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Introduction: Esophageal involvement in patients with systemic sclerosis (SSc) is common, but tissue-specific
pathological mechanisms are poorly understood. There are no animal scleroderma esophagus models and

esophageal smooth muscle cells dedifferentiate in culture prohibiting in vitro studies. Esophageal fibrosis is thought to
disrupt smooth muscle function and lead to esophageal dilatation, but autopsy studies demonstrate esophageal smooth
muscle atrophy and the absence of fibrosis in the majority of SSc cases. Herein, we perform a detailed characterization of
SSc esophageal histopathology and molecular signatures at the level of gene expression.

Methods: Esophageal biopsies were prospectively obtained during esophagogastroduodenoscopy in 16 consecutive SSc
patients and 7 subjects without SSc. Upper and lower esophageal biopsies were evaluated for histopathology and gene

Results: Individual patient’s upper and lower esophageal biopsies showed nearly identical patterns of gene expression.
Similar to skin, inflammatory and proliferative gene expression signatures were identified suggesting that molecular
subsets are a universal feature of SSc end-target organ pathology. The inflammatory signature was present in biopsies
without high numbers of infiltrating lymphocytes. Molecular classification of esophageal biopsies was independent of SSc

Conclusions: Proliferative and inflammatory molecular gene expression subsets in tissues from patients with
SSc may be a conserved, reproducible component of SSc pathogenesis. The inflammatory signature is observed in
biopsies that lack large inflammatory infiltrates suggesting that immune activation is a major driver of SSc esophageal

Introduction

The esophagus is frequently affected in patients with sys-
temic sclerosis (SSc; scleroderma), but the pathogenesis is
poorly understood [1-3]. A scleroderma colonic fibrosis
mouse model has been described, but no animal models of
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scleroderma esophageal disease have been developed [4].
Esophageal manometry reveals weak to absent peristaltic
activity and loss of lower sphincter tone in SSc patients that
predisposes to gastroesophageal reflux (GER) [1]. Proton
pump inhibition (PPI) effectively treats GER, but has little
effect on esophageal dysmotility [3]. There is an unmet
need for biomarkers that predict development of SSc
esophageal dysmotility, methods that will yield insights into
pathogenesis, and novel strategies to prevent and treat SSc
esophageal disease.

The replacement of smooth muscle with collagen in the
esophageal mucosa (fibrosis) is thought to precipitate SSc
esophageal dysmotility, but autopsy and functional studies
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demonstrate that smooth muscle atrophy is the predomin-
ant pathology [5-7]. Hypotheses for the development of
smooth muscle atrophy include vasculopathy with resultant
denervation, production of autoantibodies targeting smooth
muscle and/or entrapment and destruction of smooth
muscle by fibrosis [2].

Whole-genome gene expression profiling of skin biop-
sies in SSc has led to the identification of SSc ‘intrinsic
subsets’ (fibroproliferative, inflammatory, limited and
normal-like) that are distinct from clinically identified sub-
types (limited cutaneous/lc versus diffuse cutaneous/dc)
defined based upon skin involvement and serum autoanti-
bodies [8]. Different molecular pathways underlie the in-
flammatory and fibroproliferative subsets [9, 10]. Specific
gene expression signatures in skin have been shown to be
associated with clinical improvement during mycopheno-
late mofetil (Cellcept™) and imatinib mesylate (Gleevec™)
therapy [11, 12].

We hypothesized that histopathological and gene ex-
pression studies in esophageal biopsies from patients with
SSc would provide insight into pathological processes and
determine whether they are similar between skin and
esophagus. Here, we present the first comprehensive ana-
lysis of histopathological and molecular changes in SSc-
associated esophageal disease to our knowledge.

Methods

The Northwestern Institutional Review Board approved
the study and ensured compliance with the principles of
the Declaration of Helsinki. Subjects gave written in-
formed consent to undergo esophageal biopsies. Sixteen
patients who met 2013 American College of Rheumatol-
ogy criteria for SSc were studied [13]. Seven patients
without SSc were enrolled as a comparator disease group.
Subjects underwent esophagogastroduodenoscopy (EGD)
with esophageal biopsies for a clinical indication
(Additional file 1). Esophagitis was diagnosed during EGD
for patients that met Los Angeles classification criteria
[14]. For research purposes, one additional biopsy pair
(upper and lower esophagus) was placed in RNAlater (Ap-
plied Biosystems, Ambion®, Carlsbad, CA, USA) and used
for DNA microarray analysis; another biopsy pair was
placed in formalin for histological analyses.

Age, sex, ethnicity, body mass index, smoking history,
presence of GER symptoms, use of PPI, and gastrointes-
tinal (GI) symptom duration (defined as interval between
GI symptom onset and EGD) were abstracted from the
electronic medical record. Modified Rodnan skin score
(mRSS), SSc disease duration (defined as interval between
first non-Raynaud symptom and EGD), SSc subset (lc or
dc), and immune modulatory treatment including myco-
phenolate mofetil exposure (never, past or current) were
abstracted for SSc patients. Serum antinuclear antibodies
(ANA), anti-topoisomerase I, anticentromere, and anti-
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RNA polymerase III antibody titers were measured by in-
direct immunofluorescence at Specialty Laboratories
(Valencia, CA, USA).

Pulmonary function tests (PFT) and lung high-resolution
computed tomography (HRCT) examinations were ob-
tained when clinically indicated. A chest radiologist who
was blinded to clinical data determined the presence or
absence of a patulous esophagus and interstitial lung dis-
ease (ILD) on HRCT examinations. A patulous esophagus
was reported if the luminal diameter of the air or fluid-
filled esophagus measured >10 mm in the coronal plane
between the level of the aortic arch and the cardiac ventri-
cles, >15 mm in the coronal plane between the level of the
cardiac ventricles and the lower esophageal sphincter, or if
an air-fluid level was present [15—17]. Pulmonary fibrosis
was reported if there was ground-glass opacity or reticula-
tion in nondependent portions of lung or if there was
ground-glass opacity and reticulation in dependent por-
tions of lung that persisted on prone imaging [18, 19]. The
presence of honeycombing and traction bronchiectasis was
consistent with fibrosis [18, 19].

Esophageal biopsies

Esophageal biopsies were obtained using standard sized,
Radial Jaw 4 biopsy forceps (Boston Scientific, Boston,
MA, USA). Upper (within 10 cm of the esophageal inlet)
and lower (5 cm proximal to the squamocolumnar junc-
tion) esophageal biopsies were obtained. Tissues were
paraffin-embedded, and 4-pm sections were stained with
hematoxylin and eosin (H&E). Photomicrographs of
H&E-stained esophageal biopsies (20x and 40x magnifi-
cation) were obtained using an Olympus BX45 micro-
scope and Olympus DP70 camera (Olympus America,
Inc., Center Valley, PA, USA).

In order to identify histological changes that may be
SSc-specific and not attributable to esophagitis, three ap-
proaches were undertaken. First, the presence of a hiatal
hernia and/or esophagitis on gross examination of the
esophageal lumen at the time of EGD was considered
evidence for esophagitis [14]. Second, a GI pathologist
who was blinded to clinical data scored esophageal biop-
sies for degree of basal cell hyperplasia (0 =basal cells
restricted to basal layer, 1 =basal cells above basal layer
but penetrating <1/3 thickness of squamous epithelium,
2 =basal cells penetrating into 1/3-2/3 of thickness of
squamous epithelium, 3 = basal cells infiltrating cells >2/3
into squamous epithelium). Third, the area with the great-
est intraepithelial lymphocyte density on lower power
(10x magnification) was identified, and the number of
lymphocytes per high-power field (HPF) was counted
[5, 20-23]. A finding of grade >1 basal cell hyperplasia or
210 lymphocytes/HPF was considered pathological evi-
dence for esophagitis [5, 20-23]. A pathologist also assessed
H&E-stained sections for yeast and pseudohyphae
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consistent with candida esophagitis. Esophageal biopsies
were also scored for the degree of collagen deposition in
the lamina propria (0 = no, 1 = mild, 2 = moderate and 3 =
severe) to assess whether patients with SSc have more
fibrosis than patients without SSc.

Microarray processing and analysis

RNA was prepared from esophageal biopsies as previ-
ously reported for SSc skin biopsies [11]. A total of
200 ng total RNA was amplified and labeled using the
Agilent Quick Amp Labeling Kit [8] and co-hybridized
to Agilent Whole Human Genome (4 x 44 K) Microarrays
(G4112F) (Agilent Technologies, Santa Clara, CA, USA)
[11]. Data were log, lowess normalized and filtered for
probes with relative intensity greater than or equal to 1.5
of the median spot background in Cy3 or Cy5 channels.
Data were multiplied by -1 to convert to log,(Cy3/Cy5)
ratios. Probes with >20 % missing data were excluded.

Systematic biases resulting from technical artifacts were
detected by multidimensional scaling analyses (MDS) in R
[24]. Two biopsies (Eso05 lower and SSc12 upper) were
identified as outliers by MDS and subsequently excluded
from all analyses. Missing values in the remaining expres-
sion data were imputed via k-nearest neighbor algorithm
using a GenePattern module with default parameters [25].
Batch effects (potential sources of nonbiological experi-
mental variation) in the expression data were adjusted
using ComBat run as a GenePattern module using non-
parametric settings [26]. The statistical significance of
batch bias before (p <0.001) and after (p = 0.997) adjust-
ment with ComBat was assessed with guided principal
component analysis (gPCA; Additional file 2) [27].

Transcripts that were differentially expressed between
patients with and without SSc (unpaired ¢ test) and
transcripts differentially expressed between SSc patients’
upper and lower biopsies (paired ¢ test) were identified
using the GenePattern module Comparative Marker Se-
lection using log-transformed data with all other settings
set to default [28]. Uncorrected p values are reported in
the results for the unpaired ¢ test between SSc and con-
trols. Hierarchical clustering was performed with Cluster
3.0 using uncentered Pearson correlation as the distance
metric and average linkage [29]. Data were displayed
with Java TreeView version 1.1.6r2 [30].

Statistical significance of clustering (SigClust) is de-
signed to assess the significance of splitting a data set
into two clusters. Cluster membership was assigned by
running k-means, the basis of SigClust. The p values
reported are the simulated SigClust p values based on
Gaussian quantiles. Consensus clustering allows for the
examination of the stability of clusters by identifying the
‘consensus, or the agreement in cluster assignment be-
tween multiple runs of the algorithm in which the num-
ber of clusters, or k, is increased. Consensus clustering
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was performed on the intrinsic genes via the Consensus
Clustering module (version 7) in GenePattern using the
hierarchical clustering algorithm and Pearson distance
[31]. Max k was set to 10 and all other settings were set
to default.

Intrinsic gene selection was performed using a custom
Matlab script [11]. SigClust and consensus clustering
were used to determine the number of significant clus-
ters within the cohort [8, 31, 32]. Significance analysis of
microarrays (SAM) was run as an Excel plug-in with 300
permutations (multiclass response type) to identify genes
significantly differentially expressed between subsets of
SSc patients. Functional enrichment analysis of differen-
tially expressed probes was performed with g:GOSt within
g:Profiler [33]. Functional terms with p value <0.05 (cor-
rected for multiple testing via default g:GOSt method)
were considered.

Statistical analyses

Categorical variables were compared by Fisher’s exact
test due to the small sample size. Continuous variables
were expressed as mean and standard deviation. Nor-
mality of continuous variables was assessed by Shapiro-
Wilk test and data were considered non-normal when p
<0.05. Statistically significant differences between pa-
tients with and without the inflammatory signature were
assessed by ¢ tests with Welch correction or Wilcoxon
rank sum test. For all analyses, a two-sided p value <0.05
was considered significant. SAS version 9.3 (SAS Insti-
tute, Cary, NC, USA), R version 2.15.3, and GraphPad
Prism 6.0 (GraphPad Software, San Diego, CA, USA)
were used.

Quantitative reverse transcriptase-polymerase chain reac-
tion (qRT-PCR)

RNA was reverse-transcribed to cDNA [34] and ampli-
cons were analyzed in duplicate by PCR using SYBR
Green PCR Master Mix (Applied Biosystems, Foster
City, CA, USA) on the Applied Biosystems 7500 Prism
Sequence Detection System with primers as indicated in
Table S2 (see Additional file 3). Results are fold change
relative to the mean expression for upper and lower
esophageal biopsies for subject ESO3 (Additional file 1).
This subject with normocytic anemia was selected for
the normalization procedure because she was not receiv-
ing PPI therapy, EGD revealed a grossly normal esopha-
gus, and no histological evidence for esophagitis was
present.

Data availability

The expression data are available from NCBI Gene Ex-
pression Omnibus (GSE68698). This series reflects the
most complete version of the dataset (46 arrays, as used
in Additional file 4). Other expression data matrices
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used throughout the manuscript are included as part of
Additional file 5.

Results

Subjects and clinical characteristics

Sixteen consecutively enrolled subjects with SSc and seven
subjects without SSc undergoing EGD with esophageal bi-
opsies for a clinical indication were studied. Two patients
without SSc (Eso2 and Eso5) had rheumatic diseases (sys-
temic lupus erythematosus and undifferentiated seronega-
tive spondyloarthropathy. Clinical and demographic
features are summarized in Additional file 1. Ninety-four
percent of the patients with SSc and 71 % of patients with-
out SSc were women. Mean GI symptom duration was
71 months for patients with SSc and 25 months for patients
without SSc. Mean SSc disease duration at the time of
esophageal biopsies was 106 months. Sixty-three percent of
the SSc patients had dcSSc. All SSc patients had positive
serum ANA. No subjects were current smokers. All SSc pa-
tients and 57 % of the patients without SSc were using PPIs
at the time of biopsies (p =0.02). Chest HRCT was per-
formed within 1 year of esophageal biopsies in all SSc pa-
tients and one patient without SSc. Thirteen out of 16
(81 %) patients with SSc had a patulous esophagus.

Molecular overview

To identify genes that are specific to SSc esophageal dis-
ease and avoid confounding with genes that are poten-
tially related to autoimmunity, biopsies from two
patients without SSc (Eso2 and Eso5) but with rheum-
atic diseases were excluded. Thus, gene expression in 43
esophageal biopsies from 16 patients with SSc and 5 pa-
tients without SSc was analyzed. Analysis of differential
gene expression identified 1903 probes (1350 unique
genes) significantly different between SSc and control bi-
opsies (p <0.05, ¢ test) Additional file 6. Genes upregu-
lated in SSc biopsies included IL27, IFNARI, and
PDGFRA. Genes downregulated in SSc included CCL2
and several human leukocyte antigen genes. This ana-
lysis was repeated including Eso2 and Eso5 biopsies,
which resulted in fundamentally similar results that are
included as (Additional file 4).

Given the overlapping pathology in SSc and non-SSc
esophageal diseases, some shared gene expression was
expected. Similar expression patterns were observed in
patients with and without SSc (Additional file 6B), in-
cluding genes involved in immune response such as
IRAKI1, TABI and RELA (green bar) and CD59, CCL4
and THBSI (red bar). Gene expression within SSc biop-
sies was heterogeneous resulting in three apparent
groups of patients (Additional file 6). In order to identify
the most robust gene expression signatures among SSc
esophageal biopsies in the absence of potentially
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confounding and overlapping pathologies, we analyzed
SSc samples alone.

Molecular heterogeneity of SSc esophageal disease

To determine whether gene expression in upper and
lower esophageal biopsies is similar in patients with SSc,
we conducted paired analyses. Only the 15 patients with
SSc that had both biopsies pass quality control filters
were considered for the remainder of the analyses. Six-
teen biopsy pairs were analyzed because one patient
underwent biopsies at two time points. Similar to skin,
gene expression in paired upper and lower esophageal
biopsies from individuals was more similar than between
individuals (Additional file 7). In fact, 15 out of 16
(94 %) paired upper and lower esophageal biopsies clus-
tered together (Additional file 7A). As SSc patients typ-
ically have lower esophageal involvement, a paired ¢ test
was used to detect genes most differentially expressed
between patients’ upper and lower biopsies. A total of
1479 probes with a false discovery rate (FDR) <5 % were
selected and arrays were hierarchically clustered. Despite
purposely selecting differentially expressed genes be-
tween upper and lower biopsies, 14 out of 16 (87.5 %)
pairs clustered together (Additional file 8).

In order to quantify SSc esophageal heterogeneity, ‘in-
trinsic subset analysis’ of the data was performed [8].
Briefly, 2240 probes (2085 unique genes) with the most
similar expression between upper and lower esophageal
biopsies for an individual patient, but the most dissimilar
expression between individuals, were identified (FDR
<1.1 %). Using this approach, patients were clustered
into three distinct groups based on the expression pat-
terns of the intrinsic genes (Fig. 1).

An inflammatory group was comprised of patients 4, 6,
11, 15, 17, 19 (Fig. 1a and b). Genes with increased expres-
sion in this group included interferon-induced proteins
(IFI16 and IFI44), components of the inflammasome path-
way (CASPI and IL1B), and other genes related to inflam-
mation (Fig. 1c, and Additional file 9). The remaining
patients formed two subgroups. Patients 2, 5, 9 and 14
formed a proliferative group, with increased expression of
genes indicative of proliferating cells (CDK4 and CDC34)
as well as cyclins CCND3 and CCNL2 (Fig. 1c). Patients 1,
3, 8,13 and 18 clustered into a noninflammatory group that
showed high expression of genes indicative of cell growth
(BRAE, CDC16 and SPI) (Fig. 1c), suggesting a possible
functional overlap with the proliferative group that dis-
played a similar expression pattern.

To determine the statistical significance and stability
of array clusters from intrinsic gene expression data, we
employed consensus clustering and SigClust. SigClust
analysis suggests that two to three distinct subsets exist
in the patient cohort. The distinction between the in-
flammatory group and other biopsies was statistically
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(See figure on previous page.)

in inflammatory patients. Additional file 9 contains the full list of transcripts

Fig. 1 Esophageal intrinsic genes. A total of 2240 probes representing 2085 unique transcripts with the most similar expression between upper
and lower biopsies for an individual but with the most dissimilar expression between individuals, termed ‘intrinsic’, were identified (false discovery
rate (FDR) <1.1 %). An asterisk indicates samples obtained at 6 months. a Sample dendrogram, leaves are colored by group membership:

red — samples from proliferative subset, purple — samples from inflammatory subset, black — samples from noninflammatory subset. Brackets
indicate biopsies from the upper and lower esophagus for an individual that clustered together. b Overview of hierarchically clustered probes.

c Selected gene clusters: purple, upregulated in inflammatory patients; red, upregulated in a proliferative subset of patients; black, downregulated

significant (p = 0.05) (Fig. 2). SigClust analysis suggested
two additional groups, termed proliferative and nonin-
flammatory (p =0.10). Analysis by consensus clustering,
which performs multiple cluster analyses of different
subsets of the data, demonstrates that the groups identi-
fied by SigClust largely cluster stably together with in-
creasing k (Fig. 2 and Additional file 10). By focusing on
the inflammatory, proliferative, and noninflammatory
groups, the broad, generalizable biological differences
based on the expression data are captured.

Esophageal biopsies demonstrate inflammatory and
proliferative molecular processes

To identify the molecular processes underlying the patient
subsets, we analyzed the genes and pathways differentially
expressed between patient groups. Significance Analysis of
Microarrays (SAM) identified 8490 probes (5257 unique
genes) differentially expressed between the three SSc
groups (FDR <1 %) (Fig. 3 and Additional file 11). A total of
1317 probes (951 unique genes) showed increased expres-
sion in the inflammatory subset (Fig. 3, purple gene cluster)
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Fig. 3 Functional enrichment analysis of genes differentially expressed between esophageal intrinsic subsets. Gene expression and functional
enrichment in esophageal biopsies of systemic sclerosis (SSc) patients across three subsets as determined by significance of clustering (SigClust)
(8490 probes, multiclass significance analysis of microarrays (SAM), false discovery rate (FDR) <1 %). Array tree legend: red arrays — samples from
proliferative subset, black arrays — samples from noninflammatory subset, purple arrays — samples from inflammatory subset. Gene cluster legend:
red cluster — genes and functional annotations upregulated in proliferative subset, purple cluster — genes and functional annotations upregulated
in inflammatory subset, brown cluster — genes and functional annotations upregulated in proliferative and noninflammatory subsets, black
cluster — genes and functional annotations upregulated in noninflammatory subset. Representative genes in bold are annotated to the GO term
in bold. Additional file 12 contains a complete list of annotations from Additional file 8. Additional file 11 contains the full list of transcripts

and enrichment in immune system activation (e.g. immune
response, p = 2.40°10™*%; response to wounding, p = 3.23*10
1% and defense response, p =4.21*107"). The proliferative
subset showed 2448 probes (1748 unique genes) with in-
creased expression (Fig. 3, red gene cluster). This group
was enriched for cell cycle-related processes (e.g. cell cycle,
p=330°10""% cellular response to stress, p=2.75*10"%;
RNA processing, p=7.89*10""). A total of 2023 probes
(1166 unique genes) showed increased expression in the
noninflammatory group (Fig. 3, black gene cluster). Func-
tional enrichment analysis for this group of SSc patients
identified chromosome organization and condensation (e.g.
chromosome organization, p =2.87*10"%; nucleosome as-
sembly, p=357*10"" DNA conformation change, p =
2.49*10™"%. A total of 2702 probes (1787 unique genes)
showed decreased expression in the inflammatory SSc clus-
ter and lack of coherent functional enrichment (Fig. 3,
brown gene cluster). The complete functional enrichment
results that accompany Fig. 3 are available in Additional file
12. Many of the genes and processes found here in esopha-
gus strongly parallel those we find in SSc skin.

gRT-PCR validation of microarray analysis

Selected genes with significant differences (p <0.001) in
expression between patients from the inflammatory and
proliferative intrinsic subsets were validated by qRT-
PCR. Additional file 13 shows relative expression values
normalized to the mean expression for upper and lower
esophageal samples from a patient with normocytic
anemia. Inflammatory patients demonstrated higher
levels of SOCS3 (p <0.01) and proliferative patients dem-
onstrated higher levels of CRISP2 (p <0.001) compared to
the other group, respectively. Suppressor of cytokine sig-
naling 3 (SOCS3) protein is a cytokine-inducible negative
regulator of cytokine signaling, especially JAK2 kinase sig-
naling [35]. The expression of SOCS3 is induced by vari-
ous cytokines, including interleukin (IL)-6 [36-38], IL-10
[39, 40], and interferon (IFN)-y [41] that may be import-
ant in SSc. Cysteine-rich secretory protein 2 (CRISP2) is
involved in cell-cell adhesion and is a member of the CAP
superfamily of proteins that are thought to be important
in immune function and cancer [42].

Clinical and histopathological phenotypes associated with
inflammatory esophageal biopsies

We compared the clinical, demographic and disease fea-
tures as well as histopathological findings between the in-
flammatory group and the combined proliferative/
noninflammatory group due to the significance and stability
of the inflammatory subset (see Table 1 and Additional file
14). SSc patient biopsies clustered independently of SSc
skin disease subtype (p = 0.62) (Fig. 1) and serum autoanti-
bodies (p =0.23) (see Table 1 and Additional file 14). In-
flammatory patients were significantly older (p = 0.03) and
had a positive smoking history although the difference was
not statistically significant (p = 0.14). There was a trend to-
ward more lung disease in the inflammatory group as evi-
denced by lower forced vital capacity (p =0.13), total lung
capacity (p =0.13) and diffusion capacity for carbon mon-
oxide percent predicted (p=0.06) (Additional file 15).
These findings demonstrate that patient subsets identified
by gene expression are distinct from clinically defined
subsets.

Inflammatory gene expression is independent of GER,
collagen deposition and candida esophagitis

Next, the association between histopathological pheno-
types and esophageal gene expression signatures was
evaluated for patients with SSc (Fig. 4). Importantly, all
patients were receiving PPI (Additional file 1). Because
GER, fungal infections and hiatal hernias can cause
esophageal inflammation, we assessed whether inflam-
matory patients demonstrated more GER- or candida-
associated histopathological changes and/or hiatal her-
nias. On EGD, gross evidence for esophagitis and/or hia-
tal hernias was present in five out of six (83 %)
inflammatory and seven out of nine (78 %) patients clas-
sified in the heterogeneous group (p = 1.00) (Table 1 and
Additional file 14). Evidence for candida infection was
present upon H&E-stained biopsies for two SSc patients
both of whom were classified in the inflammatory subset
(Additional file 14). Next, a GI pathologist scored
esophageal biopsies for degree of basal cell hyperplasia
and the number of intraepithelial lymphocytes, both
GER markers (Fig. 4). In biopsies from the lower
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Table 1 Clinical variables
Mean (SD) or as indicated Inflammatory group N=6 Proliferative/noninflammatory p value”
group N=9

Clinical variables
Age 587 (8.3) 483 (7.7) 0.03
Sex, n (% women) 5 (83 %) 9 (100 %) 0.40
Ethnicity, n (% Caucasian) 5 (83 %) 5 (56 %) 0.58
BMI 224 (2.6) 24.5 (5.00) 0.30
Smoking, n (% past) 4 (67 %) 2 (22 %) 0.14
SSc subtype, n (% diffuse) 3 (50 %) 6 (67 %) 0.62
mRSS 12.7 (12.6) 16.6 (14.2) 0.59
GER symptoms, n (% present) 5 (83 %) 5 (56 %) 0.58
Dysphagia, n (% present) 3 (50 %) 3 (33 %) 062
Patulous esophagus HRCT, n (% present) 5 (83 %) 7 (78 %) 1.00
SSc disease duration (mo.) 153.7 (132.5) 83.7 (89.5) 0.29
Gl symptom duration (mo.) 61.8 (62.2) 844 (87.0) 0.57
SSc autoantibodies, n (% positive) N=5

- Scl-70 3 (50 %) 3(33%) 0.26

« ACA 1(17 %) 0

+ RNA pol Il 1(17 %) 4 (44 %)

- Negative 0 2 (22 %)

« Missing 1017 %) 0
Primary ANA pattern, n (% present)

- Centromere 1017 %) 0 0.08

+ Nucleolar 1017 %) 0

« Speckled 1(17 %) 7 (78 %)

- Homogenous 3 (50 %) 2 (22 %)
+ Mycophenolate, n (% current) 1(17 %) 5 (56 %) 0.29
+Proton pump inhibition, N (% current) 6 (100 %) 9 (100 %) N/A
FVC % predicted 702 (23.9) 889 (14.8) 0.13
TLC % predicted 81.8 (20.2) 100.6 (18.0) 0.13
DLCO % predicted 46.5 (17.5) 67.1 (20.3) 0.06
ILD present on HRCT, n (%) 5 (83 %) 7 (78 %) 1.00
Endoscopy, n (% present)
Esophagitis 4 (67 %) 5 (56 %) 1.00
Hiatal hernia 5 (83 %) 7 (78 %) 1.00
Pathology
Squamous epithelial lymphocytes 10.0 (8.7) 56 (5.9) 036
Basal cell hyperplasia, n (%) N=5 N=7

-0 1(17 %) 3 (33 %) 0.75

1 3 (50 %) 5 (56 %)

.2 1(17 %) 0
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Table 1 Clinical variables (Continued)
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Degree of collagen deposition in lower esophageal biopsies, n (%) N=4 N=4
-0 2 (33 %) 4 (44 %) 038
o1 1(17 %) 0
-2 1(17 %) 0

Candida esophagitis, n (%) 2 (33 %) 0 0.14

Only patients with SSc were included in these analyses. Subject SSc12 was excluded because the upper esophageal biopsy was influenced by technical artifact
that precluded intrinsic subset assignment

BMI body mass index, SSc systemic sclerosis, mRSS modified Rodnan skin score, GER gastroesophageal reflux, HRCT high-resolution computed tomography, G/
gastrointestinal, Scl-70 anti-topoisomerase I, ACA anticentromere, RNA pol Il anti-RNA polymerase Ill antibodies, ANA antinuclear antibodies, N/A not applicable,

FVC forced vital capacity, TLC total lung capacity, DLCO diffusion capacity for carbon monoxide percent predicted, /LD interstitial lung disease
“t test for continuous variables and Fisher's exact test for categorical variables comparing inflammatory to proliferative/noninflammatory groups

esophagus, the degree of basal cell hyperplasia was 11 %
grade 0, 33 % grade 1, and 56 % grade 2 for inflamma-
tory patients, and 33 % grade 0, 56 % grade 1, and 0
grade 2 for heterogeneous subjects (p =0.75) (Fig. 4a).
The mean + SD number of squamous epithelial lympho-
cytes in inflammatory patient biopsies was 10.0 + 8.7
compared to 5.6 +5.9 in biopsies from patients classified
in the heterogeneous group (p =0.36) (Fig. 4b). These
data suggest that the presence of the inflammatory gene
expression signature in lower esophageal biopsies was
unrelated to reflux or candida esophagitis either by
endoscopic or histological criteria.

Next, we examined the concordance between upper
and lower esophageal biopsies for GER evidence. Based
upon basal cell hyperplasia, no control subjects and two
SSc patients had upper GERD: two control subjects and
one SSc patient had lower GERD. Based upon lympho-
cyte counts, no control or SSc patient had upper GERD:
one control subject and one SSc patient had lower
GERD. Importantly, there were SSc patients that had

evidence for GERD in upper biopsies with normal lower
biopsies. Based upon these data, histological evidence
for GERD is definition-dependent; histological findings
of upper and lower GERD may lack concordance in indi-
viduals; and upper GERD does not appear to be more
prevalent in SSc patients compared to non-SSc patients,
but the numbers of subjects was small.

Lastly, we scored lower esophageal biopsies for degree
of collagen deposition in the lamina propria (Fig. 4a).
There was no difference in collagen deposition between
inflammatory (33 % grade 0, 17 % grade 1, 17 % grade 2)
and proliferative/noninflammatory patients (44 % grade
0, 0 % grade 1, 0 % grade 2) (p=0.38) (Table 1 and
Additional file 14).

Discussion

Esophageal dysmotility and dysphagia cause considerable
morbidity in patients with SSc. Despite its prevalence,
the pathogenesis is poorly understood in large part be-
cause smooth muscle cells dedifferentiate in culture.

Fig. 4 Systemic sclerosis (SSc) esophageal disease. a. Hematoxylin and eosin (H&E)-stained esophageal biopsies (20x) from patients with SSc
representing stage 1, 2 and 3 fibrosis respectively (indicated as ) and grade 0, 1, 2 basal cell hyperplasia in the lamina propria (black arrow).

b. Representative photomicrographs (40x) of biopsy with <10 lymphocytes, 10-20 lymphocytes and >20 lymphocytes/high-power field (HPF) in
the squamous epithelium. ¢. Esophageal biopsy (20x) from a healthy individual demonstrating no fibrosis, grade 0 basal cell hyperplasia and <10
lymphocytes/HPF. ‘Indicates the esophageal lumen
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Moreover, no animal models of scleroderma esophageal
disease, no biomarkers for disease progression, and no
disease-modifying treatments have been identified. Pa-
tients with SSc routinely undergo EGD with esophageal
biopsies for clinical indications. We performed a molecular
characterization of gene expression combined with detailed
histological analyses of esophageal biopsies to identify bio-
markers of esophageal dysfunction and increase our under-
standing of SSc esophageal disease pathogenesis.

We identified robust molecular subsets of SSc esopha-
geal disease that are distinct from clinically determined
subtypes. A subset of patients with SSc esophageal dis-
ease had an inflammatory gene expression signature
while another group had a proliferative/noninflamma-
tory signature. We showed that these signatures appear
to be independent of traditional clinical markers of SSc
including disease subtype and duration, serum autoanti-
bodies and skin score, but the sample size is small. A
patulous esophagus on HRCT, esophagitis and/or hiatal
hernia on EGD, PFT reductions and immune modulating
medication use were not different between groups. With
the exception of older age in the patients expressing
esophageal inflammation, there were no significant clinical
differences between patients in the inflammatory and the
proliferative/noninflammatory groups. Importantly, all pa-
tients in both groups were taking stable doses of PPIs.

Our results demonstrate that SSc intrinsic gene ex-
pression subsets are present in esophagus as well as in
skin. Three subsets (inflammatory, proliferative and non-
inflammatory) were identified in esophageal biopsies
compared to four intrinsic subsets identified in skin
biopsies. This observation suggests that we are witnes-
sing inherent heterogeneity in the SSc patient popula-
tion. The addition of more SSc esophageal samples into
this dataset may reveal additional important subsets. For
example, the noninflammatory group may be subdivided
into two groups as indicated by consensus clustering.

Our findings are significant because they demonstrate
that although end-target tissues in SSc display molecular
heterogeneity, there are robust gene expression patterns
and molecular pathways that are conserved across tissues.
It has been observed that molecular signatures from the
same disease in different tissues are more similar than
gene expression from different diseases in the same tissue
and may allow for the construction of multi-tissue models
of pathogenesis [43]. Our results suggest that the strong
inflammatory signal, and possibly the proliferative signa-
ture, seen in skin and now in the esophagus reflect com-
mon pathogenic processes in SSc.

Importantly, there was no evidence that inflammation
resulting from underlying hiatal hernia or GER and can-
dida esophagitis drove the esophageal inflammatory gene
expression signature. The prevalence of GER and can-
dida esophagitis and hiatal hernia on EGD, increased
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basal cell hyperplasia and intraepithelial lymphocytes,
and proton pump inhibitor use were not statistically dif-
ferent between SSc patients who did or did not express
the inflammatory gene expression signature though the
numbers are small. If the inflammatory signature was
GER-dependent, we would expect the lower esophageal
biopsies from patients in the inflammatory subset to
cluster together and separately from the upper biopsies.
However, this was not observed (Additional file 7): upper
and lower biopsies from the same patient clustered side
by side. Further, the nonsignificant difference in lympho-
cytes present between the two groups suggests that part
of the observed inflammatory gene expression signature
is due to lymphocyte activation and may also be driven
by the infiltration of other cell types such as macro-
phages or eosinophils.

On a practical level, the feasibility of conducting mo-
lecular studies on esophageal tissue in patients with SSc
was established. No subjects experienced any EGD com-
plications, and patients were willing to undergo multiple
esophageal biopsies for clinical and research purposes.
Esophageal biopsies from healthy control subjects were
not obtained, which is a limitation of our current study.
Because collagen is a normal esophageal component and
not necessarily indicative of fibrosis, future studies should
include deeper biopsies to ensure lamina propria sam-
pling. Lamina propria was sampled in 30 % of esophageal
biopsies included in the present study, limiting the conclu-
sions that can be drawn. Esophageal functional studies
were also not performed in the majority of patients. Pro-
spective studies are underway to identify associations be-
tween gene expression, esophageal histology and changes
and esophageal function in SSc patients and healthy con-
trol subjects.

Conclusions

Biomarker identification and targeted treatment devel-
opment for esophageal disease in SSc represent a large
unmet clinical need. We are the first to employ whole-
genome gene expression analyses of esophageal biopsies
from patients with SSc to gain insights into their esopha-
geal disease pathogenesis. We identified inflammatory and
proliferative/noninflammatory gene expression signatures
in SSc esophageal biopsies that appear to be independent
of clinical markers of SSc disease as well as medication
use though the sample size is small. Importantly, inflam-
matory and proliferative/noninflammatory gene expres-
sion signatures that were previously identified in SSc skin
were recapitulated in SSc esophageal biopsies. This finding
suggests that the overarching deregulated molecular pro-
grams responsible for SSc are similar in different end or-
gans. Studies are underway to determine the concordance
between skin and esophageal gene expression signatures
for individual patients. Lastly, we demonstrate the utility
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and feasibility of genome-wide analyses of gene expression
in esophageal biopsies from SSc patients. Efforts are
underway to further analyze these data to identify new
treatment targets as well as currently available medica-
tions that can be repurposed to treat SSc esophageal dys-
motility. Results of gene expression analysis of tissues
from patients with SSc hold promise for individualized pa-
tient care that permits treatment selection based upon
knowledge of deregulated molecular pathways.

Additional files

Additional file 1: Subjects and biopsy time points.

Additional file 2: gPCA analysis of SSc samples. gPCA (R package
v1.0) provides a statistical test for identifying batch bias in high-
throughput genomic data (18). (A) Scatterplots and density plots of the first,
second, and third principal components from guided PCA before batch
correction with ComBat demonstrates batch bias, p value <0.001 and (B)
after batch correction. ComBat removes batch bias, p value = 0.997.

Additional file 3: Human qRT-PCR primers (5-3).

Additional file 4: Differential gene expression analysis between
controls and SSc patients. A total of 1063 probes were found to be
differentially expressed between control and SSc samples (p <0.05).
(A) Array tree structure. Green labels and edges indicate controls. Black
edges indicate SSc patients. Black labels indicate patients with ISSc and
red labels indicate patients with dSSc. An asterisk indicates samples
obtained at 6 months. (B) Overview of gene expression patterns.

Additional file 5. Expression data matrices. All matrices are
supplied as tab-delimited text files. (7) Expression data for 32 arrays
(all probes). Input to intrinsic gene analysis and SAM (Fig. 3). (2)
Expression data for 32 arrays (intrinsic genes, FDR <1.1 %). Used for Figs. 1
and 2. (3) Thirty-three arrays, SSc only (all probes). Used for Figure S4 in
Additional file 7. (4) Expression data for 43 arrays, no controls with
autoimmune disorders (all probes). Used for Figure S2 in Additional file 6.
Following normalization and log-transformation, each version of the dataset
was processed in the following way: arrays not being considered were
removed. Missing values were imputed using a k-nearest neighbor
algorithm. Nonparametric ComBat was used to adjust batch effects. Genes
were median-centered.

Additional file 6: Differential gene expression analysis between
controls and SSc patients. A total of 1903 probes (1350 unique genes)
were found to be differentially expressed between control and SSc
samples (p <0.05). (A) Array tree structure. Green labels and edges indicate
controls. Black edges indicate SSc patients. Black labels indicate patients
with 1SSc and red labels indicate patients with dSSc. An asterisk indicates
samples obtained at 6 months. Brackets indicate biopsies from the upper
and lower esophagus for an individual that clustered together. (B)
Overview of gene expression patterns. Top green bar indicates a group of
genes with expression patterns similar between controls and a subset of
SSc patients including patients 2, 5, 9 and 14. Bottom red bar indicates a
group of genes with expression patterns similar between controls and a
subset of SSc patients including patients 4, 11, 15, 17 and 19.

Additional file 7: Gene expression in esophageal biopsies from
patients with SSc. (A) Dendrogram of hierarchical clustering of samples
based on 3507 probes identified as present in 22 arrays with values 22-
fold change over median. Brackets indicate biopsies from the upper and
lower esophagus for an individual that clustered together.

SSc patient biopsies clustered independently of 1cSSc and dcSSc
designation shown in black and red, respectively. An asterisk indicates
samples obtained at 6 months. (B) Overview of hierarchically clustered
probes. (C) A subset of SSc patients shows overexpression of an inflammatory
gene signature (blue and purple clusters). The leaves of the dendrogram
indicating the inflammatory subset of arrays are shown in purple.
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Additional file 8: Genes differentially expressed between paired
upper and lower SSc esophageal biopsies. Comparative Marker
Selection was used to perform a paired t test comparing patients’ upper
and lower biopsies. Differentially expressed transcripts (1479 probes; FDR
<5 %) were selected and arrays were hierarchically clustered. Upper and
lower biopsies cluster side by side in 14 out of 16 patients. An asterisk
indicates samples obtained at 6 months. Brackets indicate biopsies from
the upper and lower esophagus for an individual that clustered together.

Additional file 9: Intrinsic gene analysis, transcripts with FDR
<1.1 %. This figure is intended to be viewed digitally and includes probe
IDs and annotations for all transcripts included in Fig. 1.

Additional file 10: Consensus clustering of intrinsic gene data. The

consensus cumulative density function (CDF) and delta area plots of the

different numbers of clusters tested in consensus clustering. The number
of clusters present in the data is identified when the area under the CDF
curve does not increase greatly between k, or there is

no proportional increase in area between increasing k as visualized in the
delta plot.

Additional file 11: Functional analysis of intrinsic subsets. This figure
is intended to be viewed digitally and includes probe IDs and
annotations for all transcripts included in Fig. 3.

Additional file 12: Complete g:Profiler results from genes
differentially expressed between SSc groups (Fig. 4).

Additional file 13: Quantitative polymerase chain reaction
validation of microarray results. Values are normalized to ESO3.

Additional file 14: Esophageal histological scoring.

Additional file 15: Clinical covariates, dichotomous cluster
stripcharts. Bars represent mean with 95 % Cl.
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ANA: antinuclear antibodies; dcSSc: diffuse cutaneous SSc;

EGD: esophagogastroduodenoscopy; FDR: false discovery rate;

GER: gastroesophageal reflux; Gl: gastrointestinal; H&E: hematoxylin and
eosin; HPF: high-power field; HRCT: high-resolution computed tomography;
IFN: interferon; IL: interleukin; ILD: interstitial lung disease; IcSSc: limited
cutaneous SS¢; mRSS: modified Rodnan skin score; PFT: pulmonary function
tests; PPI: proton pump inhibition; qRT-PCR: quantitative reverse transcriptase-
polymerase chain reaction; SAM: significance analysis of microarrays;

SigClust: significance of clustering; SSc: systemic sclerosis (scleroderma).
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