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On the predictive utility of animal models
of osteoarthritis
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Abstract

Animal models of osteoarthritis are extensively used
for investigating disease pathways and for preclinical
testing of novel therapies. Their predictive utility,
however, has often been questioned, mainly because
preclinical efficacy of novel therapeutics is poorly
translated in clinical trials. In the current narrative
review, we consider the preclinical models that were
used to support undertaking clinical trials for
disease-modifying osteoarthritis drugs, and compare
outcomes between clinical and preclinical studies. We
discuss this in light of the 1999 Food and Drug
Administration draft guidelines for industry for use in
the development of drugs, devices, and biological
products intended for the treatment of osteoarthritis,
which raised five considerations on the usefulness of
osteoarthritis models. We systematically discuss what
has been learnt regarding these five points since 1999,
with emphasis on replicating distinct risk factors and
subtypes of human osteoarthritis, and on
comprehensive evaluation of the disease in animals,
including pathology of all joint tissues, biomarker
analysis, and assessment of pain and joint function.
Finally, we discuss lessons learnt and propose some
recommendations for how the evidence from
preclinical research might be strengthened with a
view to improving success in clinical translation.
opment of drugs, devices, and biological products intended
for the treatment of osteoarthritis (OA) [9]. This nine-page
Introduction
The current practice of translational biomedical research
is failing its end-users, with as much as 90 % of ‘highly
promising basic science discoveries failing to enter routine
clinical use within 20 years’ [1]. As a result, it has been es-
timated that 85 % of research resources are ‘wasted’ [2].
That the majority of basic and preclinical medical research
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does not move to clinical trials, let alone lead to sub-
stantive improvements in patient health, challenges the
relevance of the present translational discovery and devel-
opment model [3, 4]. In an attempt to rationalize selection
of promising therapeutic targets, metrics to evaluate
‘translatability’ have been developed [5, 6] and retrospect-
ively validated [7]. Interestingly, in this proposed scoring
system, ‘starting evidence’, which includes data from
in vitro research, genetic modification in mice, and pre-
clinical animal models of disease, only contributes a
maximum of up to 11 % of the total translatability score.
Despite this, a detailed analysis by one large pharmaceut-
ical company of failures in their drug development pipe-
line showed that the most common reason (40 % versus
29 % for next most common) was inadequate linkage of
the molecular/cellular target with the disease and no
validated models [8]. Thus, while other metrics such as
human genetic data, availability of biomarkers, and
early phase clinical trial outcomes are clearly critical
for successful translation, drug development programs
will fail if their biological basis (that is, ‘the starting evi-
dence’) is not sound. A cornerstone of strong scientific
foundation for therapeutic development in all areas of
medicine is the use of valid preclinical animal models
of human disease, with predictive utility for research
into disease pathways as well as for drug testing.
In 1999, the US Food and Drug Administration (FDA)

provided draft guidelines for industry for use in the devel-

document contains a paragraph on the use of preclinical
models in OA, which surprisingly is lacking in the
equivalent European guidelines [10]. The brief section
(excerpt in Box 1) in the FDA document raises a num-
ber of specific issues that speak largely to how well any
proposed animal model of OA mimics the human disease,
and will therefore be predictive of therapeutic outcome
in clinical trials and ultimately medical practice. Since the
publication of the FDA document, 15 years ago with no
further updates, OA research has witnessed many advances,
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Box 1. Excerpt from the 1999 FDA Guidelines

‘Compared to RA, few models of human OA are currently in use.
Examples include the guinea pig spontaneous OA model and the
Pond Nuki dog model. When evaluating the possible usefulness of an
animal model, the following questions should be considered:

1. How accurately does the model replicate human OA?

2. What are the structural determinants of pain and loss of function?

3. Do structural changes (identified with MRI, X-ray) correlate with
clinical (pain, motion, weight distribution, gait) or biochemical
(cartilage composition, enzymatic activity, pain mediators, receptor
expression) markers?

4. Is the model useful for studying prophylactic strategies or for
studying structural arrest or reversal?

5. Can the model be used to assess long-term toxicity?’
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both basic and clinical. For one, the concept of OA has
broadened from a cartilage-driven disease to ‘a whole
joint disease’ (Fig. 1). Magnetic resonance imaging (MRI)
of painful OA knees clearly shows involvement of all joint
tissues [11] and detailed molecular studies reveal that
different joint tissues may all contribute to pathogenesis
[12]. Consequently, many new targets that act on distinct
aspects of OA pathology have been identified, leading to
several clinical trials of putative disease-modifying OA
drugs (DMOADs) that target various pathways in different
joint tissues (Table 1). In general, outcomes of these trials
have been disappointing, and there are still no FDA-
approved DMOADs on the market. One question that
arises is whether we could have predicted trial out-
comes better using more appropriate preclinical models?
Therefore, in the current narrative review, we systemat-
ically discuss the five considerations raised by the FDA
regarding preclinical models of OA (Box 1), and review
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Fig. 1 Osteoarthritis (OA) is a disease of the whole joint with pathology in
can only arise directly from innervated tissues, but sensory neurons may be
what, if anything, has been learnt since 1999. We consider
the preclinical models that were used to support under-
taking clinical trials for DMOADs, and compare outcomes
between clinical and preclinical studies. Finally, we discuss
lessons learnt and propose some recommendations for
how the evidence from preclinical OA research might be
strengthened with a view to improving success in this area
of translational medicine.

How accurately does the model replicate human
osteoarthritis?
OA is no longer considered a single disorder; rather, it is
a collection of different disease phenotypes that share cer-
tain clinical and pathological features [13]. Consequently
the responses to treatment, and indeed the appropriate
therapeutic targets in these different OA phenotypes, may
be quite distinct [14, 15]. Suggested clinically relevant
stratification approaches into OA phenotypes that may
warrant distinct therapeutic strategies include: (i) cause
or mechanism of onset (post-traumatic, age-associated,
metabolic, or genetic); (ii) tissues affected (cartilage ero-
sion, bone erosion or formation, synovitis/inflammation,
muscle atrophy); (iii) progression (stage and rate); and (iv)
symptoms (pain, disability) [16–20]. In light of these re-
cent refinements in OA stratification, the choice of an
‘appropriate’ animal model will strongly depend on which
type of human OA one wishes to replicate. Indeed, studies
in genetically modified mice have revealed that in ap-
proximately one-third of cases the therapeutic outcome
of an identical ‘intervention’ was dissimilar in experimen-
tal models mimicking different OA subtypes [21, 22]. This
difference in outcome varied from an intervention being
effective in one subtype but not another (for example,
A: Global Joint Pathology
artilage: proteoglycan loss, chondrocyte 
eath, erosion
ubchondral bone: increased turnover, 
ickening, neovascularization.

oint margin: osteophytes   
ynovium and fat pad: inflammation (lining 
yperplasia, inflammatory cell infiltration, 
eovascularization), fibrosis
oint capsule: fibrosis, enthesopathy.
tra-articular ligaments & menisci: 
egeneration and tears.
uscle: atrophy, fat infiltration

A: Sources of Joint Pain
irect (contain nociceptors): 
Subchondral bone remodeling
Synovitis (including fat pad)

outer meniscus, ligament insertion,
joint capsule, osteophytes

direct (source of inflammatory catabolites, 
ytokines, chemokines, neuropeptides):
Cartilage, inner meniscus, ligaments

all articular tissues and associated skeletal muscle. Pain in the OA joint
activated by factors released from aneural joint tissues



Table 1 Clinical DMOAD trials in knee osteoarthritis (placebo-controlled, peer-reviewed and published since 1999)

Trial Target Disease modification Symptomatic outcome
(secondary endpoint)

Preclinical validation in
OA model

Structural outcome Symptomatic
outcome

Oral salmon calcitonin
(n = 1,176 and n = 1,030;
2 years) [145]

SCB JSW: no effect. No statistically
significant effect on biochemical
markers of bone (CTX-I) and
cartilage degradation (CTX-II)

WOMAC: no statistically
significant effect

Rat MNX and MNX/OVX [146]:
8 weeks, treatment at start

Joint protection, serum CTX-II ↓ NA

Dog ACLT: Rx at surgery,
84 days (nasal delivery) [147]

Joint protection (no effect on
osteophytes)

NA

DMM in mice overexpressing
salmon calcitonin [148]

OARSI score ↓7 weeks after DMM NA

Intra-articular rFGF18 (n = 168;
12 months) [149]

Cartilage
(anabolic)

Primary endpoint, (reduction of
cartilage loss in the central medial
femorotibial compartment on MRI)
not met. Secondary structural
endpoints were met

WOMAC: improved Rat MMT: 6 weeks; Rx
start week 3 [150]

Increased thickness of the articular
surface of the medial tibial plateau.
Reduced degeneration scores

NA

Strontium ranelate (n = 1,371;
3 years) [151]

SCB JSW: fewer radiographic progressors
(both low and high dose)

Beneficial effects on
symptoms (high
dose only)

Dog ACLT [152]: 16 weeks;
Rx start week 4

Cartilage lesions ↓ (macrosc/histol),
SCB thickening ↓ (histomorphometry),
serum CTXII ↓

NA

Rat MMT [153]: 3 or 6 weeks;
Rx start at surgery

Cartilage degeneration ↓, SCB
remodeling ↓

NA

SD6010, oral selective iNOS inhibitor
(n = 1,048; 2 years) [154]

Cartilage JSW: no effect No effect on pain
or function

Dog ACLT [155, 156]: 10 or
12 weeks; Rx start at surgery

Cartilage lesions ↓ (macrosc/histol),
osteophytes ↓, synovial
inflammation ↓

NA

Collagenase induced arthritis
in Nos2 null mice [157]

Cartilage proteoglycan loss ↓,
cartilage lesions ↓, osteophytes ↓

NA

Rat MMT model [158] NA Reversal of mechanical
allodynia and reversal
of WBD 3 hours after
drug administration

Zoledronic acid (n = 59;
single infusion; 6 and12
month follow-up) [77]

SCB MRI BML area: reduction in total BML
area significant at 6 but not 12 months

VAS pain scores ↓
at 6 months, but
not KOOS

Rat MIA [92], rat MMT [70]

a) prophylactic Joint preservation Reversal of WBD

b) therapeutic (early or late
intervention)

Partial preservation, diminishes
with late intervention

Partial effect,
diminishing with
late intervention

Vitamin D3 (n = 146;
2 years) [159]

SCB cartilage MRI cartilage volume: no effect WOMAC: no effect Rat pMNX [160]: prophylactic;
40 days

Inconclusive NA

Osteochondrosis/OA in pigs;
Vit D3 in diet [161]

No effect on OA incidence or
severity of OA lesions, or
cartilage biochemistry

NA

Licofelone (5-LOX and COX
inhibitor; n = 355; 2 years;
not placebo controlled but
compared with NSAID) [162]

Inflammation JSW: no effect WOMAC: pain
improved

Dog ACLT [163]: 12 weeks;
Rx start week 4

MRI cartilage volume ↑, cartilage
damage and osteophytes
↓(macroscopic evaluation only)

NA

Risedronate SCB OARSI score: no effect. Serum CTX-II ↓ NA
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Table 1 Clinical DMOAD trials in knee osteoarthritis (placebo-controlled, peer-reviewed and published since 1999) (Continued)

DH guinea pig [164]: up
to 24 weeks

NZW rabbits ACLT [165]:
11 weeks; Rx start week 3

Loss of cartilage ↓, SCB damage ↓,
serum CTX-II ↓

NA

N = 284 (1 year) [166] JSW: trend toward improvement.
Cartilage degradation and bone
resorption markers ↓

WOMAC ↓

N = 2,483 (2 years) [167] JSW: no effect. uCTXII ↓ WOMAC : no effect

N =1,232 (2 years) [168] Preserved SCB integrity NA

Broad-spectrum MMP inhibitor
(n =401; 1 year) [169]

Cartilage JSW: no effect No effect on pain rat MIA [170]: 3 weeks; Rx
during first week

Cartilage damage ↓ NA

STR/Ort mice [171]: 12 weeks Improved radiographic score and
less cartilage and bone damage

NA

Doxycycline (n = 403;
30 months) [172]

Cartilage JSW: slowed JSN in ipsilateral knee No effect on pain Dog ACLT (after dorsal root
ganglionectomy) [173]:
8 weeks; Rx at start

Less damage on femoral condyle.
No effect on tibial plateau or
osteophytes

NA

DH guinea pig [174]: 9 months
old; 66 days

Less cartilage volume loss (MRI) NA

DMM (mouse) [175]: 4 weeks;
Rx at start

Less cartilage loss NA

ACLT, anterior cruciate ligament transection; BML, bone marrow lesion; COX, cyclo-oxygenase; CTX, C-terminal crosslinked telopeptide type II collagen; DH, Dunkin-Hartley; DMM, destabilization of the medial meniscus; DMOAD,
disease-modifying osteoarthritis drug; iNOS, inducible nitric oxide synthase; JSN, joint space narrowing; JSW, joint space width; LOX, lipoxygenase; KOOS, knee injury and osteoarthritis outcome score; MIA, mono-iodoacetate;
MMP, matrix metalloproteinase; MMT, medial meniscal tear; MNX, meniscectomy; MRI, magnetic resonance imaging; NA, not applicable; NSAID, nonsteroidal anti-inflammatory drug; OA, osteoarthritis; OARSI, Osteoarthritis
Research Society International; OVX, ovariectomy; Rx, treatment; SCB, subchondral bone; VAS, visual analog score; WBD, weight bearing deficit; WOMAC, Western Ontario and McMaster Osteoarthritis Index
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ablation of S100A8/9 inhibits cartilage erosion and osteo-
phyte development only in experimental OA with a signifi-
cant inflammatory component [23, 24]) to actually having
opposite effects (for example, IL-6 ablation is protective in
post-traumatic OA in young mice [25] but worsens age-
associated OA [26]).
Age is one of the strongest risk factors for OA. Ageing

causes changes in chondrocytes and articular cartilage, as
well as in other joint tissues (meniscus, ligaments, bone,
and synovium) and these age-related changes contribute
to OA pathogenesis (reviewed in [27]). Radiographic
changes in the joint become more common with age and
OA often becomes symptomatic [27]. In contrast, most
preclinical studies are conducted in young animals. For
example, in the most widely used murine model of OA,
the destabilization of the medial meniscus (DMM)
model [28], the surgery is usually performed on 10- to
12-week-old mice. However, comparison of 12-week-old
and 12-month-old mice revealed that age affects the basal
pattern of gene expression in joint tissues [29], and when
DMM is performed on 12-month-old animals, the ensuing
OA is more severe than in young mice [29]. Rodents also
develop spontaneous OA with age [30]. Thus, when
modeling molecular mechanisms to define therapeutic
targets in mice and rats, animal age should be a critical
consideration. Response to specific compounds, such
as putative DMOADs or novel OA analgesics, has not
yet been directly compared in young versus old animals
using the same OA model. There has been some compari-
son of the effect of a given genetic modification on in-
duced post-traumatic versus spontaneous age-associated
OA (reviewed in [21]) but there have been no studies that
directly compare the effect of a specific gene on post-
traumatic OA (induced by DMM, for example) in young
versus old mice. Such studies would likely enhance our
appreciation of the predictive potential of specific models
with respect to different OA phenotypes.
While age remains perhaps the strongest predictor of

OA development, overweight and obesity not only sig-
nificantly increase the risk of incident hip and knee OA,
particularly in women, but also its radiographic progres-
sion (reviewed in [31]). Studies in experimental animals
have similarly shown increased OA incidence and sever-
ity with obesity, and it is apparent that this is not simply
driven by increased mechanical loading of joints [32].
High-fat diets in the absence of obesity, and elevation of
specific lipid components increase OA to a similar ex-
tent in laboratory animals, highlighting the complexity
of the metabolic syndrome and the role of local and sys-
temic inflammation and specific cytokines, chemokines
and adipokines [33–36]. In addition to being a primary
risk factor, obesity/metabolic syndrome also exacerbates
post-traumatic OA in mice [37, 38], and the OA that
occurs spontaneously in Trpv4−/− mice [39]. To our
knowledge, no studies have evaluated whether high-fat
diet/obesity offsets the protective effect of other genetic
modifications in mice such as ablation of Adamts5 or
Mmp13. As suggested above with ageing, such studies
would be of value in improving knowledge of the inter-
action of clinically important OA risk factors and improve
the translational utility of data from preclinical models.
Not only does diet-induced obesity increase OA joint

pathology in a mouse model, but it also induces anxiety
and hyperalgesia, and decreases muscle function and loco-
motor activity [40]. These global effects are typical of the
metabolic OA syndrome in patients, supporting the rele-
vance of this preclinical model to the human condition [41].
In the few reported pharmacological interventions in high-
fat diet-induced OA, a statin and a peroxisome proliferator-
activated receptor γ agonist reduced pathology in C-reactive
protein-transgenic mice [34] and a statin but not an-
other cholesterol lowering agent reduced OA in the
APOE*3 L.CETP transgenic hyperlipidemia mouse model
[36]. The effect of statins on spontaneous OA in the STR/
Ort mouse, which also displays obesity, have been incon-
sistent [42, 43]. While these divergent effects suggest
caution in extrapolation of outcomes to humans, they
actually reflect the variability seen in patients. Thus, a
population-based study suggested there may be a disease-
modifying effect of statins in knee but not hip OA [44].
However, a recent report [45] could not demonstrate asso-
ciation between nodal OA, hip OA or knee OA and use of
statins after adjusting for confounders, although use of
statins was associated with a lower prevalence of the gen-
eralized OA phenotype. In addition to effects of pharma-
cological agents, moderate exercise reduced OA severity
in obese mice, and interestingly this was not associated
with altered weight or body fat [46]. These results confirm
that increased joint loading is not the primary driver
of obesity-associated OA, consistent with outcomes of
weight-loss and exercise programs in patients [47].
Weight loss relieves pain in obese OA patients, with a
weight loss of at least 10 % providing significant pain
reduction [48]. A recent study in individuals with symp-
tomatic knee OA suggested a dose–response relationship
between changes in body weight and corresponding
changes in pain and physical function [49]. To date, no
small animal models of obesity-induced OA have evalu-
ated the effect of specific interventions on pain, but tri-
als in overweight dogs confirm that exercise and weight
loss may have a positive effect on pain and gait [50, 51].
Despite sex (in association with age and obesity) being

a significant confounding factor for OA risk (reviewed in
[52]), this has not been systematically studied and com-
pared in preclinical research, either for pathophysiological
or drug studies. Female sex, particularly post-menopausally,
is a risk factor for prevalence and severity of OA [53]. As in
humans, OA in baboons is more common in males in the
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younger population, but disease progresses more quickly
following menopause so it is more prevalent and severe
with age in females [54]. In contrast, in mice [55] and
guinea pigs [56], spontaneous/age-associated OA is more
common and severe in males than females. This may
reflect greater weight gain in older males in these spe-
cies, and that in animals other than primates, natural
menopause and associated changes in bone turnover do
not occur, necessitating ovariectomy to mimic the in-
creased OA risk in older female patients (reviewed in
[57]). Induced OA in animals may also be more progres-
sive in males such as following DMM in mice [58], and as
a result the majority of murine DMM studies are done
in males with direct comparison of OA outcome mea-
sures or interventions (including genetic modification)
in females being uncommon (for an example, see [59]).
Increasingly, researchers are testing therapeutic interven-
tion in ovariectomized rodents [60–64]. Pain researchers
have long recognized that females are at greater risk for
chronic pain, and the International Association for the
Study of Pain has recommended the use of female experi-
mental animals [65]. A recent meta-analysis showed that
female sex is one of the main risk factors associated with
onset of knee pain [66]. Despite the clear importance of
sex in OA risk, progression and symptoms in patients,
we are not aware of any preclinical studies directly
comparing outcomes of therapeutic trials in males versus
female animals.
OA can be stratified according to affected tissues (Fig. 1).

For instance, a subset of OA patients has high bone turn-
over and/or low subchondral bone (SCB) density, and as
such may be responsive to bone-specific therapies [67].
Variable bone remodeling phenotypes and response to
anti-resorptive therapy are also evident in preclinical OA
models, depending on: (i) induction method (for example,
intra-articular mono-iodoacetate (MIA) induces profound
vascular invasion and SCB loss [68, 69]); (ii) stage of dis-
ease (early SCB loss followed by formation in a surgical
rat model [70]); and (iii) species (for example, OA induced
by meniscal injury in mice [61, 71] has a very limited bone
resorption phase compared with rats [70, 72]). Like OA
patients [17], different preclinical models may show differ-
ent degrees of inflammation, and this can determine how
an experimental treatment affects joint pathology or pain.
For example, intra-articularly deposited adipose stem cells
protect against cartilage damage and osteophyte size in
inflammatory-driven collagenase-induced arthritis but not
in the DMM model where synovitis is less pronounced
[73]. In a side-by-side comparison in rats [74], meniscec-
tomy resulted in more inflammation than MIA, and this
was reflected by a greater analgesic effect of intra-articular
triamcinolone, consistent with a greater contribution of
synovitis to pain in the surgical model. This sort of side-by-
side preclinical study highlights the necessity for selecting
the animal model based on the pathological feature of OA
one wishes to interrogate.

What are the structural determinants of pain and
loss of function?
In knee OA, population studies support a substantial
discordance between radiographic changes and knee pain
[75]. Many knee MRI studies, both cross-sectional and
longitudinal, have suggested associations of specific struc-
tural changes with OA pain, the strongest for synovitis
and SCB (Fig. 1) - in particular, MRI-detected bone mar-
row lesions (reviewed in [76]). Recent clinical trial data
suggest that targeting SCB in OA may indeed have an
effect on pain (Table 1). A randomized trial with intra-
venous zoledronic acid, a bisphosphonate used for the
treatment of osteoporosis, demonstrated a reduction in
the volume of bone marrow lesions, and this was asso-
ciated with reduced pain in subjects with knee OA [77].
Another osteoporosis drug, strontium ranelate, recently
showed disease modification in a large 3-year placebo-
controlled trial, and this was associated with a beneficial
effect on pain, further supporting the role of bone in OA
pathogenesis and symptoms [78, 79]. It has been reported
that worsening of MRI-detected synovitis is associated
with increased risk of frequent knee pain, but improve-
ment of synovitis is not associated with decreased risk of
pain or pain severity [80]. Therapeutic studies have
demonstrated significant association between reduced
synovitis on MRI and reduced pain in patients with
rheumatoid arthritis [81] but not OA [82], suggesting
there may be a poorer structure-function relationship
in the latter.
To date, the relationship between pain/disability and

specific joint structural changes have not been extensively
explored across different OA models and species. Yet, tar-
geted pharmacological modulation of specific facets of
OA pathology in experimental animals permits dissecting
the contribution of different aspects of joint disease to
pain. Such studies require measuring pain on the one
hand, which can be approached using different assays,
including evoked pain responses and spontaneous pain
behaviors (reviewed in [83]), and joint pathology on the
other hand. In order to determine specific structural
correlates to pain, pathology has to be carefully evaluated
in all joint tissues, as opposed to a limited evaluation of
the cartilage. While cartilage damage remains the primary
outcome in most OA models, there has been a clear shift
in recent years to include evaluation of other pathological
changes in the joint such as osteophytes, SCB remodeling
and synovitis [22]. Such comprehensive histopathology
can reveal differential effects of a specific gene on joint
tissues; for instance, ablation of Adamts5 or Mmp13
protects against cartilage damage and SCB sclerosis but
not osteophyte formation after DMM [84, 85], while



Malfait and Little Arthritis Research & Therapy  (2015) 17:225 Page 7 of 14
Ccr5 null mice develop less cartilage degeneration but
show no differences in bone or synovial response to
surgery [86]. This comprehensive approach to joint path-
ology is, however, far from the norm across different
species and models, and methods for quantifying histo-
pathology in joint tissues other than cartilage have not
been standardized [87]. In addition, while muscle weak-
ness and/or wasting is typical in OA patients, potentially
playing a role in disease onset and progression and being
a target for therapeutic intervention [88, 89], changes in
skeletal muscle either as a consequence or cause of OA
and associated pain in preclinical models remain largely
understudied [90].
The contribution of SCB to OA pain has been examined

in some detail in preclinical models of OA treated with
different bone-remodeling agents. In rat MIA, pre-
emptive alendronate treatment preserved SCB trabecu-
lar microarchitecture, decreased bone turnover and had
moderate effects on cartilage degradation. These structural
effects were accompanied by a positive effect on weight-
bearing asymmetry, an indicator of pain [69]. In a canine
study where OA was induced by transection of the anterior
cruciate ligament, tiludronate treatment from time of sur-
gery for 8 weeks had no effect on the severity of cartilage
lesions or osteophytes, but treated dogs had a greater SCB
surface and less synovitis than the vehicle-control group.
These effects on bone and synovium were accompanied by
improved pain behaviors (video-captured) and less gait dis-
ability [91]. These studies suggest that SCB bone may be a
source of OA pain and targeting the bone may represent a
strategy for OA analgesia. Several studies have compared
therapeutic efficacy of targeting SCB in early versus later
stages of disease, and found that the beneficial effect is
greatest in early stages of disease when remodeling is most
active. The effects of zoledronate in attenuating bone and
cartilage loss and the accompanying weight-bearing asym-
metry were more pronounced in prophylactic and early
treatment protocols than in a delayed therapeutic setting
[92]. Zoledronate had similar effects in the rat medial
meniscal tear model [70], but only if administered early
in the disease. Interestingly, an independent study re-
cently confirmed the effect of prophylactic treatment
with zoledronate in the rat MIA model on joint protec-
tion and concomitant partial reversal of weight-bearing
deficits, and found this was associated with fewer channels
crossing the osteochondral junction [93]. These osteo-
chondral channels, containing blood vessels and small
nociceptive neurons, have also been demonstrated in
human OA, and may contribute to pain [94]. While
pre-emptive administration of the osteoclastogenesis
inhibitor osteoprotegerin in rat MIA reduced the
number of subchondral osteoclasts, synovitis, and asym-
metric weight-bearing, therapeutic treatment prevented
further changes in weight-bearing and attenuated
osteoclast numbers but not other structural changes
in the joint [93].

Do structural changes correlate with clinical or
biochemical markers?
When characterizing a preclinical model, assessing the
effect of a particular gene, or evaluating therapeutic effi-
cacy, emphasis has traditionally been on structural assess-
ment of the joint, mostly through macroscopic assessment
and histological scoring. The Osteoarthritis Research Soci-
ety International (OARSI) has published guidelines for
histological assessment of OA joints in different species in
an attempt to standardize the assessment and reporting of
animal studies (see collected papers in Osteoarthritis and
Cartilage 2010, Supplement 3). Histology, however, does
not allow for longitudinal assessment of the joint, and
recent years have witnessed tremendous efforts to im-
prove joint imaging in animals. In rodents, microCT,
high-field MRI, and an array of contrast, luminescent
and fluorescent bio-imaging methods have been developed
(for reviews, see [95–97]). Discussion of these methods is
beyond the scope of the current review, but preclinical
models may play a critical role in identifying imaging
markers that are predictive for onset and progression of
OA.
One of the great challenges of clinical trials in OA has

been the slow progression of disease and a lack of bio-
markers that are predictive of OA structural disease on-
set and progression, and associated pain and disability.
Since the writing of the FDA guidelines, emphasis has
shifted to diagnosis and treatment of patients with early
(preclinical) OA prior to significant/irreversible structural
change and/or chronic pain where central sensitization
may confound symptom modification [98]. With recent
advances in imaging modalities, it has also become appar-
ent that patients may have early osteochondral damage
and meniscal tears that are asymptomatic but represent
significant risk factors for progressive OA. Thus, the
emphasis may shift even further to identifying, and per-
haps treating, those that are at higher risk of developing
OA. The search for predictive imaging or biological/
biochemical biomarkers for structural and symptomatic
OA risk, onset, progression and response to therapy re-
mains paramount [99], and more slowly progressive
preclinical models could play a critical role in this. Lon-
gitudinal assessment of biomarkers in serum, urine, or
synovial fluid can further contribute to unraveling cor-
relations between changes in imaging and biochemical
biomarkers with disease stage (time after onset) and
structural pathology/histopathology. Much of the biomarker
work focuses on specific matrix degradation products that
are also commonly used in clinical trials [100]. Recently
some interesting studies have attempted to cast a broader
net for predictive markers, for instance through white blood
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cell microarrays in a horse model [101] and metabolic profil-
ing of serum [102] or synovial fluid in sheep [103].
For patients and clinicians, clearly the outcomes that

matter are pain relief and preservation of joint function.
In large animal models, for instance in dogs and horses,
it has been a longstanding practice to assess joint func-
tion, mainly through evaluating gait. Increasingly in small
animal models, methods to assess disease sequelae of OA,
including pain, sensitization, locomotion, gait, and even
anxiety or depression, are incorporated as outcomes [104].
For instance, in a cruciate ligament transection model in
mice, significant correlation was found between cartilage
structural damage and motor function, gait, and thermal
hyperalgesia [105]. These behavioral outcomes have yet
to be standardized in the context of OA but it can be
anticipated that comprehensive longitudinal assessment
of structural disease, imaging and/or biochemical markers
and pain, sensitization, and/or functional outcomes - as
exemplified in recent clinical [106] and preclinical [107]
studies - will increase our appreciation of the correlation
between specific aspects of OA (and this may be different
for different models mimicking distinct OA phenotypes).

Is the model useful for studying prophylactic
strategies or for studying structural arrest or
reversal?
Many induced models of OA, particularly in rodents, are
relatively rapidly progressive; thus, there may be a lim-
ited window for differentiating prophylactic from thera-
peutic effects. Progression of OA is generally slower in
large animals, providing scope for evaluating timing of
intervention, but they require more drug and are more
expensive. The same OA induction method may have a
very different time course and severity of disease in dif-
ferent species - for example, anterior cruciate ligament
transection in sheep (mild, slow progression), goats
(moderate, slow progression), dogs (moderate to severe,
slow progression with phases of stability), and mice (severe,
very rapid progression) (reviewed in [108]). Within a given
species the severity and progression of OA will vary with
the OA model, as demonstrated with different surgical in-
duction methods in the mouse knee [109]. Interpretation
of the prophylactic or therapeutic efficacy of an interven-
tion, and how the findings translate to humans, requires
in-depth understanding of the preclinical model used.
Spontaneous OA develops not only with advanced age-

ing (for instance, in male C57BL/6 mice) but also preco-
ciously (that is, during maturation rather than ageing) in a
number of animals (for example, male Hartley guinea pigs
and male STR/Ort mice). These spontaneous models are
slowly progressive and amenable to evaluation of therapies
for both prevention and structural arrest (for examples
in guinea pig, see [110–112], and in STR/Ort mice, see
[43, 113]). However, the variable onset and progression
compared with induced models of OA may necessitate
greater animal numbers to sufficiently power studies to
detect therapeutic effect, and longer treatment times
for prophylactic studies and thus more test compound
and cost. It is also important to recognize that the under-
lying mechanisms that drive the onset and progression of
spontaneous OA in these animals are not well defined,
and may reflect specific subtypes of idiopathic human
OA - for example, early SCB remodeling, meniscal ossifi-
cation and ligament changes in Hartley guinea pigs
[114–117] and systemic inflammatory/immune response
in STR/Ort mice [118, 119].
Most preclinical OA studies test the efficacy of a given

intervention on structural protection and usually in
‘prophylactic protocols’ - that is, treatment starts at the
time or immediately after disease is induced. The direct
translational relevance of this approach into the clinical
situation is questionable, since even ‘early OA’ has struc-
tural changes in the joint at the time of diagnosis [98]. A
prophylactic approach may be valid as an initial preclinical
therapeutic trial given the current interest in specifically
targeting post-traumatic OA [22], and it may provide the
best opportunity to detect a therapeutic effect of the
test compound or class of compounds - that is, proof of
principle. However, when considering a broader patient
population including those with established OA, testing
interventions at different stages of disease in preclinical
models is critical, as exemplified by the bisphosphonate
[69, 70, 92] and osteoprotegerin [93] studies in rat OA
models, where efficacy was quite different depending
on when therapy was initiated. Intra-articular mesen-
chymal stem cells were found to be effective only when
administered early in the mouse collagenase-induced arth-
ritis model [73, 120]. Pharmacological augmentation of
Runx1 on the other hand was effective in both prophylac-
tic and therapeutic protocols in a surgically induced OA
model in mice [121]. Clearly, to appreciate the therapeutic
potential of any new agent, it will be necessary to test both
prophylactic and therapeutic protocols across different
models.

Can the model be used to assess long-term
toxicity?
Since the chronic course of OA will require prolonged
therapy aimed at improving quality of life, drug safety is
a particularly important issue [99]. The single most com-
mon reason for closure of drug development programs
is safety, usually during discovery phase mandatory tox-
icity testing [8] (Fig. 2). Toxicology studies are usually
performed in healthy animals rather than in concert with
the preclinical disease model, and may not involve use
of animals with typical risks and co-morbidities associ-
ated with OA (such as age or obesity). It could be pro-
posed that for a chronic pathology like OA, it may be
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63% proceed to Phase I with  failure primarily due to 
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biomarkers and confidence in patient selection;
failure due to efficacy (65%)** & safety (30%)1

60-67% of Phase III progress to approval 
(~10% of all drugs entering Phase 1);1,2

failure primarily due to efficacy** 
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implementation 
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Fig. 2 Drug development pipeline showing the translational phases
(T1 to T4) from basic science discovery through to measurement of
impact on population health. Failure of drug development programs
can occur at all stages, but the major reasons differ with translational
phase. **Efficacy failure is primarily due to poor biological rationale for
the clinical trial: target linkage to disease not established or no validated
models available (40 %) and indication selected does not fit the
strongest preclinical evidence (20 %) [8]. 1[8], 2[142], 3[143], 4[144]

Malfait and Little Arthritis Research & Therapy  (2015) 17:225 Page 9 of 14
advisable to test long-term blockade of a specific target
in a disease-specific chronic model. With rapidly pro-
gressive disease models, such as rat MIA, often only
evaluated for 3 to 4 weeks, long-term side effects or
toxicity of therapy are unlikely to become apparent. The
experience with unexpected musculoskeletal side effects
in patients on prolonged broad-spectrum matrix metallo-
proteinase inhibitors, however, suggests that even routine
use of long-term preclinical OA models may not have
been predictive. To induce the syndrome in rats required
high doses administered by osmotic pumps and careful
histopathological screening or specific functional testing
[122, 123]. More recently, the occurrence of rapidly
progressive OA in non-target joints in patients enrolled
in a clinical trial of anti-nerve growth factor [124] high-
lights the need for disease- and drug-specific toxicity
models. In this case concomitant administration of non-
steroidal anti-inflammatory drugs (NSAIDs) has been
implicated in the risk for side effects. It seems very un-
likely that a preclinical model would routinely involve
multi-drug therapy and model target and non-target
joint disease.
Predicting efficacy in preclinical models: how well
have we done and what can we improve?
Placebo-controlled DMOAD trials for knee OA pub-
lished in peer-reviewed journals since 1999 are listed in
Table 1, juxtaposing clinical trial outcomes and findings
in preclinical studies. A cursory evaluation of this table
leads to the simple conclusion that preclinical models
were poor predictors of clinical trial outcomes. However,
when interpreted in light of the above discussion, it
emerges that animal study design and use has been largely
suboptimal. Preclinical testing was typically performed
by treating prophylactically or early in induced models
(mostly post-traumatic OA) in young and normal-weight
animals, whereas clinical trials mostly focus on age/
obesity-associated, established/late-stage (Kellgren-Lawrence
grade 2 to 3) OA. Thus, the OA target population and pre-
clinical phenotype are mismatched. Further, most preclinical
studies reported are restricted to limited time points in one
study in one animal model, in one species, and in one la-
boratory - that is, there is no testing for reproducibility. The
animal studies usually evaluate a limited set of outcome pa-
rameters, and these parameters typically interrogate the
mode of action of the drug more than assessing the overall
joint health and animal well-being (that is, ‘exploratory’ ra-
ther than ‘confirmatory’ studies [125]). This limits transla-
tional value to the clinical DMOAD trial, where the primary
outcome is joint space narrowing and there is usually a
secondary symptomatic outcome.
Evidence for the predictive validity of OA animal

models for testing efficacy of novel analgesics under de-
velopment for OA pain is extremely limited. Recent clin-
ical trials with antibodies against nerve growth factor
showed clinical benefit, with reduction in joint pain and
improved function [124], but results of preclinical test-
ing of anti-nerve growth factor in OA models are not
yet available in the public domain. Duloxetine, recently
approved for the treatment of chronic musculoskeletal
pain, was efficacious in a 13-week, randomized, double-
blind, placebo-controlled trial in patients with symptom-
atic knee OA [126]. It has been tested in rat MIA, where
it had a moderate effect on hind limb grip force deficit
[127], and corrected weight-bearing deficit but not gait
imbalance [128]. In the same model, local administration
of a fatty acid amide hydrolase-1 inhibitor, which modu-
lates endocannabinoids, significantly reduced hindlimb
incapacitance [129], but a randomized, placebo-controlled
clinical trial with an irreversible fatty acid amide
hydrolase-1 inhibitor failed to induce effective anal-
gesia in patients with painful knee OA [130]. The po-
tential reasons for the different predictive utility of the
model for patient outcomes are manifold. A recent, first
of its kind, meta-analysis of preclinical studies of the ef-
fects of existing analgesic drugs (NSAIDs and opioids) in
models of OA pain provides an analysis of factors that
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may impact the magnitude of the analgesic treatment ef-
fect in animal models of OA pain [131]. Improved under-
standing of how the analgesic effects of existing and novel
compounds observed in various OA animal models relate
to pain and disability in patients will be paramount to ad-
vance translation of symptom-modifying therapies.

Conclusion
Design and use of animal models of OA can be deemed
suboptimal, mainly with respect to OA phenotype, risk
factors, and endpoints under evaluation. Suggestions for
improvements that will enable translation in OA research
are similar in other diseases [132] and include:

1. Better aligning of preclinical models and the clinical
trial population - including OA disease phenotype,
stage, age, sex and confounding co-morbidities.

2. Increasing the ‘translatability score’ of tested therapies
[5, 6] by including evaluation in multiple OA models
and species, and improving reproducibility (for
example, replicating data in different laboratories or
using ‘multi-institutional synchronous co-clinical trials
in mice’ [132, 133]).

3. Standardizing preclinical outcome measures for both
OA pathology and pain (for example, see collected
papers in Osteoarthritis and Cartilage 2010,
Supplement 3; and see [134]). This will not only
enable comparisons between studies and research
groups, but also permit evaluation of the relative
efficacy of different interventions/treatments.

4. Making measured outcomes more clinically relevant
by evaluating whole joint pathology (not just
cartilage) and including measures of pain/disability
in addition to structural pathology. Understanding
how the outcomes measured in the animal model
relate to the human disease may be improved
through using clinically relevant imaging modalities
in preclinical studies [135]. Changing emphasis from
‘statistically significant’ to ‘clinically significant’
effects is an issue pertinent to both preclinical and
clinical research, requiring the establishment of
‘minimally clinically important differences’ (MCIDs)
[136, 137]. The MCIDs for different outcomes in
patients need to be translated to an equivalent ‘effect
size’ in animal models, and then more universally
applicable and standardized measures of efficacy in
preclinical studies can be used, such as the ‘percentage
responders’ (that is, that reach the MCID/effect size)
and ‘number needed to treat’ [138].

5. Increasing the rigor of preclinical science and its
reporting, including use of ARRIVE or other guidelines
[139] enabling better use of meta-analysis of preclinical
OA studies of structure and pain therapeutic
modification [131, 140].
6. Embracing and making use of the One Health
Initiative [141]. The concept behind this worldwide
strategy is that interdisciplinary collaboration and
communication between medical and veterinary
health care and health research will provide multi-
directional flow of knowledge and synergistic gains
for both disciplines. Thus, beyond the use of induced
OA models in laboratory animals to investigate
pathophysiology and treatment, studying OA onset,
progression and management in clinical veterinary
practice provides a ‘real-world laboratory’ of naturally
occurring disease cohorts with similar co-morbidities
to humans (for example, obesity and ageing in dogs or
exercise-induced trauma in athletic horses) for robust
trials of newly developed therapies. This offers the
potential to both benefit animals with OA and to
inform human clinical trials and patient care.

Rather than concluding that preclinical models are not
useful in translational medical research [4], this review has
highlighted a number of issues that could be addressed to
improve the predictive utility of OA animal models. In-
creasingly, researchers are incorporating these consid-
erations into the design and reporting of studies in OA
models. As both clinical and preclinical researchers im-
prove comprehensive longitudinal assessment of struc-
tural disease, imaging and/or biochemical markers and
pain, sensitization, and/or functional outcomes, our ap-
preciation of OA phenotypes and their appropriate
modeling will increase. It can be expected that this will
result in better predictivity of preclinical findings for
human translation and reduce failures.
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