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CD4 T-cell transcriptome analysis reveals aberrant
regulation of STAT3 and Wnt signaling pathways
in rheumatoid arthritis: evidence from a
case–control study
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Abstract

Introduction: Rheumatoid arthritis (RA) is a systemic autoimmune disease in which T cells play a pivotal role in the
pathogenesis. Knowledge in terms of the CD4 T-cell transcriptome in RA is limited. The aim of this study was to
examine the whole-genome transcription profile of CD4 T cells in RA by comparing patients with RA to healthy
controls.

Methods: Peripheral blood CD4 T cells were isolated from 53 RA patients with active disease and 45 healthy
individuals; 13 cases and 10 controls were enrolled in microarray analysis. The remaining 40 cases and 35 controls
were recruited as an independent cohort for the validation study. Bioinformatics was performed on Gene Ontology
(GO), gene-gene interaction networks, and pathway analysis. The gene modules, by combining the results from GO,
gene networks, and pathway analysis, were selected for further validation.

Results: The CD4 T cells showed 1,496 differentially expressed (DE) genes in RA patients relative to healthy
individuals. GO analysis revealed that the DE genes were enriched in immune response, T-cell response, apoptosis
process, and Wnt receptor signaling. Pathway analysis also identified that ‘Wnt signaling pathway’ was differentially
regulated between two groups (P = 2.78 × 10−10). By gene-gene network analysis, we found that the DE genes were
enriched in T-cell receptor (TCR), JAK-STAT signaling, and Wnt signaling pathway. By gene module analysis, we
found that a number of DE genes overlapped in the three different analyses. In total, 23 genes were selected for
further validation, and nine genes were confirmed. Of these, four genes (SOCS3, CBL, IFNAR1, and PIK3CA) were
involved in STAT3 (signal transducer and activator of transcription 3) signaling, and three genes (CBL, KLF9, and
CSNK2A1) were involved in the Wnt signaling pathway. Additionally, several zinc finger transcription factors
(ZEB1, ZNF292, and ZNF644) were confirmed.

Conclusions: We report here the first case–control study of the CD4 T-cell transcriptome profile in RA. Our data
provide evidence that CD4 T cells from patients with RA have abnormal functional networks in STAT3 signaling and
Wnt signaling. Our results also suggest that the aberrant expression of several zinc finger transcription factors
(ZEB1, ZNF292, and ZNF644) may be potential pathogenic factors for RA.
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Introduction
Rheumatoid arthritis (RA) is a chronic and systemic
autoimmune disease characterized by symmetric inflam-
mation in peripheral joints, leading to cartilage destruc-
tion and bone erosion. The etiology of RA remains
elusive, but it is believed that genetic factors play an im-
portant role in RA pathogenesis. Multiple genes contrib-
ute to disease susceptibility and heterogeneous clinical
manifestations [1,2]. To gain insight into the molecular
signature underlying disease pathogenesis, gene expres-
sion profiling studies have emerged as a powerful way to
comprehensively identify the genes that are differentially
expressed in blood and tissues between patients and
healthy individuals [3].
To date, a number of transcriptome studies have fo-

cused on peripheral blood mononuclear cells (PBMCs)
or fibroblast-like synoviocytes (FLSs) to understand the
aberrant biological pathways involved in the pathogen-
esis of RA [4-9]. Yet although much has been learned
about T cells in RA pathology, knowledge is limited in
terms of whole-genome transcription profiling of CD4 T
cells in RA. One microarray study was conducted on
CD4 T cells in RA but with a case-only design [10]. To
better understand the complex molecular mechanisms
and discover the potential predictive biomarkers for RA,
we performed a case–control study of CD4 T-cell tran-
scriptome analysis by comparing RA patients to healthy
controls. We found a great difference in gene expression
profiling of CD4 T cells between active RA cases and
healthy controls and discovered several aberrant signal-
ing pathways in CD4 T cells from patients with RA.
Finally, by quantitative real-time polymerase chain reac-
tion (qPCR) validation, we identified nine genes involved
in STAT3 (signal transducer and activator of transcrip-
tion 3) signaling, Wnt signaling pathway, and zinc finger
transcription regulation.

Methods
Study subjects
Thirteen patients with RA and nine healthy controls
were enrolled in microarray analysis. Forty RA cases and
35 healthy individuals were subsequently recruited for
the validation study. All patients satisfied the American
College of Rheumatology 1987 revised criteria for a diag-
nosis of RA [11] and were recruited between March
2009 and September 2011. All cases had active disease
at the time of blood sampling: Disease Activity Score
(DAS) 28 of 5.55 (range of 4.07 to 8.26). The patients
maintained the same doses of methotrexate no less than
3 months and did not concurrently receive other
disease-modifying anti-rheumatic drugs or biologics be-
fore the study. The baseline demographic characteristics
of patients and healthy controls are detailed in Table S1
(Additional file 1). The study was approved by the
Medical Ethics Committee of Peking University People’s
Hospital, and informed consent was obtained from all
participants.

CD4+ T-cell RNA processing
In total, 12-mL whole blood samples were drawn and
stored at 4°C for less than 4 hours. Samples were layered
onto Ficoll-Paque Plus, and PBMCs were separated by
density gradient centrifugation. An automated magnetic
beadbased-positive selection protocol was used to isolate
CD4 cells (Stemcell Technologies, Vancouver, BC,
Canada). By this approach, a median purity of 95% CD4+

T cells was achieved by flow cytometry analysis. Total
CD4+ T-cell RNA was extracted by using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) and purified by using
an RNeasy Mini Kit (Qiagen, Hilden, Germany). Only
RNA preparations with a 28S/18S ratio of more than 1.7
and an A260/280 range of 1.8 to approximately 2.1 were
used for gene expression analysis.

Microarray assay
The transcriptome analyses used Human Genome U133
Plus version 2.0 high-density oligonucleotide arrays
(Affymetrix, Santa Clara, CA, USA) with 54,000 probe
sets and 1,300,000 distinct oligonucleotides to interro-
gate 47,000 well-characterized human transcripts. The
sample labeling, microarray hybridization, and washing
were performed on the basis of the standard protocols
of the manufacturer. Briefly, total RNA was transcribed
to double-strand cDNA and then to synthesized cRNA
and labeled with cyanine-3-CTP. The labeled cRNAs
were hybridized onto the microarray. After the slides
were washed, the arrays were scanned by GeneChip
Scanner 3000 (Affymetrix). The gene expression array
data were digitalized by using GeneChip Operating Soft-
ware (version 1.4; Affymetrix) and normalized by elimin-
ating the highest and lowest 2% of the data by using
MAS5 algorithm (Affymetrix). The microarray data have
been deposited in the Gene Expression Omnibus (GEO)
of the National Center for Biotechnology Information
(NCBI) and are accessible through GEO series accession
number GSE56649.

Real-time quantitative polymerase chain reaction
The selected candidate genes were validated by qPCR.
Briefly, the cDNA was synthesized in accordance with
the instructions indicated in a RevertAid™ First-Strand
cDNA Synthesis Kit (Fermentas, Shenzhen, China).
Two-step PCR was performed by using SYBR Green
PCR Master Mix (Applied Biosystems, Foster City, CA,
USA) in accordance with the instructions of the manufac-
turer. The reaction was run on an ABI 9700 fluorescent
sequence detection system (Applied Biosystems). Gene ex-
pression was quantified relative to the expression of the
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housekeeping gene 18 s rRNA and normalized to control
by standard 2−△△CT calculation. Primer sequences used are
summarized in Table S2 (Additional file 2).

Statistical analysis
For microarray analysis, a differentially expressed (DE)
gene was defined if its geometric mean of intensities
reached at least 1.5-fold changes between case and con-
trol groups. The false-discovery rate (FDR) was applied
to determine the statistical significance. An FDR-
adjusted P value (q value) of below 0.05 was defined as
statistically significant. The independent-samples t test
was applied for the analysis of candidate gene valid-
ation, and a P value of less than 0.05 was considered sta-
tistically significant after Bonferroni correction. All
statistical analyses were conducted by using program
SPSS 13.0 (SPSS Inc., Chicago, IL, USA).

Gene Ontology, gene-gene network, and pathway analysis
The significant DE genes from microarray were first ana-
lyzed for hierarchical clustering (Cluster 3.0, available at
[12]) and visualized with Treeview 3.0 (available at [13]).
To interpret biological meaning of the transcripts, the
DE genes were functionally categorized according to the
Gene Ontology (GO) database [14]. GO analysis allowed
us to classify the large gene list into functionally related
gene sets according to a reference (NCBI: Homo sapiens
genes). Fisher’s exact test and chi-squared test were used
to statistically classify GO categories, and an FDR (q value)
of less than 0.05 was considered statistically significant.
The gene-gene interaction networks and pathway analysis
were analyzed by using Ingenuity Pathway Analysis soft-
ware version 7.5 [15]. Interactions among the DE genes
were investigated according to the Human Protein Refer-
ence Database (HPRD) [16] and the Molecular INTer-
action (MINT) database [17]. The significance of the
interactions was presented as gene modules and evaluated
according to between-ness centrality reflecting the import-
ance of a module in relation to other modules [18-20].
Pathway analysis was applied to find out the significant
pathways among DE genes according to the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [21]. Path-
ways generated by fewer than five uploaded genes were
excluded from the analysis. Pathway enrichment analysis
(PEA) (those with the highest percentage of genes in a
particular pathway) was applied to evaluate the signifi-
cance of pathways [22-24].

Results
CD4 T-cell transcriptome in patients with active rheumatoid
arthritis versus healthy controls
The transcriptome profiles of CD4 T cells from 13 cases
with active RA and nine healthy controls were accessed
by microarrays. Using a q value of less than 0.05 and
taking into account genes with at least 1.5-fold changes,
we identified a total of 1,496 DE transcripts. The propor-
tion of DE transcripts was substantially higher among
RefSeq genes (89%) than non-RefSeq genes (11%).
Among the transcripts, 832 were upregulated (Table S3
in Additional file 3) and the remaining 664 were down-
regulated (Table S4 in Additional file 4). These genes
clearly separated patients with active RA from healthy
individuals and were visualized in a hierarchical cluster-
ing diagram (Figure 1a).

Gene Ontology analysis of differentially expressed
transcripts defined five major gene categories
By GO analysis, the common genes can be generally
classified into three GO systems: biological process, cel-
lular component and molecular function, and (more
specifically) ‘higher level’ descriptive GO terms (for ex-
ample, ‘signal transduction’ or ‘regulation of apoptosis’).
We found that the DE genes in CD4 T cells were enriched
in several common ontologies, including immune re-
sponse (GO:0006955, 122 genes, q = 5.99 × 10−8), more
specifically in (i) regulation of adaptive immune response
(GO:0002819); (ii) positive regulation of chronic inflam-
matory response (GO:0002678); (iii) interferon-gamma
(IFNγ)-mediated signaling pathway (GO:0060333); and
(iv) response to cytokine stimulus (GO:0034097), apop-
tosis process (111 genes, q = 1.73 × 10−5), more specifically
in (i) induction of apoptosis by intracellular signals
(GO:0008629); (ii) cellular component involved in apop-
tosis (GO:0006921); (iii) regulation of myeloid cell apop-
tosis (GO:0033032); and (iv) recognition of apoptotic cell
(GO:0043654), T-cell receptor (TCR) signaling pathway
(GO:0050852, 40 genes, q = 2.98 × 10−6), and regulation
of kinase (GO:0007243, 58 genes, q = 3.29 × 10−4) and
phosphatase (GO:0016310, 31 genes, q = 9.36 × 10−4)
activity (Figure 1b-e, Table S5-8 in Additional files 5, 6,
7 and 8). Interestingly, of the significantly enriched GO
categories, one was related to the Wnt receptor signal-
ing pathway (GO:0016055, 23 genes, q = 4.15 × 10−4)
(Figure 1f, Table S9 in Additional file 9). A similar re-
sult was obtained by pathway analysis, which identified
‘Wnt signaling pathway’ with great significance of
differential regulation between two groups (q = 2.78 ×
10−10). The five major GO terms are summarized in
Table 1.

Corresponding interaction networks among differentially
expressed genes in the five major Gene Ontology
categories
To identify more significant DE genes, the network in-
teractions among DE genes implicated in the five major
GO categories were investigated according to HPRD and
MINT databases. As shown in Table S10 (Additional file
10), the DE gene modules, such as PIK3R1, PAK1, CBL,



Figure 1 Cluster diagram of all differentially expressed genes and those classified according to Gene Ontology analysis. Genes are
organized by hierarchical clustering based on overall similarity in expression patterns. Red represents relative expression greater than the median
expression level across all samples, and green represents an expression level lower than the median. Black indicates intermediate expression.
(a) Visualization of 1,495 transcripts able to distinguish active rheumatoid arthritis (RA) from healthy controls in CD4 T cells. (b) Visualization of 122
transcripts able to distinguish active RA from controls in immune response. (c) Visualization of 40 transcripts able to distinguish active RA from controls
in T-cell response. (d) Visualization of 111 transcripts able to distinguish active RA from controls in apoptosis process. (e) Visualization of 89 transcripts
able to distinguish active RA from controls in regulation of kinase and phosphatase activity. (f) Visualization of 23 transcripts able to distinguish active
RA from controls in regulation of Wnt receptor signaling.
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PIK3CA, SYK, and ZAP70, were highly relevant to
TCR signaling and JAK-STAT signaling. A cluster of
genes involved in Wnt signaling (for example, TLE1,
CSNK2A1, and MAPK8) were also present in this
network. Additionally, several gene modules with pos-
sible functional involvement in RA pathogenesis, such
as ZAP70, HSP90AA1, HSP90AB1, and VIM, were
depicted in the network.



Table 1 Gene Ontology in differentially expressed genes

GO_Id GO_term Count Q value

GO:0006955 Immune response 122 5.99 × 10−8

GO:0002819 Regulation of adaptive immune response 23 9.37 × 10−4

GO:0002678 Positive regulation of chronic inflammatory response 12 1.38 × 10−3

GO:0060333 Interferon-gamma-mediated signaling pathway 9 6.02 × 10−3

GO:0034097 Response to cytokine stimulus 17 8.61 × 10−3

GO:0006915 Apoptosis 111 1.73 × 10−5

GO:0008629 Induction of apoptosis by intracellular signals 17 4.15 × 10−4

GO:0006921 Cellular component involved in apoptosis 29 2.38 × 10−3

GO:0033032 Regulation of myeloid cell apoptosis 22 7.18 × 10−3

GO:0043654 Recognition of apoptotic cell 7 8.42 × 10−2

GO:0050852 T-cell receptor signaling pathway 40 2.98 × 10−6

GO:0007243 Intracellular protein kinase cascade 58 3.29 × 10−4

GO:0016310 Phosphorylation 31 9.36 × 10−4

GO:0016055 Wnt receptor signaling pathway 23 4.15 × 10−4
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Corresponding signaling pathways of differentially
expressed genes
The possible signaling pathways implicated in regula-
tion of CD4 T cells in active RA were investigated ac-
cording to the KEGG database. The high-ranked
pathways are displayed in Table 2. The DE genes were
highly relevant to T-cell response, such as the ErbB sig-
naling pathway (PEA = 28.122, q = 4.88 × 10−14), the
TCR signaling pathway (PEA = 24.542, q = 2.69 × 10−14),
the mammalian target of rapamycin (mTOR) signaling
pathway (PEA = 23.525, q = 1.71 × 10−7), and the TGF-β
signaling pathway (PEA = 23.435, q = 2.63 × 10−11). In
addition, several canonical pathways were depicted, such as
apoptosis (PEA = 22.909, q = 3.01 × 10−11), the chemokine
Table 2 Identification of signaling pathways based on Kyoto
expressed genes

Path_Id Path_name Path_diff

4012 ErbB signaling pathway 12

4660 T-cell receptor signaling pathway 13

4150 mTOR signaling pathway 6

4350 TGF-β signaling pathway 10

4210 Apoptosis 10

4062 Chemokine signaling pathway 18

4010 MAPK signaling pathway 23

4630 Jak-STAT signaling pathway 12

4310 Wnt signaling pathway 11

4620 Toll-like receptor signaling pathway 5

4060 Cytokine-cytokine receptor interaction 12

5322 Systemic lupus erythematosus 5
signaling pathway (PEA = 19.114, q = 1.52 × 10−17), the
MAPK signaling pathway (PEA = 17.304, P = 2.14 × 10−21),
and the Jak-STAT signaling pathway (PEA = 15.785,
q = 2.44 × 10−11). Interestingly, the Wnt signaling
pathway (PEA = 14.755, q = 2.78 × 10−10) and the sys-
temic lupus erythematosus (SLE) signaling pathway
(PEA = 7.282, q = 3.47 × 10−4) were also depicted in this
analysis. Furthermore, by pathway network analysis, sev-
eral genes, such as MAPK1, PIK3CA, PIK3R1, KRAS, and
PRKCB, were centered in the network (Figure 2). The
majority of these genes overlapped with the ones in the
interaction network analysis (Table S11, Additional file 11).
Finally, we performed gene module analysis to combine

the results from GO, gene-gene interaction, and pathway
Encyclopedia of Genes and Genomes in differentially

genes Path_genes Enrichment Q value

87 28.122 4.88 × 10−14

108 24.542 2.69 × 10−14

52 23.525 1.71 × 10−7

87 23.435 2.63 × 10−11

89 22.909 3.01 × 10−11

192 19.114 1.52 × 10−17

271 17.304 2.14 × 10−21

155 15.785 2.44 × 10−11

152 14.755 2.78 × 10−10

101 10.093 9.23 × 10−5

263 9.303 6.59 × 10−9

140 7.282 3.47 × 10−4



Figure 2 Network representations of the differentially expressed genes presented in pathway analysis. Genes are represented as
individual nodes. The biologic relation between two nodes is represented as an edge (line). The node size indicates the importance of a gene
module in relation to other modules. The color of the node indicates upregulated (red) or downregulated (green) genes.
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analysis and found that a substantial number of genes in
the three different analyses overlapped. In total, 23 genes
were selected for further validation using a cut-off q value
of 0.05 and an exclusion of being extensively studied in
RA according to publications. These genes are character-
ized in Table 3.
Validation analysis confirmed that STAT3 profiling and
Wnt signaling are the prominent active rheumatoid
arthritis ‘signature’
qPCR was used to validate the selected 23 candidate
genes. As shown in Figure 3, a robust differential expres-
sion was confirmed for eight of the 23 genes. One gene,
PIK3CA, exhibited similar expression patterns but did
not reach the statistical significance (P = 0.055). Interest-
ingly, four out of the nine genes (SOCS3, CBL, IFNAR1,
and PIK3CA) were noted to have STAT3 signaling in-
volvement, and three genes (CBL, KLF9, and CSNK2A1)
were involved in Wnt signaling pathway, based on the
KEGG database and recent publications [25,26]. Add-
itionally, several zinc finger transcription factors (ZEB1,
ZNF292, and ZNF644) were confirmed.
Discussion
RA is a chronic autoimmune disorder in which T cells
play a pivotal role in the initiation and progression of
the disease. Of these, CD4 T cells are key players in RA
pathogenesis. A previous microarray study was con-
ducted on CD4 T cells during the early phase of RA in a
case-only design [10]. However, to date, no studies have
focused on the expression profile of CD4 T cells between
patients with RA and healthy individuals. Herein, we
performed a unique CD4 T-cell transcriptome analysis
in a case–control cohort. For the first time, we showed
that CD4 T cells from patients with active RA and those
from healthy controls had distinct gene regulations.
Our data indicate that the DE genes between two

groups mainly involved in regulation of immune re-
sponses, especially T-cell response, and other cellular
processes such as kinase and phosphatase regulator ac-
tivity. There were also a significant number of genes in-
volved in regulation of apoptosis. Apoptosis is a key
process regulating immune homeostasis. Abnormalities
in T-cell apoptosis resulted in a wide range of pathologic
conditions. For instance, infection of CD4 T cells with
HIV results in depletion of these lymphocytes because of



Table 3 Gene modules resulting from the combination of
Gene Ontology, gene-gene interaction, and pathway
analysis

Probe set ID Gene symbol Fold change Q value

229010_at CBL 2.22 0

212435_at TRIM33 0.61 0

226294_x_at FAM91A1 0.33 0

227817_at PRKCB 2.26 6.101 × 10−16

227073_at MAP3K2 0.50 1.296 × 10−14

214578_s_at ROCK1 2.99 4.303 × 10−12

212073_at CSNK2A1 0.32 5.813 × 10−8

1555613_a_at ZAP70 0.59 6.82 × 10−6

223300_s_at CCDC82 0.51 6.82 × 10−6

212366_at ZNF292 0.59 2.31 × 10−5

214917_at PRKAA1 0.57 7.15 × 10−5

212249_at PIK3R1 0.58 0.000141

231777_at CSNK2B 3.90 0.00076

37152_at PPARD 0.44 0.000927

231798_at NOG 1.62 0.00133

225661_at IFNAR1 2.16 0.002

235980_at PIK3CA 1.70 0.00264

206359_at SOCS3 0.62 0.00336

226660_at RPS6KB1 0.61 0.0101

212764_at ZEB1 1.83 0.0125

1553725_s_at ZNF644 0.59 0.0187

203542_s_at KLF9 0.61 0.0238

211930_at HNRNPA3 0.64 0.0344
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programmed cell death [27]. In RA, one of the principal
characteristics is ‘apoptosis resistance’ in the synovial tis-
sues [28]. The synovial fluid T cells from the patients
with RA were resistant to FasL-induced apoptosis [29].
Furthermore, accumulated evidence suggested that the
Wnt signaling pathway plays an important role in FLS
activation, bone resorption, and joint destruction in RA
pathogenesis [30-34]. In the context of Wnt signaling in
T-cell activation, it has been reported that activation of
Wnt signaling in CD4+CD25+ regulatory T (Treg) cells
increased the survival of Treg cells and induced an aner-
gic phenotype in CD4+CD25− effector T cells [35,36].
However, so far, few studies have focused on the involve-
ment of Wnt signaling in T cells in RA development.
Lee et al. [37] reported that sFRP1 (secreted frizzled-
related protein 1), an inhibitor of Wnt signaling, was
correlated with interleukin-17 (IL-17) levels in RA syn-
ovial fluid. In vitro, overexpression of sFRP1 induced a
significant increase of T helper 17 (Th17) cells. In the
present study, we observed that one of the significant
GO categories was Wnt receptor signaling. Pathway ana-
lysis also indicates that Wnt signaling was one of the
most significant pathways in the regulation of RA activ-
ity. Our findings support the notion that the Wnt signal-
ing pathway may participate in the impaired T-cell
homeostasis in RA. Notably, the genes involved in the
SLE signaling pathway were also enriched in the present
study, indicating that some of the genes are commonly
shared by multiple autoimmune diseases, such as RA
and SLE.
To reduce the complexity of the whole-genome ex-

pression data and to determine the most significant DE
genes, we performed the gene module analysis to com-
bine the results from GO, gene-gene interaction, and
pathway analysis. In total, 23 genes were selected for fur-
ther validation using a cut-off q value of 0.05 and an ex-
clusion of being extensively studied in RA according to
publications. Nine of those genes were confirmed in the
validation cohort. Given the prominent importance of
the STAT3 signaling pathway in many cellular functions,
including T-cell differentiation [38], it is notable that
four of the nine DE genes (SOCS3, CBL, IFNAR1, and
PIK3CA) were involved in STAT3 signaling. SOCS3 is a
key negative regulator that inhibits the STAT3 signaling
pathway and is a major negative regulator of CD4 T-cell
activation [39]. Huang et al. [40] reported that the ex-
pression of SOCS3 was elevated in patients with hepa-
titis C virus. The activation of SOCS3 contributes to the
defective hepatic response to IFNγ. By contrast, reduced
expression of SOCS3 has been observed in various hu-
man inflammatory diseases. Mice lacking Socs3 devel-
oped an exacerbated inflammatory arthritis and were
characterized by increased numbers of Th17 cells [41].
In the present work, SOCS3 expression was downregu-
lated in RA CD4 T cells. The finding was consistent
with a previous observation of the involvement of
STAT3 signaling in patients with early arthritis [10].
Another interesting observation is that three validated
transcripts (CBL, KLF9, and CSNK2A1) were domin-
antly related to Wnt signaling pathways. CBL is origin-
ally identified as a RING finger ubiquitin E3 ligase and
recently has emerged as a key regulator of Wnt signal-
ing by targeting the active β-catenin [25]. KLF9 is a
transcriptional regulator of cell proliferation, adhesion,
and differentiation and recently was shown to be a
negative regulator of putative Wnt inhibitor DKK1 pro-
moter activity in human stromal cells [26]. Further-
more, KLF9 was shown to function as a suppressor of
tumor-initiating stem cells by directly suppressing
Notch1 signaling [42]. As compelling evidence supports
Notch involvement in CD4 T-cell differentiation
[43-46], we speculate that KLF9 may function as a sup-
pressor of CD4 T cells via the Notch signaling pathway
and play a role in RA pathogenesis. Further functional
study of the DE gene is needed to fully understand
its contribution to RA. In addition, three zinc finger



Figure 3 Microarray results of gene expression profiles in CD4 T cells were validated by quantitative real-time polymerase chain
reaction. Independent-samples t tests were performed to compare rheumatoid arthritis (RA) patients (n = 40) with healthy individuals (n = 35).
Data were presented as mean ± standard error of the mean (SEM). P value of less than 0.05 was considered statistically significant. Con, control.
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transcription factors (ZEB1, ZNF292, and ZNF644)
were confirmed. Zinc finger proteins are the most abun-
dant proteins in eukaryotes and play an important role
in various cellular processes. Their functions are ex-
tremely diverse, including DNA recognition, apoptosis
regulation, and transcriptional activation. Wang et al.
[47] reported that ZEB1 acts as a specific repressor of
IL-2 gene transcription and functions. Overexpression
of ZEB1 can repress IL-2 promoter activity and en-
dogenous IL-2 production in T cells. However, little is
known about the role of the three zinc finger transcrip-
tion factors in autoimmune diseases. Our results war-
rant the functional characterization of these zinc finger
molecules to fully understand their contribution to RA
pathogenesis.

Conclusions
We report here the first case–control study of CD4 T-
cell transcriptome profile in RA. Our data provide evi-
dence that CD4 T cells from patients with RA had
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abnormal functional networks in the STAT3 signaling
pathway and Wnt signaling. Our results also suggest that
the aberrant expression of several zinc finger transcrip-
tion factors (ZEB1, ZNF292, and ZNF644) may be po-
tential pathogenic factors for RA.
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