GCCGCCCTCTGGGTCGCGCTGGTCTTCGAACTGC
AGCTGTGGGCCACCGGGCACACATCTAGAATGGC
CGAGGTGCAGCTG-3’, and reverse: 5-ATATATGC
GGCCGCCCGTTTGATTTCCACCTT-3" and cloned into
the HindIll and Notl. Similarly, hen egg lysozyme-specific
scFv, C7, was cloned as fusion to vIL-10 (C7/vIL10) as non-
relevant scFv for negative control.

We performed transient transfections by using adherent
HEK-293 cells using FUGENE 6 and according to manu-
facturer’s instructions (Promega UK, Southampton, UK).
Culture medium was harvested after 3 days, and fusion
protein was purified by using a nickel chelate column
(QIAGEN, Crawley, UK) and following the manufacturer’s
instructions.

Evaluation of the molecular integrity of the fusion protein
Fusion protein was separated on SDS-PAGE under de-
naturing conditions after purification with Ni-NTA Agar-
ose (Qiagen, Crawley, UK) or after overnight digestion of
1-11E/vIL-10 fusion by the catalytic domains of MMP-1,
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Figure 1 Design and characterization of 1-11E/vIL-10 fusion. (A) Schematic representation of the 1-11E/VIL10 fusion protein, as cloned into
the pcDNA expression vectors. SP, signal peptide. The scFv and vIL-10 are separated by an MMP cleavage linker, whereas the His-tag and V5-tag
were incorporated at the C-terminus. (B) SDS-PAGE analysis of purified 1-11E/VIL-10 is shown in the left panel. Purified 1-11E/vIL-10 fusion protein
migrated at approximately 50 kDa, in keeping with the expected molecular weight (~30 kDa scFv plus ~20 kDa vIL-10). Digestion of 1-11E/IL10 by
MMPs is shown in the right panel. 1-11E/vIL-10 fusion protein was incubated with the catalytic domains of MIMP-1, MMP-3, and MMP-12 overnight and
analyzed with Western blot by using anti-tetra-His-HRP antibodies. (C) FPLC profile of 1-11E/IL10. The first major peak at approximately 100 kDa
corresponds to the dimer form, and the second minor peak at approximately 50 kDa corresponds to the monomer form.

MMP-3, and MMP-12 [19]. Western blotting with anti-
penta-His HRP was performed as described [9]. Gel filtra-
tion chromatography was performed by using a HiPrep
16/60 sephacryl S-200 (GE Healthcare, Little Chalfont,
UK) column connected to an AKTA FPLC (GE Health-
care) in sterile 20 mAM Tris—HCI, 150 mM NaCl, pH 8.

In vitro bioactivity

Binding of purified fusion proteins to native CII and ROS-
CII was determined by ELISA and Western blotting as de-
scribed [9], with the bound fusion protein detected by
using mouse anti-vIL-10 (R&D Systems, Abingdon, UK)
followed by anti-mouse HRP (Sigma, Dorset, UK). Bio-
activity of vIL-10 in the fusion protein was tested with a
cell-proliferation assay by using mouse MC-9 mast cells
as described [18]. In brief, on day 1, 5x 10* cells were
treated with fusion proteins (with or without MMP-1 di-
gestion) at concentrations of 1,000 ng/ml, 100 ng/ml, or
10 ng/ml, as well as control recombinant vIL-10 (R&D
Systems, Abingdon UK). On day 4, cell viability was mea-
sured with Cell Titer Glo (Promega, Southampton, UK),
and plates were read in a luminometer (Dynex, Worthing,
UK) as per manufacturer’s instructions.

Cartilage immunohistochemistry

Immunohistochemistry, by using damaged arthritic cartil-
age from several mouse models of arthritis, was performed.
Samples were from C57BL/6 mice with antigen-induced
arthritis (AIA) [20], DBA mice with collagen-induced arth-
ritis (CIA) [19], and C57BL/6 with destabilization of the
medial meniscus (DMM) [21]. All animal procedures were

carried out under Home Office project licenses issued
under the Animals (Scientific Procedures) Act 1986 as
amended, and the institutional Animal Welfare and Ethical
Review Bodies of Queen Mary University of London and
University of Oxford, approved by the licenses from the
Home Office. Immunohistochemistry was also per-
formed by using human OA cartilage obtained from a
patient undergoing prosthetic knee replacement (pro-
vided by Professor C. Montecucco, Fondazione IRCCS
Policlinico S. Matteo, Pavia, Italy). Human OA were
collected after consent, in accordance with institutional
ethics policies and regulations (approved by Fondazione
IRCCS Policlinico San Matteo, Pavia, Italy).

Safranin O staining was performed according to standard
protocols [22]. Cartilage immunostaining was performed
on 5-um-thick sections, which were deparaffinized, hy-
drated, antigen retrieved, and blocked, as described [9]. Sec-
tions were incubated overnight at 4°C with 1-11E/vIL-10 or
control C7/vIL-10 fusion (10 pg/ml) in DAKO diluent solu-
tion. Binding of the fusion protein was probed by using
mouse anti-vIL-10 (R&D Systems, Abingdon, UK) followed
by 1:1,000 anti-mouse HRP (Sigma, Dorset, UK). DAB
substrate was used as peroxidase substrate (DAKO, Ely,
Cambridgeshire, UK). Sections were counterstained with
hematoxylin and mounted with DPX mount (BDH,
London, UK). Fluorescent immunohistochemistry was also
performed by using Cy5.5-labelled 1-11E/vIL-10 and C7/
vIL-10. Cy5.5 labeling was done according to the manufac-
turer’s instructions (GE Healthcare, Buckinghamshire,
UK). The pericellular matrix was stained by using the rat
anti-heparan sulfate proteoglycan antibody (Millipore,
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Watford, UK) followed by the Alexa-Fluor-488 labeled
anti-rat IgG (Life Technologies, Paisley, UK). Slides were
viewed under the LSM 510 Meta (Zeiss, Cambridge, UK)
using the 488-nm excitation laser to visualize the Alexa-
488 label (green) and the 633-nm excitation laser to
visualize the Cy5.5 label (red).

Mouse models of arthritis

Female C57BL/6 mice of 10 weeks of age were used for
AIA, as described previously [20]. In brief, after initial
immunization with 100 pg mBSA in complete Freud ad-
juvant, inflammation was induced in the knees by
intraarticular injection of 50 pg mBSA in PBS.

CIA was induced as described [19]. In brief, 10-week-old
male DBA/1 mice were immunized by intradermal injection
of an emulsion of 200 pg of bovine type II collagen in 100
ul of Freund complete adjuvant into the base of the tail.

Surgical destabilization of the medial meniscus (DMM)
model of osteoarthritis was performed on 10-week-old
C57BL/6 male mice, as described [23]. In brief, the right
meniscotibial ligament was transected, resulting in the
release of the medial meniscus from its tibial attachment.

In vivo localization of 1-11E/vIL-10 in AIA

1-11E/vIL-10 and the control C7/vIL-10 were labeled
with Cy5.5 according to the manufacturer’s instructions
(GE Healthcare, Buckinghamshire, UK), resulting in a
dye-to-protein ratio of 2.2. Before injecting the tagged
fusion protein into mice, its integrity was first assessed
with ELISA and immunohistochemistry, as described
earlier. To track the fusion proteins in vivo after inflam-
mation, 1 pg of Cy5.5-labeled fusion protein was injected
intraperitoneally (i.p.) 1 day after the mBSA re-challenge
in the AIA model. Epifluorescence images were obtained
daily after anesthesia induction with isofluorane in an IVIS
Spectrum imager, by using an excitation wavelength of
675 nm and an emission wavelength of 720 nm (Perkin
Elmer, Waltham, MA, USA). Images were analyzed by
using Living Image 4.4 to obtain the average fluorescence
intensities of a circular region of interest encompassing
the knee joint. Four days after i./p. injection of Cy5.5-la-
beled fusion protein, a single animal was killed and the
knees, liver, kidney, heart, and spleen imaged ex vivo.
The knees were further embedded in optimal-cutting-
temperature media (VWR, Leicestershire, UK), before
freezing in isopentane cooled by liquid nitrogen, before
storage overnight at -80°C. The joints were sectioned at
a thickness of 15 um by using a Leica CM1900UV cryo-
tome (Leica Biosystems, Milton Keynes, UK). The cryosec-
tions were fixed in ice-cold acetone before being air dried
and blocked in DAKO blocking solution (DAKO, Ely,
Cambridgeshire, UK). Fluorescence confocal microscope
images of the sections were obtained, as described earlier.
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Treatment of AIA with 1-11E/vIL-10

On days 1 and 3 after the mBSA rechallenge in the AIA
model, animals were injected i.p. with 30 pg of 1-11E/IL10
or C7/VIL-10. Swelling of the knee was measured daily by
using calipers. On day 3, three animals were killed by cer-
vical dislocation, serum was collected, and the knee joints
were dissected and fixed in formalin (2% (vol/vol)) over-
night, decalcified in EDTA for 5 weeks, and embedded in
paraffin. Serial sections 2 pm in thickness were cut and
further stained with safranin O. Serum cytokine con-
centrations were determined by using a seven-plex
mouse pro-inflammatory assay kit (Mesoscale Discov-
ery, Gaithersburg, MD, USA) in triplicate, according to
the manufacturer’s instructions.

Levels of inflammation and redox state were determined
by monitoring the luminescence after i.p. administration
of 100 pl of 50 mg/ml luminol (5-amino-2,3-dihydro-1,4-
phthalazine-dione; Sigma, Dorset, UK) in PBS. Luminol is
a redox-sensitive compound that emits blue luminescence
(Amax 425 nm) when exposed to ROS but depends on
myeloperoxidase activity [17]. The luminescence was de-
termined by analyzing images obtained 15 minutes after
luminol injection in the IVIS Spectrum Bioluminescence
settings.

Safranin O-stained knee sections were scored for disease
as follows: 0, Control; 1, no subsynovial inflammation, syn-
ovial healthy chondrocytes; 2, some evidence of soft-tissue
edema and subsynovial inflammation, some zones of
partial-thickness loss of cartilage staining; 3, marrow in-
volvement becoming apparent, frank soft-tissue edema,
moderate inflammation with synovial thickening, inflam-
matory tissue encroaching into joint, nonadhered. Cartilage
matrix depletion evident; no chondrocyte death; 4, Edema
of soft tissue, subsynovial inflammation, pannus encroach-
ment and adhesion to cartilage, full-thickness cartilage
staining depletion, chondrocyte clumping and death, and
inflamed marrow.

Statistical analysis

Statistical analyses were undertaken by using Prism
(Graphpad, La Jolla, CA, USA) by using Newman-Keuls
multiple-comparisons test. An a value of 0.05 was used
as the threshold for significance.

Results

Biochemical analysis of fusion proteins

A schematic representation of 1-11E/vIL-10 fusion proteins
is shown in Figure 1A. In SDS-PAGE analysis, purified 1-
11E/VIL-10 fusion proteins migrated at approximately 50
kDa, in keeping with the expected molecular weight (~30
kDa scFv plus ~20 kDa IL-10, Figure 1B, left panel). When
fusion proteins were incubated with MMP-1 or MMP-12,
the C-terminal vIL-10 (~20 kDa) product was observed as
a result of MMP-1 and MMP-12 cleavage but not with
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MMP-3 (Figure 1B, right panel). The molecular integrity of
the 1-11E/vIL-10 fusion in solution was further demon-
strated by gel-filtration chromatography, showing a major
peak at 100 kDa, corresponding to the fusion protein dimer,
anticipated as native IL-10 forms dimers. A smaller peak
around 50 kDa corresponding to the fusion-protein mono-
mer was also observed (Figure 1C).

In vitro bioassay of 1-11E/vIL-10 fusion

The antigen specificity of 1-11E/vIL-10 fusion proteins
was determined with ELISA, by using native CII (NT CII),
ROS-CII (CII modified by glycation (GLY) and HOCI
(HOCI)), or control HEL as target antigens. 1-11E/vIL-10
had increased binding to both GLY and HOCI-derived
ROS-CII (as previously demonstrated for 1-11E scFv [9])
and not to HEL (Figure 2A). Conversely, the C7/vIL-10 fu-
sion protein was specific to HEL (Figure 2A).

The specificity of the 1-11E/vIL-10 fusion to ROS-CII
was further confirmed with Western blot. 1-11E/vIL-10
bound to all forms of CII, but not to HEL (Figure 2B).
Binding pattern included binding to a range of CII frag-
ments in the region of 25 to 100 kDa; and high-
molecular-weight aggregates (higher than 250 kDa). In
addition, 1-11E/vIL-10 bound to the electrophoretic
band that corresponds to the intact native CII-chain
polypeptide, although in ELISA, 1-11E/vIL-10 did not
bind to native CII (Figure 2B).

The bioactivity of vIL-10 in the fusion protein was tested
by its effect on MC-9 cell proliferation. Different concen-
trations (1,000, 100, and 10 ng/ml) of 1-11E/vIL-10 fusion
proteins and C7/vIL-10 stimulated weak cell growth, but
proliferation was increased (P<0.01) up to comparable
levels with commercial recombinant IL-10 after digestion
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with MMP-1(P > 0.05 for 1-11E/vIL-10 and C7/vIL-10
versus rIL-10). MMP-1 alone, however, was not able to in-
duce any growth (P < 0.01, Figure 2C).

Binding of damaged arthritic cartilage by

1-11E/vIL-10 fusion

We tested the binding specificity of 1-11E/vIL-10 to ROS-
CII within the cartilage matrix of arthritic damaged cartil-
age from all three mouse models of arthritis (AIA, CIA,
and DMM) and human OA cartilage by immunohisto-
chemistry (Figure 3). In AIA cartilage, a diffuse and strong
pattern of staining with 1-11E/vIL-10 of the artificial zone
was observed. No staining was seen with C7/vIL-10. A
similar pattern of staining was seen for CIA cartilage. The
staining of DMM cartilage was more diffuse, and we ob-
served staining in all zones (superficial, middle, and deep
zone). No background staining was seen for control C7/
vIL-10 (Figure 3A). No staining of healthy mouse cartilage
was observed (data not shown). Human OA cartilage dis-
played a diffuse pattern of staining as a territorial “halo”
around the chondrocyte with 1-11E/vIL-10 and with very
strong staining in extensive eroded areas as a reflection of
high levels of ROS-CII in these areas (Figure 3B). Very
low background staining with C7/vIL-10 was seen in hu-
man cartilage around the chondrocytes.

In vivo localization of 1-11E/vIL-10 fusion to inflamed
tissue in AIA

The targeting function of the 1-11E portion of the fusion
protein to inflamed tissue was addressed by tagging the fu-
sion protein with the Cy5.5 fluorophore and injecting i.p.
into animals with AIA. Subsequent in vivo fluorescence
imaging indicated that the 1-11E/vIL-10 fusion protein

. GLY
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0O HEL M
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1-11EAL-10 C7/L-10

1o o NTCl 1 2 3

Figure 2 Bioassay of 1-11E/vIL-10. (A) ELISA showing increased binding of 1-11E/vIL-10 to ROS-ClI (Cll modified by glycation (Gly) or HOCI)
compared with native Cll (NT-Cll). No binding to hen-egg lysozyme (HEL) was observed. In contrast, C7/vIL-10 bound only to HEL. (B) Western
blot analysis showed that 1-11E/IL10 bound to native ClI (Lane 1), ROS modified Cll (lane 2, glycated; lane 3, HOCI; lane 4, OH"; lane 5, peroxynitrate)
but not to HEL (lane 6). (C). IL-10 bioassay of 1-11EAIL10 and C7/AIL10. We added 10, 100, or 1,000 ng/ml of fusion protein (white, pattern, and black
boxes, respectively) to IL-10-responsive MC-9 cells with (+) or without (=) previous MMP-1 digestion. As a positive control, 10, 100, or 1,000 ng/ml
commercial recombinant vIL-10 (vIL-10) was used, whereas MMP-1 alone-treated cells were used as a negative control. After 3 days, cell growth was
measured with the Cell Titer Glo assay. Significant enhanced cell growth of the fusion proteins was observed after MMP-1 digestion (P < 0.01 for 1,000
ng/ml). No significant difference in growth was seen between 1-11E/IL-10, C7/AVIL-10, and vIL-10 (P> 0.05).
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1-11E/IL-10

Figure 3 Binding of 1-11E/vIL-10 to arthritic cartilage. (A) Sections of cartilage from mouse model of antigen-induced arthritis (AlA), collagen-induced
arthritis (CIA), and surgical destabilization of the medial meniscus (DMM) were incubated with Cy5.5 tagged 1-11E/VIL-10 (left panels) or C7/AVIL10 (right
panels). Binding to cartilage was diffused in all zones, although AIA staining was mostly in the superficial zone. No staining with C7/vIL10 was seen.
Pericellular matrix of the chondrocytes is shown in green (AlexaFluor-488-labeled secondary) and the fusion protein (Cy5.5) in red. (B) Staining of human
OA cartilage with 1-11EAVIL-10. Binding of the fusion protein was detected with mouse anti-vIL10, followed by anti-mouse-HRP. Binding was strong in the
damaged area and as a territorial “halo” around the chondrocyte. Low background staining with C7/vIL-10 was seen.
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CIA
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selectively tracked to the inflamed joint, compared with
the contralateral uninflamed joint and the control C7/vIL-
10 fusion protein (representative images taken 3 days after
i.p. injection shown in Figure 4A).

Quantification of the average fluorescence within a circu-
lar region of interest encompassing the knee joint indicated
that the maximum amount of 1-11E/vIL-10 fusion protein
tracking to the inflamed joint occurred 3 days after i.p. in-
jection (Figure 4B; P<0.0001). Ex vivo fluorescence im-
aging of the internal organs 4 days after ip. injection
indicated no difference in the clearance of 1-11E/vIL-10
and C7/vIL-10 (Figure 4C), demonstrated by strong

florescence seen in the kidney and liver because of clear-
ance. Nevertheless, no signal was seen in the heart and
spleen. Frozen sections of excised knee cartilage indicate
that the Cy5.5-labeled 1-11E/vIL-10 is present throughout
the cartilage of inflamed joints, as well as within some
chondrocytes, but not in the contralateral joint (Figure 4D).
C7/vIL10 did not show staining of the excised cartilage.

Therapeutic efficacy of 1-11E/vIL-10 fusions in mouse
model of arthritis

The therapeutic potency of the fusion proteins was tested
in two consecutive sets of experiments by using the murine
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Figure 4 Tracking of 1-11E/vIL-10 to arthritic joints. One day after AIA induction in mice, 1 pg of Cy5.5-labeled fusion proteins was injected
i.p. In vivo fluorescence images of the mice were taken to follow the tracking of the fusion proteins to the joint. (A) Representative fluorescence
image taken 3 days after injection of 1-11E/VIL-10 (left) and C7/vIL-10 (right). (B) Quantification of the average fluorescence of the region of
interest encompassing the knee joint, n = 3. (C) Ex vivo quantification of fluoresce of tissues after dissection of a single mouse 4 days after
injection. (D) Representative fluorescence images of cryosections of the excised knee joints, showing the pericellular matrix of the chondrocytes
in green (AlexaFluor-488-labeled secondary) and the fusion protein (Cy5.5) in red.

AJA arthritis model in C57BL/6 mice. After rechallenge
with mBSA, mice with a similar degree of knee swelling
were selected for treatment. In the first experiment, a small
group of animals (7 = 3) was injected i.p. with 30 pug 1-11E/
vIL-10 or control C7/vIL-10 after mBSA rechallenge to de-
termine the ability of 1-11E/vIL-10 treatment to reduce oxi-
dative stress as a result of the inflammation. We measured
the level of oxidants present in the inflamed knee by i.p. in-
jection of luminol. Figure 5A shows that the reduction in
levels of luminescence was accelerated in 1-11E/vIL-10
treated mice compared with mice treated with C7/vIL-10
or nontreated control mice. Hence, the intensity of the
luminol signal in the arthritic knee correlated with ac-
celerated reduction of knee swelling by 1-11E/vIL-10 in
comparison to C7/vIL-10 and control nontreated mice
(Figure 5B, C, p = 0.6317).

To confirm further the efficacy of treatment with 1-11E/
vIL-10, we performed a large experiment using AIA mice
(n=10-12) injected with 30 pg per injection of the 1-11E/
vIL-10 or control C7/vIL-10 fusion protein at days 1 and 3
after rechallenge with mBSA. Once again, we observed a
significant reduction in knee swelling in 1-11E/vIL-10
treated mice compared with mice treated with C7/vIL-10
or PBS controls (Figure 6A).

Histologic analysis of the excised knee joints from 1-
11E/vIL-10-treated versus C7/vIL-10-treated mice from

day 3 showed a clear difference between the two groups
(Figure 6B). In joints from the nontreated mice, several
pathologic features of a moderate arthritis were observed.
Edema of the soft tissues was noted, with thickening of the
subintima with a vigorous inflammatory infiltrate. En-
croachment of inflammatory pannus from the point of
insertion was found, with a thin layer of inflammatory tis-
sue adhering and overlying the cartilage associated with
roughening. Cartilage was heavily depleted of glycos-
aminoglycan staining, with some islands of new synthe-
sis surrounding chondrocytes. Evidence of chondrocyte
clumping was found, and some lacunae were absent
of chondrocytes. Bone marrow was inflamed, and
subchondral bone depleted and disorganized (Score 4).
The cartilage from healthy control (HC) animals was
smooth, with clear staining with safranin O (Score 0).
Treatment with C7/vIL-10 showed a reduced inflamma-
tory picture compared with nontreated joints. Bone
marrow inflammation was absent, subchondral bone
healthy, and cartilage showed much stronger glucosami-
noglycan staining. However, zones of cartilage glycos-
aminoglycan depletion were still evident. Soft-tissue
edema was reduced, but not to the levels of healthy con-
trol, and some inflammatory infiltrate with synovial lin-
ing layer thickening was observed (Score 2). Treatment
with 1-11E/vIL-10 looked essentially normal. Although
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Figure 5 Reduction of oxidative state in inflamed knee by 1-11E/vIL10 fusion proteins. Antigen-induced arthritis was induced in female
C57BL/6 mice by injecting mBSA into the knee of each animal 1 day before treatment (n = 3). On days 1 and 3 after mBSA rechallenge, animals
were injected i.p. with 30 pug of 1-11E/VIL10 or C7/VIL10. As a control, PBS was injected. Level of inflammation and redox state were determined
by monitoring the luminescence 15 minutes after i.p. administration of luminol, a redox-sensitive compound that glows when mixed with
oxidizing agents present in the inflamed knee and thus correlates with degree of inflammation. (A) Representative luminescence images taken at
days 1, 2, and 5 after injection of 1-11E/vIL-10, C7/vIL-10, and control nontreated mice are shown. (B) The reduction in oxidation level was faster
in the 1-11E/VIL-10-treated animal than in C7/vIL-10 and nontreated mice, which correlated with reduction in swelling (C).

some sublining layer inflammatory influx was noted,
very little thickening occurred. The synovial lining layer
looked normal, with no encroachment from the point of
insertion. Cartilage appeared healthy, smooth, and nor-
mal, with staining for glycosaminoglycan equivalent to
that of the healthy control, with no patches of depletion,
as seen in the C-7/IL10-treated joint. Marrow and sub-
chondral bone appeared normal (Score 0). Cytokine
profiles were analyzed in three animals from each group
on day 3 (Figure 6C). Pro-inflammatory cytokines levels
in the 1-11E/vIL-10-treated group were significantly
lower than in the C7/vIL-10 group (P =0.0175, except
for IFN-y, which was similar in all groups) and similar
to the levels observed in the healthy control animals.

Discussion

Biological therapies have revolutionized treatment for
RA patients; however, they have various drawbacks due
to incomplete response in 30% to 40% of patients, side
effects, and high cost [24]. Development of novel ap-
proaches to overcome these limitations is becoming
even more important, as recent evidence supports the
advantage of earlier use of TNF-a inhibitors, before the
failure of conventional DMARDs, and especially to use
TNEF inhibitors in combination with methotrexate as

first-line therapy in patients with poor prognosis and signs
for rapidly progressive disease [25]. Our hypothesis is that
targeted therapy may address at least some of these draw-
backs, as it allows concentration of the bioactive mole-
cules within the damaged joints and, thus, increase
potency while minimizing side effects. In addition, tar-
geted therapy may resolve some of the obstacles in achiev-
ing beneficial treatment with anti-inflammatory cytokines,
as opposed to treatment by blockade of pro-inflammatory
cytokines, which has become an established treatment for
RA. Because of the poor pharmacokinetics (~30 minutes
half-life) of anti-inflammatory cytokines, high nontolerable
dosages have been used to achieve efficacy in clinical trials.
In fact, the clinical development of both interferon p
[26,27] and IL-10 [16] was discontinued because of an in-
sufficient efficacy.

Here we describe that vIL-10 fused to the human anti-
body fragment specific for damaged arthritic cartilage is a
valid targeted anti-inflammatory therapy in the treatment
of a mouse model of arthritis.

Although the original anti-ROS-CII specificity of 1-11E
was maintained in 1-11E/vIL-10, the in vitro vIL-10 bio-
activity of 1-11E/vIL-10 and C7/vIL-10 fusion proteins
was very low until they were cleaved by MMP-1, indicat-
ing that vIL-10 was latent before the MMP-1 digestion.
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(P=0.0175) and similar to levels of healthy control animals (P> 0.05).

Human IL-10 (hIL-10) fused to the scFv was, however, ac-
tive [17,18], raising the very interesting question of the dif-
ference between hIL-10-and vIL-10 as a fusion partner in
terms of therapeutic potential. vIL-10 has been shown to
bind to and signal through human IL-10R1 [28]. The re-
gions on the surfaces of the hIL-10 and vIL-10 that make
contact with the receptor are essentially the same. The
binding affinity of vIL-10 (which has 92% sequence iden-
tity to hIL-10) to cell-surface IL-10R1 is, however, ~1,000-
fold lower than that of hIL-10 [29]. This difference in
receptor-binding affinity is thought to be caused by subtle
changes in the conformation and dynamics of two loop
structures and the interdomain angle [30] as a result of a
single amino acid substitutions at position 87 of isoleucine
to alanine (I87A) in vIL-10 [29]. Similar to vIL-10, I87A
substitution in hIL-10 results in hIL-10 with only im-
munosuppressive, but not immunostimulatory functions.

Keravala et al. [14] demonstrated that the I87A mutant re-
sulted in significant improvement of the pathology in the
treated joints to similar levels as the vIL-10, whereas Ding
et al. [31] showed that the I87A mutant induced similar
Statl, Stat3, and Stat5 activation as hIL-10. The latency of
vIL-10 in our fusion probably reflects the low affinity of
vIL-10 in comparison to hIL-10, where we used 1,000 ng
of 1-11E/vIL-10 and control vIL-10 to see significant
growth effect on the MC-9 cells, whereas 10 ng of hIL-
10 was sufficient [17]. The close proximity of the scFv
probably induced further conformational changes as
well as changes in the dynamics of two loop structures
and the interdomain angle, which has resulted in lack of
binding to the receptor. The fact that 1-11E/vIL-10 is
systemically latent until it is cleaved by MMP in the
arthritic joints is advantageous, as it will be activated
only in inflamed joints where local MMPs, especially
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MMP-12 in early inflammation [19], cleaves it from the
fusion, with little sequestering of the cytokine by sys-
temic receptors [32].

1-11E/vIL-10 maintained the specific binding to arthritic
cartilage. Hence, the in vivo accumulation of 1-11E/vIL-10
in the inflamed joint showed a dramatic improvement
compared with 1-11E scFv, with sustained targeting for 4
days compared with 2 hours, respectively. Possibly this is
due to the increased molecular weight to 100 kDa for 1-
11E/VIL-10 compared with 30 kDa for 1-11E scFv, and
above the kidney threshold. This also explains why treat-
ment efficacy was maintained for several days. The 1-11E/
vIL-10 fusion greatly accelerated the reduction of knee-
joint swelling, redox state, and levels of pro-inflammatory
cytokines in comparison to control C7/vIL-10. The lack of
therapeutic effect with the C7/vIL-10 could be explained
by the lack of targeting to the arthritic joint, which then
resulted in much lower (suboptimal) local concentration
in the arthritic joints. Interestingly, serum levels of mouse
pro-inflammatory cytokines in the 1-11E/vIL-10-treated
mice were significantly lower compared with C7/vIL-10-
treated mice and almost as in healthy mice. Mouse IL-10
levels in 1-11E/vIL-10-treated mice was, however, a bit
lower than that observed in C7/vIL-10-treated mice, pos-
sibly reflecting the reduced inflammation in the 1-11E/
vIL-10-treated group and thus fewer anti-inflammatory
cytokines were needed to combat the inflammation. These
data, however, must be further confirmed in a larger ex-
perimental setting.

Conclusions

The results from this study demonstrate that anti-inflam-
matory cytokines can be targeted specifically to diseased
arthritic joints with increased efficacy in comparison to
nontargeted treatment. These data demonstrate a further
milestone with potential for further development of opti-
mal treatment of RA, where blockade of pro-inflammatory
cytokines or treatment with anti-inflammatory cytokines
may be used alone, or in combination. Indeed, the testing
of combination biological therapies for RA has largely
been avoided for safety concerns, but targeted therapeutics
may enable this in the future.

Abbreviations

1-11E: scFv specific to ROS-CII; AIA: antigen-induced arthritis; C7: scFv specific
to HEL; CIA: collagen-induced arthritis; ClI: collagen type II;

DMM: destabilization of the medial meniscus model of osteoarthritis;

ELISA: enzyme-linked immunosorbent assay; HEL: hen egg lysozyme;

IHC: immunohistochemistry; MPP: matrix-metalloproteinase; ROS: reactive
oxidants; ROS-ClI: CII posttranslationally modified by ROS; scFv:

single-chain fragment variable; vIL-10: viral interleukin-10.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CH, FD, TV, NHL, and AN made substantial contributions to conception,
design, interpretation of data, and critical revision of the manuscript for

Page 10 of 11

intellectual content. CH, NHL, and AN drafted the manuscript. CH was
involved in the cloning and characterization of the fusion proteins and the
AIA model. AS carried out the expression of the fusion proteins, IHC, in vivo
imaging, and interpretation of the imaging data. NHL was involved in the
in vivo models, IHC, in vivo imaging, and imaging data analysis. MS and AM
were involved in the acquisition, interpretation of the IHC experiments, and
scoring of disease severity. All authors have given final approval of the
version to be published.

Acknowledgements

The authors acknowledge funding from the Arthritis Research Campaign UK
(MP/18522). Authors thank Profs. Mauro Perretti and Federica Marelli-Berg for
critical reviewing of the manuscript. Authors thank Chiara Vinci, Mayda
Arshad, and Margaret Jones for their technical help.

Author details

'Centre for Biochemical Pharmacology, William Harvey Research Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary
University of London, London ECTM 6BQ, UK. °Medicines Research Group,
School of Health Sport and Bioscience, University of East London, Water
Lane, London E15 4LZ, UK. *Rheumatology and Translational Immunology
Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico
San Matteo Foundation/University of Pavia, Pavia, Italy. “Kennedy Institute of
Rheumatology, NDORMS, University of Oxford, 65 Roosevelt Drive,
Headington, Oxford OX3 7FY, UK.

Received: 5 June 2014 Accepted: 2 July 2014
Published: 16 July 2014

References

1. Mclnnes IB, Schett G: Cytokines in the pathogenesis of rheumatoid
arthritis. Nat Rev Immunol 2007, 7:429-442.

2. Kunz M, Ibrahim SM: Cytokines and cytokine profiles in human
autoimmune diseases and animal models of autoimmunity.

Mediators Inflamm 2009, 2009:979258.

3. Feldmann M, Maini RN: Anti-TNF alpha therapy of rheumatoid arthritis:
what have we learned? Annu Rev Immunol 2001, 19:163-196.

4. Feldmann M, Maini SR: Role of cytokines in rheumatoid arthritis: an
education in pathophysiology and therapeutics. Immunol Rev 2008,
223:7-19.

5. Baghai M, Osmon DR, Wolk DM, Wold LE, Haidukewych GJ, Matteson EL:
Fatal sepsis in a patient with rheumatoid arthritis treated with
etanercept. Mayo Clin Proc 2001, 76:653-656.

6. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V:
Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious
infections and malignancies: systematic review and meta-analysis of rare
harmful effects in randomized controlled trials. JAMA 2006, 295:2275-2285.

7. Mewar D, Wilson AG: Treatment of rheumatoid arthritis with tumour
necrosis factor inhibitors. Br J Pharmacol 2011, 162:785-791.

8. Winyard PG, Blake DR: Antioxidants, redox-regulated transcription factors,
and inflammation. Adv Pharmacol 1997, 38:403-421.

9. Hughes C, Faurholm B, Dell'Accio F, Manzo A, Seed M, Eltawil N, Marrelli A,
Gould D, Subang C, Al-Kashi A, De Bari C, Winyard P, Chernajovsky Y, Nissim A:
Human single-chain variable fragment that specifically targets arthritic
cartilage. Arthritis Rheum 2010, 62:1007-1016.

10. Gu'Y, Yang J, Ouyang X, Liu W, Li H, Yang J, Bromberg J, Chen SH, Mayer L,
Unkeless JC, Xiong H: Interleukin 10 suppresses Th17 cytokines secreted
by macrophages and T cells. Eur J Immunol 2008, 38:1807-1813.

11. Boissier MC, Bessis N: Therapeutic gene transfer for rheumatoid arthritis.
Reumatismo 2004, 56:51-61.

12. Joosten LA, Lubberts E, Durez P, Helsen MM, Jacobs MJ, Goldman M,
van den Berg WB: Role of interleukin-4 and interleukin-10 in murine
collagen-induced arthritis: protective effect of interleukin-4 and
interleukin-10 treatment on cartilage destruction. Arthritis Rheum 1997,
40:249-260.

13. Sin SH, Dittmer DP: Cytokine homologs of human gamma herpes viruses.
J Interferon Cytokine Res 2012, 32:53-59.

14. Keravala A, Lechman ER, Nash J, Mi Z, Robbins PD: Human, viral or mutant
human IL-10 expressed after local adenovirus-mediated gene transfer
are equally effective in ameliorating disease pathology in a rabbit knee
model of antigen-induced arthritis. Arthritis Res Ther 2006, 8:R91.



Hughes et al. Arthritis Research & Therapy 2014, 16:R151
http://arthritis-research.com/content/16/4/R151

15. Whalen JD, Lechman EL, Carlos CA, Weiss K, Kovesdi |, Glorioso JC, Robbins PD,
Evans CH: Adenoviral transfer of the viral IL-10 gene periarticularly to mouse
paws suppresses development of collagen-induced arthritis in both
injected and uninjected paws. J Immunol 1999, 162:3625-3632.

16.  van Roon J, Wijngaarden S, Lafeber FP, Damen C, van de Winkel J, Bijlsma JW:
Interleukin 10 treatment of patients with rheumatoid arthritis enhances Fc
gamma receptor expression on monocytes and responsiveness to immune
complex stimulation. J Rheumatol 2003, 30:648-651.

17. Schwager K, Kaspar M, Bootz F, Marcolongo R, Paresce E, Neri D, Trachsel E:
Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage
immunocytokine which inhibits the progression of collagen-induced
arthritis. Arthritis Res Ther 2009, 11:R142.

18.  Trachsel E, Bootz F, Silacci M, Kaspar M, Kosmehl H, Neri D: Antibody-mediated
delivery of IL-10 inhibits the progression of established collagen-induced
arthritis. Arthritis Res Ther 2007, 9:R9.

19.  Lim NH, Meinjohanns E, Bou-Gharios G, Gompels LL, Nuti E, Rossello A, Devel L,
Dive V, Meldal M, Nagase H: In vivo imaging of matrix metalloproteinase 12
and matrix metalloproteinase 13 activities in the mouse model of
collagen-induced arthritis. Arthritis Rheumn 2014, 66:589-598.

20.  Wengner AM, Hopken UE, Petrow PK, Hartmann S, Schurigt U, Brauer R, Lipp
M: CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model
of chronic antigen-induced arthritis. Arthritis Rheum 2007, 56:3271-3283.

21, Glasson SS, Blanchet TJ, Morris EA: The surgical destabilization of the
medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse.
Osteoarthr Cart 2007, 15:1061-1069.

22. Rosenberg L: Chemical basis for the histological use of safranin O in the
study of articular cartilage. J Bone Joint Surg Am 1971, 53:69-82.

23.  Lim NH, Meinjohanns E, Medal M, Bou-Gharios G, Nagase H: In vivo
imaging of MMP-13 activity in the murine destabilised medial meniscus
surgical model of osteoarthritis. Osteoarth Cart 2014, 22:862-868.

24.  Horton SC, Emery P: Biological therapy for rheumatoid arthritis: where are
we now? Br J Hosp Med (Lond) 2012, 73:12-18.

25. Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala
C, Gorter S, Knevel R, Nam J, Schoels M, Aletaha D, Buch M, Gossec L,
Huizinga T, Bijlsma JW, Burmester G, Combe B, Cutolo M, Gabay C,
Gomez-Reino J, Kouloumas M, Kvien TK, Martin-Mola E, Mclnnes |,
Pavelka K, van Riel P, Scholte M, Scott DL, Sokka T, Valesini G, et al:
EULAR recommendations for the management of rheumatoid arthritis
with synthetic and biological disease-modifying antirheumatic drugs.
Ann Rheum Dis 2010, 69:964-975.

26. van Holten J, Pavelka K, Vencovsky J, Stahl H, Rozman B, Genovese M, Kivitz
AJ, Alvaro J, Nuki G, Furst DE, Herrero-Beaumont G, Mclnnes 1B, Musikic P,
Tak PP: A multicentre, randomised, double blind, placebo controlled
phase Il study of subcutaneous interferon beta-1a in the treatment of
patients with active rheumatoid arthritis. Ann Rheum Dis 2005, 64:64—69.

27. van Holten J, Reedquist K, Sattonet-Roche P, Smeets TJ, Plater-Zyberk C,
Vervoordeldonk MJ, Tak PP: Treatment with recombinant interferon-beta
reduces inflammation and slows cartilage destruction in the
collagen-induced arthritis model of rheumatoid arthritis.

Arthritis Res Ther 2004, 6:R239-R249.

28.  Jones BC, Logsdon NJ, Josephson K, Cook J, Barry PA, Walter MR: Crystal
structure of human cytomegalovirus IL-10 bound to soluble human
IL-10R1. Proc Natl Acad Sci U S A 2002, 99:9404-9409.

29. LiuY, de Waal MR, Briere F, Parham C, Bridon JM, Banchereau J, Moore KW,
Xu J: The EBV IL-10 homologue is a selective agonist with impaired
binding to the IL-10 receptor. J Immunol 1997, 158:604-613.

30. Yoon SI, Jones BC, Logsdon NJ, Walter MR: Same structure, different
function crystal structure of the Epstein-Barr virus IL-10 bound to the
soluble IL-10R1 chain. Structure 2005, 13:551-564.

31. Ding Y, Qin L, Kotenko SV, Pestka S, Bromberg JS: A single amino acid
determines the immunostimulatory activity of interleukin 10. J Exp Med
2000, 191:213-224.

32. Adams G, Vessillier S, Dreja H, Chernajovsky Y: Targeting cytokines to
inflammation sites. Nat Biotechnol 2003, 21:1314-1320.

doi:10.1186/ar4613

Cite this article as: Hughes et al: Targeting of viral interleukin-10 with
an antibody fragment specific to damaged arthritic cartilage improves
its therapeutic potency. Arthritis Research & Therapy 2014 16:R151.

Page 11 of 11

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Expression of 1-11E/vIL-10 fusion
	Evaluation of the molecular integrity of the fusion protein
	In vitro bioactivity
	Cartilage immunohistochemistry
	Mouse models of arthritis
	In vivo localization of 1-11E/vIL-10 in AIA
	Treatment of AIA with 1-11E/vIL-10
	Statistical analysis

	Results
	Biochemical analysis of fusion proteins
	In vitro bioassay of 1-11E/vIL-10 fusion
	Binding of damaged arthritic cartilage by 1-11E/vIL-10 fusion
	In vivo localization of 1-11E/vIL-10 fusion to inflamed tissue in AIA
	Therapeutic efficacy of 1-11E/vIL-10 fusions in mouse model of arthritis

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

