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Abstract

The development of biomarkers for autoimmune
diseases has been hampered by a lack of understanding
of disease etiopathogenesis and of the mechanisms
underlying the induction and maintenance of
inflamnmation, which involves complex activation
dynamics of diverse cell types. The heterogeneous
nature and suboptimal clinical response to treatment
observed in many autoimmune syndromes highlight
the need to develop improved strategies to predict
patient outcome to therapy and personalize patient
care. Mass cytometry, using CyTOF®, is an advanced
technology that facilitates multiparametric, phenotypic
analysis of immune cells at single-cell resolution. In this
review, we outline the capabilities of mass cytometry
and illustrate the potential of this technology to
enhance the discovery of cellular biomarkers for
rheumatoid arthritis, a prototypical autoimmune disease.

\ J

Introduction

Rheumatoid arthritis pathogenesis and patient response
to treatment are heterogeneous

Rheumatoid arthritis (RA) is a chronic, systemic, inflam-
matory autoimmune disorder that attacks diarthrodial
joints leading to cartilage destruction and bone erosion
[1]. Similar to other rheumatic diseases, the pathogenesis
of RA is multifactorial, multi-staged and characterized
by heterogeneous disease manifestations and variations
in patient response to therapy [2,3]. The etiopatho-
genesis of RA is unknown, but numerous factors, such
as gene polymorphisms, physiology [4,5], environment,
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lifestyle [6], the microbiome [7] and gender [8], are im-
plicated in the susceptibility, onset, progress and prog-
nosis of disease. Early diagnosis and treatment improve
clinical outcome and may prevent irreversible damage to
joints [9]; however, diagnosis tends to occur later in dis-
ease and current diagnostics lack sensitivity and specifi-
city [10]. Treatment options for RA patients remain far
from optimal as the prescription of ‘biologics’ or small
molecules is not guided by molecular diagnosis. Thus,
therapies are not tailored to suit the immune status of
individual patients. Response rates to treatments range
from 60 to 70% and are associated with side effects,
while suboptimal treatment regimens and missed oppor-
tunities for early treatment may exacerbate symptoms.
Most, if not all, autoimmune diseases share a similar de-
gree of heterogeneity in pathogenesis and patient out-
come. For many of these diseases, such as systemic
lupus erythematosus and primary Sjogren’s syndrome,
few approved therapies are currently available.

Few available biomarkers for rheumatoid arthritis

Several advances have been made in diagnostic and
prognostic biomarker research for RA [9], particularly in
serological (autoantibody) diagnostics and imaging of in-
flammation [11]. Serum autoantibodies and cytokines
can be used to identify asymptomatic individuals prior
to the manifestation of clinical disease [12-14], while
predictive markers of severe disease include anti-cyclic
citrullinated peptide (CCP), serum rheumatoid factor, el-
evated levels of acute phase reactants in the presence of
cartilage destruction and bone erosion [15]. Autoanti-
body profiling may guide early intervention; for example,
methotrexate treatment of RA patients decreased the in-
cidence of progression from undifferentiated arthritis to
clinical RA in anti-CCP-positive individuals [16]. Anti-
CCP antibodies have been implicated as a potential
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biomarker of the response to B-cell depletion therapy in
RA patients. miR-146a expression is also upregulated in
interleukin (IL)-17-expressing T cells, B cells and ma-
crophages in the synovium and in peripheral blood
mononuclear cells of individuals with RA [17]. Cellular
biomarkers for rheumatic diseases include activated
monocytes in RA [18,19]; however, the sensitivity and
specificity of cellular biomarkers in the clinic have yet to
be determined. For a comprehensive summary of the
status of biomarkers available for RA the reader is re-
ferred to several published reviews on this topic [20,21].
The dearth of validated biomarkers for RA and other
autoimmune diseases warrants the use of more system-
atic and comprehensive biomarker discovery approaches.

Rheumatoid arthritis pathogenesis is mediated by
immune cell infiltrates

Disease severity, progression and response to therapy in
RA patients are mediated by the activation of inflamma-
tory cells in lymphoid tissues and their infiltration into
joints. In RA patients, the synovium is infiltrated with acti-
vated T and B lymphocytes, macrophages, mast cells and
mononuclear cells that differentiate into multinucleated
osteoclasts. This immune infiltrate is accompanied by
angiogenesis [22,23], the generation of inflammatory cyto-
kines, including IL-1 and tumor necrosis factor (TNF)-q,
an increase in reactive oxygen and nitrogen species in the
bone and synovium, activation of chondrocyte catabolic
pathways, matrix destruction, and inhibition of new cartil-
age formation [1,24]. Polymorphonuclear leukocytes in
the synovial fluid also contribute to this process [25]. Cy-
tokines such as TNF-a, IL-1 and IL-17 regulate expression
of receptor activator of nuclear factor kappa-B ligand,
which, when bound to its cognate receptor, receptor ac-
tivator of nuclear factor kappa-B, on pre-osteoclasts,
stimulates osteoclast differentiation and activation. The
prolonged activation of osteoclasts can lead to bone de-
struction in RA patients [26,27]. Moreover, the sustained
overproduction of proinflammatory cytokines is a key
mechanism contributing to chronic inflammation and
progression in RA. This is underscored by the success of
neutralizing monoclonal antibodies against these cyto-
kines, or their receptors, such as those that block TNF or
IL-6, for effective treatment of RA patients.

RA pathogenesis is associated with T cell activation
and proliferation, leading to the secretion of cytokines
such as IL-2, interferon-y, TNF-a and IL-4 [1,28-31],
which lead to a stimulation cascade in which other cell
types, such as B cells, are activated [32]. B cells are
found in the synovium and can differentiate into
antibody-secreting plasma cells, and produce a number
of cytokines such as IL-10, IL-6 and IL-35 [33]. B cells
also interact directly with other cells, such as T cells,
and serve as antigen-presenting cells to T cells. B cell
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aggregates, and their associated cytokines and che-
mokines, may contribute to the formation of tertiary
lymphoid-like structures [34]. The role of B cells in RA
pathogenesis is demonstrated in the efficacy of rituxi-
mab, which eliminates circulating CD20" B cells but ex-
erts less of an impact on plasmablasts [35] and serum
autoantibodies, with some variation according to the
specificity [36,37].

Macrophages are key effectors in RA pathogenesis
through the production of proinflammatory cytokines
such as TNF-q, IL-1, IL-6, IL-8 and granulocyte macro-
phage colony-stimulating factor (GM-CSF) [38-40] that
stimulate cells in the local microenvironment, including fi-
broblasts and osteoclasts, as well as in distant sites in the
body. Macrophages secrete cytokines that stimulate he-
patocytes to produce acute phase response proteins, such
as C-reactive protein. In addition, macrophages secrete
prostaglandins, leukotrienes, nitric oxide, and other pro-
inflammatory mediators with local and systemic effects. A
decrease in the number of macrophages in the sublining
of synovial tissue obtained by needle biopsy may serve as
an early biomarker of therapeutic efficacy in RA patients
[41]. Synovial fibroblasts secrete inflammatory cytokines
such as IL-6, IL-8 and GM-CSF, and produce proteases
and collagenases [30,42]. Activated neutrophils in the syn-
ovial fluid promote joint damage by releasing oxygen-
derived free radicals that depolymerize hyaluronic acid
and inactivate endogenous inhibitors of proteases [43,44].

In summary, distinct lymphoid and myeloid immune
cell types and their functions contribute to RA patho-
genesis. Technologies that probe the phenotypic and
functional status of a broad range of cell types may im-
prove cellular biomarker discovery for RA.

The CyTOF platform

Mass cytometry, using the CyTOF® platform (Fluidigm,
South San Francisco, CA, USA), relies on the use of anti-
bodies tagged with stable metal isotopes that are used to
stain cells, which are in turn analyzed by a time of flight
(TOF) mass spectrometer [45,46]. The mass detection
range of CyTOF* covers close to 100 mass detection chan-
nels (CyTOF® instrument release 1), and offers an increase
in the number of measurable parameters per cell, while
obviating the need to perform compensation across chan-
nels. Since most stable metal isotopes are absent or
present in low abundance in biological samples, the back-
ground signal associated with this approach is minimal.

In a typical CyTOF® experiment, panels of specific
metal-tagged antibodies measuring both surface and intra-
cellular markers are used to stain cells in a workflow simi-
lar to that of fluorescence-based flow cytometry (detailed
protocol available at [47]). Cell viability may be assessed
using rhodium- or iridium-conjugated DNA intercalators,
amine-reactive chelators (DOTA-NHS-ester) or cisplatin
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[48,49]. Cell suspensions are nebulized into single cell-
containing droplets, dried in a heated spray chamber and
introduced into an inductively coupled argon plasma
where they are atomized and ionized. The resulting ion
clouds derived from a single cell are analyzed by a TOF
mass analyzer. The signal intensity read out for each iso-
tope indicates a particular antibody, which in turn can be
correlated to levels of analyte molecules associated with
an individual cell [48]. Data from the CyTOF® instrument
are exported in the FCS file format and can be analyzed
with conventional flow cytometry software, such as Flow]Jo
(TreeStar Inc., Ashland, OR, USA), FCS Express (De Novo
software, Glendale, CA, USA) or using web-based data
analysis tools such as Cytobank [50].

A typical mass cytometry experiment contains up to 40
measured parameters per cell, yielding a high-dimensional
and quantitative analysis of complex cellular networks,
and may span multiple patient groups, conditions and
time points. The organization, analysis and visualization of
mass cytometry datasets are therefore both a challenge
and an active area of development. Manual gating is used
to verify reliable reporting of markers and to analyze bulk
cellular subsets. However, the analysis of multiparametric
data using biaxial plots and histograms is tedious, subject-
ive and often fails to reveal unexpected cell populations
'hidden' in high-dimensional data (such as cells expressing
unusual marker combinations outside of expected norms).
A number of algorithms have been developed or applied
to the mass cytometry platform to analyze these complex
datasets [51-53]. Here we provide brief descriptions of
some of these analytic tools.

SPADE

SPADE (spanning-tree progression analysis of density nor-
malized events) was one of the first algorithms developed
to analysis mass cytometry data [46,54,55]. In SPADE,
density-dependent downsampling and hierarchical, agglom-
erative clustering of cells are performed. Similar cells clus-
ter together and are arranged into a minimum-spanning
tree for two-dimensional visualization. Thus, SPADE pro-
vides an instant overview of relative marker expression
levels across all cell populations captured by the clustering.
The user can switch between markers and different sam-
ples analyzed. The advantages of SPADE are that it pre-
serves rare cell types, it can be used to explore the
expression of various parameters between clusters and it
offers the ability to compare clusters across samples. A
drawback of SPADE (and other related algorithms) is the
lack of reproducibility since data are randomly sampled
from the entire dataset.

CITRUS
At present, CITRUS (cluster identification, characterization
and regression) is perhaps the most important tool to mine
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data for biomarker discovery initiatives. Similar to SPADE,
CITRUS identifies clusters of phenotypically similar cells
in an unsupervised manner and generates maps of cell
subsets based on hierarchical clustering [56]. Different stat-
istical tools are implemented in CITRUS, which permit the
generation of predictive models based on input data and
user-defined stratification criteria, such as patient clinical
outcome or disease activities. The cell cluster(s), which are
used to form the predictive model, can be traced, their
phenotype can be determined and cells of a particular clus-
ter can be further analyzed. The advantage of CITRUS is
that it provides a predictive model that can be used to
analyze or test newly acquired samples.

Principal component analysis

Principal component analysis (PCA) is an established
statistical tool that has been applied to mass cytometry
datasets [57,58]. PCA calculates linear vectors through
all measured parameters and identifies parameter combi-
nations that capture the most variance in the data as
well as relationships between samples. This approach de-
rives summary variables, called principal components,
that capture as much variation as possible in as few
terms as possible to facilitate dimensionality reduction
and data visualization. Its limitations are in its inability
to capture non-linear relationships and to fully separate
many distinct cell populations.

ViSNE and ACCENSE

Two t-distributed stochastic neighbor embedding (tSNE)-
based algorithms are available to visualize high-dimensional
single-cell data; namely, viSNE and ACCENSE [59,60].
tSNE is a non-linear dimensionality reduction approach to
visualize CyTOF data. viSNE and ACCENSE generate
two-dimensional maps, similar to a biaxial scatter plot,
that reflect the proximity of cells to one another in high-
dimensional space.

Utility of mass cytometry for biomarker research

In combination with data analysis tools and algorithms,
mass cytometry is expected to facilitate the discovery of
cellular biomarkers. Based on CyTOF® data, immune cell
populations can be quantified at single-cell resolution
according to their phenotype and can be defined using
over 30 parameters. Antibodies that detect the phos-
phorylated states of proteins allow for the readout of
functional parameters after in vitro activation or 'treat-
ment' with drugs. Bodenmiller and colleagues [61] pro-
vide an example of how a combination of surface
markers and phosphoepitope-specific markers, in con-
junction with cell barcoding, can be applied to generate
more than 18,000 data points from a single blood sam-
ple. Another example of the utility of this platform for
biomarker identification is illustrated by Bendall and
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colleagues [46] in a study in which CyTOF*® was used to
immunophenotype healthy human hematopoiesis and to
identify differential signaling in distinct cell populations
in response to cytokines and kinase inhibitors. Signaling
phenotypes among specific cell populations induced by
clinically meaningful physiologic stimuli were analyzed,
and signaling readouts were localized to pathway and
cellular subsets. This approach yielded a system-wide
view of signaling behaviors in response to drug action
and can be adapted to virtually any disease.

Some limitations to the mass cytometry platform prevent
its wide-scale adoption. These include the cost of equip-
ment and instrument maintenance. Moreover, light
scatter-based measures of cell size and granularity (forward
and side scatter) used for exclusion of cellular debris, cell
aggregates and discriminating lymphocytes from granulo-
cytes in flow cytometry, are not currently available. In
addition, metal reporters do not reach the sensitivity
achieved by phycoerythrin or allophycocyanin conjugates
used in conventional flow cytometry [52]. Sample collec-
tion speed is slower than in conventional flow cytometry
(roughly 500 events per second). Furthermore, roughly two
thirds of cells ejected from the mass cytometer nebulizer
do not reach the detector as ion clouds [53]. Finally, since
the cells introduced into the CyTOF°® instrument are
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atomized and ionized, recovery of cells for downstream
functional or transcriptional analysis is currently not
possible.

Mass cytometry analysis of solid tissues

Interactions between cells during normal and pathogenic
immune responses largely occur in solid tissues rather
than in the blood. However, tissue-based biomarkers are
more difficult to establish and to transfer into the clinic
as sampling requires significant intervention. Analysis of
the cellular composition of lymphoid organs and sites of
autoimmune attack will aid in understanding the patho-
genesis of human autoimmune diseases. The principle of
mass cytometry has been applied to immunohistochem-
istry and imaging analysis [62,63] to facilitate high-
dimensional analysis of tissue specimens. Secondary ion
mass spectrometry has been used to image antibodies
tagged with isotopically purified elemental metal re-
porters. This multiplexed ion beam imaging (MIBI)
technology is capable of analyzing up to 100 targets sim-
ultaneously and can be applied to the analysis of stand-
ard formalin-fixed, paraffin-embedded tissue sections.
MIBI has been used to image breast tumor tissue [62]
and may be applied to solid tissues important in auto-
immune pathogenesis, such as the bone marrow, spleen,
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Figure 1 Mass cytometry identification of cell activation and signaling signatures in a rheumatoid arthritis patient treated with tumor necrosis factor-a
inhibitor. Whole blood was obtained from a rheumatoid arthritis (RA) patient with a responsive clinical outcome (American College of Rheumatology
criteria ACR70) prior to and 1 month following the first application of tumor necrosis factor (TNF)-a inhibitor (TNFi) therapy. A healthy donor was used
as a control. Whole blood cells were stimulated in vitro with 100 ng/ml TNF-a for 15 minutes at 37°C. Unstimulated cells from the same patient were
used as a control. Cells were stained with a panel of 19 metal-tagged antibodies specific to cell surface and intracellular molecules and analyzed by
CyTOF. SPADE (spanning-tree progression analysis of density normalized events) was used to cluster cells based on expression of cell surface lineage
markers. SPADE analyses shows the level of p38 phosphorylation across annotated cell subsets in unstimulated (top panel) and in vitro TNF-a stimulated
(bottom panel) cells in healthy donor (left), and RA patient prior to (middle) and 1 month following TNFi treatment (right). Each circular node represents
a phenotypically similar population of white blood cells, with the relationship between nodes reflecting the most similar phenotypes to adjacent nodes.
The node size represents frequency of that cell population and the node color displays the signal intensity of phosphorylated p38 expression according
to the scale. SPADE trees were generated in Cytobank [50]. NK, natural killer; rTNF, recombinant TNF.
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Figure 2 Histogram representation of the levels of phosphorylated p38, NF-kB and Erk1/2. (A-C) Levels of phosphorylated p38 (A), NF-kB (B) and
Erk1/2 (C) responding to in vitro stimulation with recombinant tumor necrosis factor (TNF)-a in healthy donors (top panel), and rheumatoid
arthritis patients prior to (middle panel) and 1 month following TNF-a inhibitor treatment (bottom panel). Lighter colored histograms indicate
higher median signal intensity. Within each box, upper histograms represent the stimulated sample; lower histograms represent the unstimulated
control sample. All plots were generated in Cytobank [50]. NF, nuclear factor; NK, natural killer.

lymph nodes, chronically inflamed tissues such as the in-
flamed synovium, central nervous system lesions in mul-
tiple sclerosis, glandular tissues in Sjogren’s syndrome,
inflammatory lesions in autoimmune vasculitis or skin
and kidneys in systemic lupus erythematosus.

Altered signaling response to exogenous TNF-a stimulation
after TNF inhibitor treatment measured in a whole blood
assay

Up to 40% of individuals with RA demonstrate an inad-
equate response to anti-TNF-a therapy [64-66]. An even
larger proportion of RA patients lose responses over
time due to drug resistance or adverse events. Predictive
biomarkers may enable identification of non-responders
before TNF-a inhibitor (TNFi) therapy is initiated, thereby
lowering costs and preventing unwanted complications as-
sociated with a therapy that would ultimately not prove
effective.

In a preliminary experiment, we utilized the CyTOF*
platform to analyze the patient immune response to
TNEF-a prior to and after TNFi treatment. To under-
stand the mechanism of action of TNF blockade (TNFi),
we used CyTOF to analyze the key pathways activated in
response to TNF signaling and how the activation of
these pathways are modulated in response to successful
TNFi therapy in different cell subsets in whole blood,
prior to and following TNFi treatment. Whole blood
was obtained from a healthy donor (untreated) and an
RA patient prior to initiation of TNFi treatment. Both
subjects were matched in terms of age and sex. The RA
patient was receiving steroids and methotrexate at the
time of enrollment into the study and was initiated on
TNFi therapy (Humira). One month following the first
application of therapy, blood was obtained from the pa-
tient. The patient’s overall clinical outcome, measured at
3 months after the first TNFi application, was responsive
to treatment based on the American College of Rheuma-
tology criteria (ACR70 responder). Peripheral whole
blood from the healthy donor and the RA patient (pre-
and post-TNFi therapy) was stimulated with recombinant
TNF (rTNF; 100 ng/ml) for 15 minutes at 37°C. Unstimu-
lated cells from the same RA patient were used as a con-
trol. The cells were stained using a panel of metal-tagged
antibodies specific to 19 cell surface markers as well as
phosphorylated states of intracellular signaling molecules
and then analyzed by CyTOEF. SPADE was used to cluster
phenotypically similar cells based on the expression of 19

cell surface lineage markers. Major immune cell subsets
(granulocytes, monocytes, B cells, natural killer cells, CD8
T cells, naive CD4 T cells and memory CD4 T cells) were
annotated and displayed based on the expression of
lineage markers (Figure 1). The expression of phosphory-
lated p38 was analyzed among clusters within annotated
immune cell subsets in unstimulated and in TNF-a-
stimulated cells in the healthy donor and in the RA patient
prior to and 1 month following the first TNFi application.

A higher basal activation of the TNF receptor (TNFR)
pathway(s), reflected by phosphorylation of p38, was ob-
served in the RA patient. Signaling responses to exogen-
ous r'TNF were greater in the RA patient than in the
normal donor prior to therapy (Figure 1). After a month
of TNFi therapy, both the basal activation of TNFR
pathways and the response to exogenous rINF in the
patient dropped to levels that were comparable to those
observed in the healthy control. In addition, analysis of
cell cluster size in the unstimulated samples revealed
that the frequency of granulocytes and CD8 T cells was
higher in the RA patient prior to TNFi therapy, com-
pared with the healthy donor. One month following the
first application of TNFi therapy in the RA patient, the
size of cell clusters decreased in the CD8 T-cell com-
partment but not in the granulocytes in the RA patient.
Thus, SPADE was able to reveal quantitative as well as
qualitative changes induced by TNFi therapy in this
patient.

In addition to phosphorylation of p38, the activation sta-
tus of the TNFR pathway was also assessed by probing for
phosphorylated NF-kB and Erk1/2 levels (Figure 2). Levels
of phosphorylated NF-kB were moderately increased by
stimulation with rTNF and were more elevated in the pa-
tient versus the control sample in some cell subsets (nat-
ural killer cells and CD4 T cells) but not in others
(Figure 2B), while phosphorylated Erk1/2 levels (Figure 2C)
recapitulated changes seen in phosphorylated p38
(Figure 2A). The overall response to TNF-a in the healthy
donor was low but evident, characterized by a detectable
phosphorylated p38 response particularly in the granulo-
cyte compartment. A smaller response through MAP-
KAP2 was also detected, whereas Erk showed a low but
detectable response to TNF-a in healthy donors.

As expected, our analysis revealed that all three known
TNF-induced signaling molecules (p38, NF-kB, Erk1/2)
are phosphorylated upon rTNF stimulation in all cell
types to varying degrees (Figure 2) in a healthy control
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and an RA patient. The magnitude to which these signal
transducers phosphorylated was enhanced in the RA pa-
tient prior to TNFi therapy compared with the healthy
control or the patient post-TNFi treatment. The level of
activation of all three transducers returned to levels
comparable to those observed in the healthy control
after 1 month of TNFi therapy. TNF-induced p38 phos-
phorylation in the granulocyte subpopulations in the
whole blood of the RA patient was elevated prior to
TNFi treatment, and this level was comparable to that
observed in the healthy donor by 1 month post-TNFi
therapy (Figure 1).

Several explanations may account for these preliminary
observations. The attenuated signal post-TNFi may have
been due to in vitro neutralization of rTNF by the TNFi
drug present in the whole blood. The impact of the cyto-
kine environment in the blood may co-determine the
stimulation outcome in RA prior to treatment compared
with the control, whereby the decrease in inflammation
due to the effect of TNFi treatment reduced the levels of
TNF and other inflammatory cytokines that could account
for the decreased levels of p38, NF-kB and Erk1/2 phos-
phorylation after TNFi treatment in the RA patient. Lastly,
phosphorylation signals for p38, NF-kB and Erk1/2 may
peak similarly but at different time points; this possibility
is not accounted for in our preliminary experiment (RA
pre-treatment versus control). Work is underway to test
these different hypotheses and to extend these initial ana-
lyses. These preliminary data illustrate the potential of
mass cytometry to identify a previously unappreciated cel-
lular subset, such as granulocytes, that displays functional
differences between RA patients compared with healthy
donors. In future experiments, this analysis will be ex-
tended to additional subjects and staining for TNFR1/2
will be included to decipher which cell type has the great-
est response to TNF-a. Our ongoing efforts include the
application of CyTOF° to identify cell activation or signal-
ing patterns that may be predictive of clinical outcome in
response to TNFi treatment in RA patients.

Conclusion

Due to the high level of disease heterogeneity in RA and
the benefit to be gained from early treatment of patients,
the identification of robust biomarkers for diagnosis,
prognosis and prediction of successful therapies is para-
mount. Advances in immune phenotyping technologies,
such as mass cytometry, have introduced an unprece-
dented degree of cell subset resolution that now enables
comprehensive profiling of the phenotypic and func-
tional details of patient immune systems. The CyTOF
platform is expected to enhance and accelerate cellular
and functional biomarker discovery for RA and other
autoimmune diseases.
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