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Abstract

Introduction: Rheumatoid arthritis (RA) is often associated with diminished muscle mass, reflecting an imbalance
between protein synthesis and protein breakdown. To investigate the anabolic potential of both exercise and
nutritional protein intake we investigated the muscle protein synthesis rate and anabolic signaling response in
patients with RA compared to healthy controls.

Methods: Thirteen RA patients (age range 34–84 years; diagnosed for 1–32 years, median 8 years) were individually
matched with 13 healthy controls for gender, age, BMI and activity level (CON). Plasma levels of C-reactive protein
(CRP), interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent
assay (ELISA) in resting blood samples obtained on two separate days. Skeletal muscle myofibrillar and connective
tissue protein fractional synthesis rate (FSR) was measured by incorporation of the amino acid 13C6-phenylalanine
tracer in the overnight fasted state for 3 hours (BASAL) and 3 hours after intake of whey protein (0.5 g/kg lean
body mass) alone (PROT, 3 hrs) and in combination with knee-extensor exercise (EX) with one leg (8 × 10 reps at
70 % of 1RM; PROT + EX, 3 hrs). Expression of genes related to inflammatory signaling, myogenesis and muscle
growth/atrophy were analyzed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR).

Results: CRP was significantly higher in the RA patients (2.25 (0.50) mg/l) than in controls (1.07 (0.25) mg/l; p = 0.038)
and so was TNF-α (RA 1.18 (0.30) pg/ml vs. CON 0.64 (0.07) pg/ml; p = 0.008). Muscle myofibrillar protein synthesis in
both RA patients and CON increased in response to PROT and PROT + EX, and even more with PROT + EX (p < 0.001),
with no difference between groups (p > 0.05). The gene expression response was largely similar in RA vs. CON,
however, expression of the genes coding for TNF-α, myogenin and HGF1 were more responsive to exercise in RA
patients than in CON.

Conclusions: The study demonstrates that muscle protein synthesis rate and muscle gene expression can be
stimulated by protein intake alone and in combination with physical exercise in patients with well-treated RA to a
similar extent as in healthy individuals. This indicates that moderately inflamed RA patients have maintained their
muscle anabolic responsiveness to physical activity and protein intake.
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Introduction
Rheumatoid arthritis (RA) is a systemic, inflammatory,
autoimmune disease primarily affecting the joints [1].
Patients with RA are often characterized by having a
lower muscle mass than their peers [2] and one of the
causal mechanisms has been suggested to be related to
the chronic inflammatory state [3]. Rat studies show that
the development of low-grade inflammation negatively
affects muscle mass and attenuates the muscle protein
synthesis response to feeding [4, 5]. Moreover, plasma
from cachectic patients (cancer and septic shock), char-
acterized by high levels of inflammatory markers, can in-
duce inflammatory signaling and loss of muscle protein
in cultured muscle cells [6–8]. Likewise, an increased
level of systemic inflammation may contribute to the
muscle loss observed in relation to other diseases like
cancer, chronic obstructive pulmonary disease (COPD)
and diabetes [8–15]. Evidently, the loss of muscle mass
leads to muscle strength deficits and in addition, RA pa-
tients may have reduced muscle strength due to greater
intramuscular fat infiltration [16] along with pain-related
limitations. In addition to the repeatedly reported reduc-
tion in muscle strength in RA patients [16–18], metabolic
changes occur in both preclinical and later RA stages, in-
cluding deterioration of blood lipid profile and insulin
sensitivity [19–21] which may increase cardiovascular dis-
ease risk, summing up to a reduced life span [22]. All of
these conditions could be rejuvenated by improving
skeletal muscle mass and quality by means of exercise
and nutritional interventions, highlighting the importance
of understanding the molecular regulation of muscle mass
in RA.
Resistance exercise enhances protein turnover rate, thus

increases both protein synthesis and breakdown rates.
However, a concomitant intake of dietary protein further
stimulates muscle protein synthesis resulting in a net pro-
tein synthesis and thus protein accretion. When repeated,
it makes up a strategy to counteract loss of muscle mass
and strength.
In the present study, we aimed to investigate skeletal

muscle mass regulation in methotrexate-treated RA pa-
tients, measuring leg muscle protein synthesis and ex-
pression of genes involved in myogenesis, inflammatory
signaling and growth/atrophy in response to resistance
exercise and whey protein supplementation in RA pa-
tients compared with that of control subjects. Each RA
patient was carefully matched with a control subject
based on age, gender, activity level and body mass index
(BMI) to rule out direct effects of these parameters and
focus on effects specifically related to the RA disease.
The age and activity matching was important, since an
impaired anabolic response - anabolic resistance - is re-
ported with aging [23], and as even within the normal
range of inflammatory indicators, both age and level of
physical activity plays a role and could contribute to re-
ductions in muscle mass with RA.
In a rat model of RA, adjuvant-induced arthritis, re-

markable changes in skeletal muscle have been demon-
strated [24–30], including increased mRNA expression of
tumor necrosis factor (TNF)-α, muscle ring-finger protein
(MuRF1), atrogin1, insulin-like growth factor (IGF)-1,
MyoD and myogenin in relation to muscle wasting and a
reduced body weight gain during growth. Similar alter-
ations in RA patients may underlie the muscle deterio-
rations observed in these patients. However, whether
expression of such anabolic or proteolytic pathway genes
is altered in muscle of RA patients and how these are reg-
ulated by exercise and protein intake is to our knowledge
currently unknown.
In recent years, treatment of RA patients has improved

resulting in better quality of life for most patients. There-
fore, we included well-treated RA patients receiving the
anchor disease-modifying antirheumatic drug (DMARD),
methotrexate, which is first-line medical treatment for
RA patients. Patients receiving biological anti-TNF-α or
steroid therapy were excluded, in order to obtain a
homogenous experimental group, and due to the fact
that glucocorticoids are expected to markedly affect
skeletal muscle per se [31]. Although the level of sys-
temic inflammation in RA is somewhat reduced during
antirheumatic treatment, it has been shown not to lower
the level completely down to that of healthy peers [32, 33],
and we anticipated that the well-treated RA patients in-
cluded in this study would still have increased levels of
systemic inflammation [17, 32, 34–38].
This study reports for the first time an anabolic re-

sponse of myofibrillar and collagen protein synthesis and
gene expression to acute resistance exercise and protein
feeding in RA patients, similar to that of healthy controls.
However, expression of the genes coding for TNF-α, myo-
genin and hepatocyte growth factor (HGF)1 were more re-
sponsive in RA patients compared to controls.

Methods
Subjects
Thirteen patients diagnosed with RA according to the
American College of Rheumatology (ACR) classification
criteria from 1987 and not receiving anti-TNF-α or ster-
oid therapy (6 months and 6 weeks washout, respectively)
were included. All patients received methotrexate. Time
since RA diagnosis ranged from 1 to 32 years (median
8 years). Exclusion criteria were; type 2 diabetes, BMI
above 38, cardiovascular disease, cancer or known in-
fections. Disease Activity Score in 28 joints (DAS28)
range was 1.8–4.6 (mean 2.6, SD 1.0, n = 6), of these
50 % were seropositive. Each patient (RA) was carefully
matched with a healthy control subject (CON) based
on gender, age (+/− 2 yrs) and BMI (+/− 2 units). RA
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patients were classified into one of four groups (1–4) of
physical activity level according to the physical activity
part of the Copenhagen City Heart Study questionnaire
(Østerbroundersøgelsen, [39]). Matching CON subjects
had to fit into the same activity group as the correspond-
ing RA patient. For inclusion of matching controls 150
candidates were screened by telephone interviews. The
study was approved by the Research Ethics Committees of
the Capital Region of Denmark (H-4-2011-028) and con-
formed to the Declaration of Helsinki. All subjects gave
written informed consent before participation. Subjects
were asked to refrain from caffeine and alcohol for 1 and
3 days, respectively, prior to the experiment and to avoid
exercise for the last 2 days before the experimental day.

Pretest day
Prior to the experimental day, subjects met for a pretest
day for anthropometric measures, strength tests, dual-
energy X-ray absorption (DXA) scanning, blood sampling,
interview etc. Height was measured to the nearest centi-
meter and weight to the nearest 100 g, wearing light
clothes and without shoes. Waist circumference was
measured as the smallest circumference between anter-
ior superior iliac spine and the lower ribs, and hip cir-
cumference as the largest circumference around the
hips, both to the nearest centimeter. Body mass index
(BMI) and waist/height ratio were calculated from these
Table 1 Baseline characteristics

CO

A. Subject characteristics Me

Age (years) 57

Height (cm) 16

Body mass index (BMI) (kg/m2) 25

Blood pressure (mmHg) 13

Waist/hip ratio 0.8

Resting heart rate (HR) (bpm) 70

B. Body composition Me

Region % fat (fat %) 31

Lean body mass (LBM, kg) 45

Appendicular lean soft tissue (ALST, kg) 19

Skeletal muscle index (SMI, kg/m2) 6,8

Fat-free mass/height2 (FFM/H2) (kg/m2) 15

C. Strength and exercise Me

1 repetition maximum (RM) exercised leg (kg) 38

Total kgs lifted 25

1 RM right leg (kg) 38

Maximal voluntary contraction (MVC) right leg (Nm) 17

Physical activity

Physical Activity Scale (metabolic equivalent of tasks (METs)/24 hrs) 44

CON control subjects, RA rheumatoid arthritis patients
measurements. Following 10 min of supine rest, blood
pressure and ‘resting’ heart rate were measured (Table 1a).
Physical activity level of included subjects was recorded by
use of the Physical Activity Scale (PAS) and converted to
metabolic equivalent of task (MET) values as described by
Aadahl and Jorgensen [40]. A brief dietary interview was
performed to ensure that all included subjects consumed
adequate protein and energy.
Body composition including lean body mass (LBM) was

measured by a DXA scan (Model DPX-IQ, Lunar Corp.,
Madison, WI, USA) at medium speed (24 mSv). Appen-
dicular lean soft tissue (ALST) was calculated as lean soft
tissue in arms and legs [41]. Skeletal muscle index (SMI)
was calculated as ALST/height2 (H2). Furthermore fat-free
mass/height2 (FFM/H2) was calculated [42] (see Table 1b).
One repetition maximum (1 RM) was measured in a

knee extension device (Technogym, Superexecutive Line,
Gambottola, Italy) at range of motion 20°–100° (0° cor-
responds to full leg extension) and following individual
adjustment and a brief warm-up consisting of low loads.
Maximal voluntary contraction (MVC) in isometric knee

extension was determined for each leg at 70° of knee
flexion using the Good Strength device (Version 3.14
Bluetooth; Metitur Ltd, Jyväskylä, Finland) after a 5-min
warm-up on a stationary bike. The subjects were seated
and fastened in a rigid chair with hips and knees flexed. A
leg cuff, which was connected to a strain gauge through a
N (n = 13) RA (n = 13)

an SD Mean SD t test

15 56 14 0.15

9 5 167 4 0.32

5 25 4 0.85

4/81 18/8 134/80 19/10 0.94

8 0.08 0.92 0.06 0.07

12 65 10 0.11

an SEM Mean SEM t test

.0 2.9 31.3 3.0 0.90

,2 2.1 44.5 1.3 0.65

,5 1.1 19.0 0.6 0.60

0.3 6.8 0.2 0.54

.8 0.6 16.0 0.4 0.34

an SEM n Mean SEM n t test

.4 3.0 13 37.6 2.5 13 0.73

2 23 13 262 16 13 0.62

.8 3.0 13 40.9 2.4 13 0.57

6.1 10.2 11 179.9 16.6 8 0.71

.4 1.7 13 39.5 1.2 13 0.026
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rigid steel rod, was mounted on the leg just above the
medial malleolus (Table 1c for strength data). Strength is
expressed as moment in Nm, that is, corrected for lever
arm length. The recorded moment was corrected for the
effect of gravitational pull on the lower leg and foot by
calibration before each measurement.
Resting blood samples were obtained by venipuncture

for direct analysis of inflammatory cells and blood lipid pro-
file at the Clinical Biochemistry Department, Bispebjerg
Hospital, Copenhagen, using standard laboratory proce-
dures. Furthermore, ethylenediaminetetraacetic acid (EDTA)
plasma was stored at −80 °C pending analyses as described
below.

Experimental protocol
On the experimental day, subjects arrived fasted in the
morning by taxi to the Institute of Sports Medicine,
Bispebjerg Hospital, Copenhagen, Denmark, where they
were placed supine and remained rested. A catheter was
inserted into an antecubital vein of each arm; one used for
tracer infusion and one used for collection of blood sam-
ples throughout the study. The trial design and sampling
protocol is shown in Fig. 1. After obtaining a background
blood sample, the ring-13C6-phenylalanine tracer (sterile
and pyrogen-free; Cambridge Isotopes Laboratories,
Andover, MA, USA) was administered as a primed
(8 umol/kg LBM), continuous (8 umol/kg LBM/hr)
Fig. 1 Study design. The stable isotope labeled amino acid 13C6-phenylalan
rate (FSR) of muscle protein (vastus lateralis) was measured in the resting, f
in combination with unilateral resistance exercise (EX) (PROT + EX). Upper l
Muscle biopsy time points are marked with B
infusion. The tracer, which was mixed in sterile saline
and sterilized through a 0.2-μm sterile disposable filter
(Minisart, Sartorius Stedium Biotech GmbH, Goettingen,
Germany), was infused throughout the experimental day
(total infusion time 8 hrs). After 1½ hrs of tracer infusion,
the first muscle biopsy was obtained from the resting leg
(B; baseline). At 4 hrs the subjects moved to the exercise
equipment and (after one set of warm-up knee extensions
consisting of eight repetitions at 35 % of 1 RM) performed
one-legged knee extension exercises consisting of ten sets
of eight repetitions at 70 % of 1RM separated by a 1-min
break where subjects remained seated in the knee-
extensor device. Subjects were randomized to perform
the exercise with their dominant or non-dominant leg.
The exercise session was completed in approximately
30 min and was supervised by the experiment leader.
The contralateral leg remained rested. Immediately
after cessation of the exercise session (4½ hrs of tracer
infusion) biopsies were obtained from both legs, at least
4 cm away from the previous biopsy. Immediately here-
after a protein drink consisting of 0.5 g intact whey pro-
tein isolate (Lacprodan-9224, Arla Foods Ingredients,
Viby, Denmark)/kg LBM (12.5 % enriched with ring-13C6-
phenylalanine) dissolved in 190 ml water was consumed
(total amount in RA and CON groups: 25.3 (0.7) and 25.7
(1.2) g (mean (SEM)), respectively). Three hours later bi-
lateral biopsies were obtained, at least 4 cm away from
ine was infused throughout the study period, and fractional synthesis
asted (BASAL) state and after intake of whey protein alone (PROT) and
ine of grey boxes represents one leg, lower line the contralateral leg.
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any previous biopsies. The order of biopsies along one leg,
and whether the exercised or rested leg was biopsied first
was randomized among RA patients whereas identical
procedures were followed in the matched CON subject.

Blood samples and analyses
Venous blood samples were drawn into EDTA tubes and
cooled on ice for 10 min, followed by centrifugation
(10 min at 3060 g at 4 °C), and the plasma phase was
stored at −80 °C until analysis.
Plasma levels of the inflammatory markers C-reactive

protein (CRP), interleukin (IL)-6 and TNF-α were mea-
sured using enzyme-linked immunosorbent assay (ELISA)
in blood samples obtained on the pretest day and the basal
blood sample from the experimental day. The mean value
of these is presented. ELISA kits (CRP DuoSet DY1707,
IL-6 Quantikine HS ELISA Kit HS600B and TNF-α
HSTA00D) were from R&D Systems (Minneapolis, MN,
USA) and procedures have been described previously [43].
Inflammatory cell profile and blood lipid profile (triglycer-
ides, total cholesterol, high-density lipoprotein (HDL) and
low-density lipoprotein (LDL) cholesterol) in basal blood
samples was measured at the Clinical Biochemistry De-
partment, Bispebjerg Hospital, Copenhagen, as previously
described [43].
During the experimental day blood samples (see Fig. 1)

were obtained at time points 0, 15, 90, 150, 210 and
270 min after commencement of isotope infusion and at
time points +15, +30, +60, +90, +120 and +180 min after
consumption of the protein drink, for determination of
ring-13C6-phenylalanine enrichment and plasma glucose.
Blood glucose was measured immediately using an Accu-
Chek, Inform II (Roche Diagnostics, Basel, Switzerland).

Muscle biopsies
As shown in Fig. 1, a total of five biopsies (B) were ob-
tained; baseline, rest, exercise (EX) 0, PROT 3 and
PROT + EX 3 (at time points corresponding to 1½, 4½
and 7½ hrs of isotope infusion) providing three intervals
for fractional protein synthesis rate (FSR) calculations;
BASAL FSR (rest), PROT FSR (0–3 hrs after protein
drink in rested leg), PROT + EX FSR (0–3 hrs after pro-
tein drink in exercised leg). The same five muscle biopsies
were used for gene expression analyses by real-time re-
verse transcriptase polymerase chain reaction (RT-PCR)
as described below. The muscle biopsies were obtained
under local anesthetic (1 % lidocaine), through separate
incisions at least 4 cm apart, in order to separate them as
much as possible while still obtaining biopsies from rea-
sonably similar areas of muscle, this has previously been
shown not to affect FSR measurements [44]. The percu-
taneous needle biopsy technique with a 5-mm biopsy
needle [45] and manual suction was used. The biopsy
was freed from visible fat and connective tissue, and
one piece immediately snap frozen (for later gene ex-
pression analyses) and another piece of approximately
30 mg (range 15.1–57.5) for stable isotope enrichments
was wiped clean from blood in ice-cold saline, weighed,
and snap frozen. Muscle biopsies were stored at −80 °C
until analyses.

Stable isotope analyses
Protein fractionation
Raw skeletal muscle specimens were homogenized (Fast-
prep, 120A-230; Thermo Savant, Holbrook, NY, USA)
for 4 × 15 sec in 1 ml homogenization buffer (0.02 M
Tris, pH 7.4, 0.15 M NaCl, 2 mM EDTA, 0.5 % Triton-X
100, 0.25 M sucrose) left overnight at 5 °C, then homog-
enized once again at day 2 and left at 4 °C for 1 hr before
centrifugation (20 min, 1600 g, 4 °C). The supernatant was
discarded and 1.5 mL of high-salt buffer (0.7 M KCl and
0.1 M pyrophosphate) was added to the pellet, which was
vortexed for 30 sec and left at 4 °C overnight. After a spin
(20 min, 1600 g, 4 °C), the supernatant (myofibrillar pro-
tein fraction) was transferred to new vials and the pellet
(connective tissue fraction) washed once more with high-
salt buffer and left for 2 hrs and centrifuged (20 min,
1600 g, 4 °C) again from which the supernatant was dis-
carded. The myofibrillar proteins in the supernatant were
precipitated by adding 3.45 mL ice-cold 99 % ethanol and
left at 4 °C for 30 min. After spinning (20 min, 1600 g,
4 °C) the supernatant was discarded. Both myofibrillar
and connective tissue protein pellets were added to
1 mL of 6 M HCl and left at 110 °C overnight to hydrolyze
proteins. The analysis of protein-bound tracer abundances
were carried out on the GC-C-IRMS equipment (Finnigan
Delta Plus, Bremen, Germany) as described in more detail
elsewhere [46].

Precursor enrichment
Plasma-free amino acids were purified on resin columns
(AG 50 W-X8 resin; Bio-Rad Laboratories, Hercules, CA,
USA). After being washed, eluted and dried down under a
stream of nitrogen, the purified amino acids were deriva-
tized using N-methyl-N-(tert-butyldimethylsilyl)trifluor-
oacetamide + 1 % tert-butyl-dimethylchlorosilane (Regis
Technologies, Morton Grove, IL, USA) mixed 1:1 with
acetonitrile. The MTBSTFA-derivative of phenylalanine
was separated on a CP-Sil 8 CB capillary column (30 m,
0.32 mm ID; coating, 0.25 μm) (ChromPack; Varian, Palo
Alto, CA, USA) and the isotope ratios were analyzed
on a triple-stage quadrupole mass spectrometer (TSQ
Quantum; Thermo Scientific, San Jose, CA, USA) oper-
ated in electron ionization mode. Chromatogram integra-
tion was carried out in MassRatio 2.72 (FBJ Engineering,
Frederiksværk, Denmark) and the tracer-to-tracee ratio
(TTR) was calculated by subtracting the isotope ratio of a
background sample from all the enriched samples.
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Fractional synthesis rate calculations
The ring-13C6-phenylalanine enrichment of the myofibril-
lar and connective tissue muscle protein fractions mea-
sured by GC-C-IRMS (Hewlett Packard 5890-Finnigan gas
chromatography-combustion III-Finnigan Deltaplus iso-
tope ratio mass spectrometry; Thermo Finnigan MAT,
Bremen, Germany) were used to calculate the fractional
synthesis rate (FSR) in percent per hour. Calculations are
based on the incorporation rate of ring 13C6-phenylalanine
into muscle proteins using a standard precursor–product
model as follows:

FSR %=hrð Þ ¼ ΔEproduct� 100
Eprecursor� Δt

where ΔEproduct is the change in tracer enrichment
of protein-bound ring 13C6-phenylalanine in two biopsies
from the same leg taken with a time interval of Δt. Epre-
cursor is the mean precursor 13C6-phenylalanine enrich-
ment during that time interval. Here we used venous
plasma tracer enrichments as a surrogate estimate of the
precursor enrichment.
Whole-body rate of appearance (Ra) of 13C6-phenyl-

alanine (an estimate of whole-body protein breakdown
rate) was calculated as:

Ra ¼ Infusion rate
Eplateau

Where Eplateau was the weighted average of venous
plasma enrichment throughout the basal or protein
(PROT) + exercise (EX) periods or the two combined.

RNA extraction
RNA was extracted as described in [47]. Essentially, ap-
proximately 15 mg of frozen muscle tissue from each
biopsy was homogenized in TRI Reagent (Molecular
Research Center, Cincinnati, OH, USA), using 1-bromo-3-
chloropropane for phase separation and isopropanol to
precipitate RNA. The RNA pellet was washed in ethanol
and dissolved in RNase-free water. RNA concentrations
were determined by spectroscopy at 260 nm. Quality of
the RNA was checked by gel electrophoresis and spectro-
photometer ratios at 260/240 nm (acceptable range
1.2–1.6 at pH 8) and 260/280 nm (1.8–2.0 at pH 7.5–8.0).

Real-time RT PCR analysis
Expression of a total of 26 different genes was measured
(see Table 2 for full list) belonging to the following
groups; satellite cell regulators and inflammation, heat
shock proteins, myogenic regulatory factors, atrogenes
and cytokines and their receptors.
Total RNA (500 ng from each muscle sample) was con-

verted into cDNA in 20 ul using the OmniScript reverse
transcriptase (Qiagen, Valencia, CA, USA) according to
the manufacturer’s protocol.
For each target mRNA, 0.25 ul cDNA was amplified in

a 25-ul SYBR Green PCR reaction containing 1 × Quan-
titect SYBR Green Master Mix (Qiagen) and 100 nM of
each primer (Table 2). The amplification was monitored
real time using the MX3005P real-time PCR machine
(Stratagene, Santa Clara, CA, USA). The threshold cycle
(Ct) values were related to standard curves made with
PCR products to determine the relative difference between
the unknown samples, accounting for the PCR efficiency.
The specificity of the PCR products was confirmed by
dissociation curve analysis after amplification. All mRNA
data were normalized to ribosomal protein, large, P0
(RPLP0). For normalization control, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), see Additional file 1.
Baseline data (1.5 hrs rest, relative to mean CON) are
shown in Additional file 2. mRNA expression data are
presented as fold changes relative to individual baseline
values.

Statistical analysis
Results are reported as mean (SE) unless otherwise stated.
Protein synthesis and gene expression data were analyzed
by two-way repeated-measures (RM) ANOVA (SigmaPlot
12.3, Systat Software Inc, San Jose, CA, USA) and
Student-Newman-Keuls (SNK) post hoc test with cor-
rection for multiple comparisons. Significant effects of
group (CON vs. RA) or biopsy and interaction (group ×
biopsy) are shown on graphs at a significance level of
p < 0.05. P values ≤0.1 are also shown on graphs, for
trends. All mRNA data were log-transformed for stat-
istical analyses and shown as geometric mean ± back-
transformed SE. For some mRNA targets, the pattern
of missing data led to exclusion of subject pairs from
the statistical analyses, resulting in exclusion of the
following number of subject pairs; IL1β = 4; IGF-IEc = 1;
IL1R = 1; cmet = 1. All other data (with only a single data
point per subject) were compared by a paired two-tailed
t test (Prism 6.02 for Windows, GraphPad Software Inc, La
Jolla, CA, USA). Plasma ELISA data were log-transformed
for statistical analyses.

Results and discussion
Baseline characteristics
As shown in Fig. 2, CRP was higher in the RA patients
(2.25 (0.50) mg/l) than in CON subjects (1.07 (0.25) mg/l;
p = 0.038), TNF-α was higher in RA (1.18 (0.30) pg/ml)
than CON (0.64 (0.07) pg/ml; p = 0.008) and IL-6 tended
to be higher in RA (RA 2.89(0.68) pg/ml; CON 1.74(0.32)
pg/ml; p = 0.065). Although going in the same direction,
these differences in inflammatory markers between RA
patients and healthy CON individuals were not as pro-
nounced as previously reported in a majority of studies



Table 2 Primers used for real-time RT-PCR

Target Sense primer Antisense primer

RPLP0 GGAAACTCTGCATTCTCGCTTCCT CCAGGACTCGTTTGTACCCGTTG

GAPDH CCTCCTGCACCACCAACTGCTT GAGGGGCCATCCACAGTCTTCT

IGF-IEa GACATGCCCAAGACCCAGAAGGA CGGTGGCATGTCACTCTTCACTC

IGF-IEc GCCCCCATCTACCAACAAGAACAC CGGTGGCATGTCACTCTTCACTC

HGF TGAAATATGTGCTGGGGCTGAAA ACAAACAAGTGGGCCACCATAATCC

Cmet AACCCGAATACTGCCCAGACCC TGATATCCGGGACACCAGTTCAG

MCP1 GCCCTTCTGTGCCTGCTGCT GCAGGTGACTGGGGCATTGATT

COX1 GGTTTGGCATGAAACCCTACACCT CCTCCAACTCTGCTGCCATCT

COX2 TGGAACATGGAATTACCCAGTTTGTTG TGTGATACTTTCTGTACTGCGGGTGG

HSP70 GTGGCTGGACGCCAACACCTT TTACACACCTGCTCCAGCTCCTTC

HSP27 GCTGACGGTCAAGACCAAGGATG TGAAGCACCGGGAGATGTAGCC

αB-crystallin GTGTTGGGAGATGTGATTGAGGTG CTGGGATCCGGTATTTCCTGTGG

Myogenin CTGCAGTCCAGAGTGGGGCAGT CTGTAGGGTCAGCCGTGAGCAG

Myf6 GGGCTCGTGATAACGGCTAAGGA TGTCCACGATGGAAGAAAGGCA

MyoD ACGAAGGCGCCTACTACAACGA GACACCGCCGCACTCTTCCC

Myostatin TGCTGTAACCTTCCCAGGACCA GCTCATCACAGTCAAGACCAAAATCC

Atrogin1 TGTTACCCAAGGAAAGAGCAGTATGGA ACGGAGCAGCTCTCTGGGTTATTG

MuRF1 TGGGGGAGCCACCTTCCTCT ATGTTCTCAAAGCCCTGCTCTGTCT

TNFα TTCCCCAGGGACCTCTCTCTAATC GAGGGTTTGCTACAACATGGGCTAC

TNFRI GGGAGGACAGCGCCCACAAG CACGAATTCCTTCCAGCGCAAC

TNFRII CCACTCGGAACCAGCCACAG CCATGGCCACCAGGGGAAGA

IL-1β TGCGTGTTGAAAGATGATAAGCCCA CAAATCGCTTTTCCATCTTCTTCTTTG

IL-1R GGAAGGGATGACTACGTTGGGGA CCAGCCAGCTGAAGCCTGATGTT

IL-6 GAGGCACTGGCAGAAAACAACC CCTCAAACTCCAAAAGACCAGTGATG

IL-6R CCAGGAGGAGTTCGGGCAAG GGGGTGGACACCTCGTTCTCA

Abbreviations: RT-PCR real-time reverse transcriptase-polymerase chain reaction, RPLP0 large ribosomal protein P0, GAPDH glyceraldehyde-3-phosphate dehydrogenase,
IGF insulin-like growth factor, HGF hepatocyte growth factor, MCP1 monocyte chemoattractant protein = CCL2, COX cyclooxygenase, HSP heat shock protein, MuRF1
muscle ring finger protein 1, TNF tumor necrosis factor, IL interleukin, R receptor
The HGF primers are specific for the two largest splice variants including the SP domain

A B C

Fig. 2 Systemic inflammatory markers. Plasma levels of the inflammatory markers tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and C-reactive
protein (CRP) measured in controls (CON) and RA patients (RA). Individual data (mean of two sampling days) were log-transformed for statistical
analyses and data are shown on log scales with line at geometric means. Significance level of paired comparisons is given on graphs
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[32, 35, 37, 38, 48, 49], but were similar to the moderate
levels observed by Crowson et al. [50]. Most likely, the
limited elevation of systemic inflammatory markers em-
phasizes the very well-functioning state of the RA patients
participating in this study.
The overview of subject characteristics in Table 1 re-

veals many similarities between RA and CON groups.
However, waist/hip ratio (Table 1a) tended to be higher in
RA than CON (p = 0.07). Among RA patients, six were
smokers (5–20 cigarettes/day, mean 10) and among con-
trols four were smokers (1–17 cigarettes/day, mean 10).
Use of medication in the two groups is shown in Table 3.
These records show that all RA patients use medication of
some type, mostly DMARDs like methotrexate (all 13
patients) and salazopyrin (5/13 patients). Pain relief
medication was frequently used by RA patients, mostly
paracetamol (7/13 patients) and nonsteroidal anti-
inflammatory drugs (NSAIDs) (3/13) whereas only a sin-
gle CON participant reported use of each of these drugs.
Most RA patients had some comorbidity (see Additional
file 3 for complete list), except for two patients. No sub-
jects from the CON group used any rheumatic drugs and
had only a minor intake of painkillers. Seven CON
subjects were completely free from comorbidities. These
differences in comorbidities and medication could be con-
founding the systemic inflammation data (Fig. 2), since
some comorbidities may contribute to an elevation of in-
flammatory markers while antirheumatic medication is
likely to reduce these markers. Body composition mea-
sures (Table 1b) were not different between RA and CON,
likewise, no differences in knee extensor muscle strength
(Table 1c) measured as one repetition maximum (1 RM)
and maximal voluntary contraction (MVC) were observed
between groups. The total number of kg lifted during the
Table 3 Medication

Medication

CON RA

Methotrexate 0 13

Salazopyrin 0 5

Paracetamol 1 7

NSAID 1 3

Acetylsalicylic acid 2 0

Anti-asthmatics 0 4

Folic acid 0 8

Statins 1 1

ACE inhibitors 0 3

Hormone therapy 0 1

Pain relief (tramadol) 0 1

No medication 9 0

Abbreviations: CON control subjects, RA rheumatoid arthritis patients, NSAID
nonsteroidal anti-inflammatory drug, ACE angiotensin-converting enzyme
experimental acute exercise session was not different be-
tween groups (Table 1c). When estimated by PAS, physical
activity level turned out higher in CON than in RA (p =
0.026). The similarities in body composition between RA
patients and CON were somewhat surprising and in con-
trast to previous reports of reduced muscle mass [2, 16,
42] and increased fat accumulation in RA patients [51,
52]. Furthermore, the similar muscle strength between RA
and CON indicate that the patients were well-functioning
in comparison to those participating in previous studies
[16, 17, 38, 53, 54]. Data on blood lipid profile and circu-
lating inflammatory cells is given in Table 4. Although
metabolic changes are usually reported at all stages of RA
disease [19], we detected neither differences between RA
and CON in blood lipid profile, blood pressure, metabolic
syndrome biomarkers, fasting glucose, nor in the circulat-
ing inflammatory cell profile for all of which changes have
previously been reported in RA patients [19, 48, 50].
Again, this reflects the clinically well-controlled condition
of the participating patients. Throughout the experimental
day, blood glucose level was not different between groups
and was stable around 5 mmol/l (Fig. 3 and Table 4b).

Muscle protein synthesis
Fractional synthesis rate (FSR) of muscle myofibrillar
and connective tissue protein is shown in Fig. 4. The
myofibrillar protein synthesis was enhanced in response
to protein intake (p < 0.05) and was further increased
when combined with heavy resistance exercise (p < 0.001).
This response was similar in CON and RA groups. Con-
nective tissue protein synthesis was increased after exer-
cise combined with protein intake (p < 0.001), but not by
protein intake alone (p > 0.1). Irrespective of state (fasting,
protein fed alone or in combination with exercise), con-
nective tissue FSR tended to be higher in RA than CON
(p = 0.060). Plasma tracer enrichment (Fig. 5) was lower
Table 4 Inflammaroty cells & Blood lipid profile

CON (n = 13) RA (n = 13)

A. Inflammatory cell profile Mean SEM Mean SEM t test

Leucocytes (total, x109/l) 7.3 0.4 6.7 0.7 0.53

Neutrohils (x109/l) 4.7 0.3 4.1 0.6 0.44

Lymphocytes (x109/l) 1.81 0.13 1.82 0.19 0.96

Monocytes (x109/l) 0.57 0.05 0.55 0.05 0.77

B. Blood lipid profile

Triglycerides (mmol/l) 1.2 0.1 1.4 0.2 0.41

Total cholesterol (mmol/l) 5.3 0.3 5.5 0.3 0.75

HDL cholesterol (mmol/l) 1.7 0.1 1.6 0.1 0.44

LDL cholesterol (mmol/l) 3.1 0.2 3.4 0.3 0.28

Fasting glucose (mmol/l) 5.0 0.2 5.3 0.2 0.66

Abbreviations: CON control subjects, RA rheumatoid arthritis patients, HDL,
high-density lipoprotein, LDL, low-density lipoprotein



Fig. 3 Blood glucose levels. Level of blood glucose throughout the experimental day. Subjects arrived fasted in the morning, and ingested only
the protein drink (0.5 g whey/kg lean body mass) as marked by the arrow. Mean ± SE, n = 6–12
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in RA vs. CON throughout the infusion period (p = 0.028)
(ranged between 0.11 and 0.14 in RA and 0.12 and 0.18 in
CON). Whole-body protein breakdown rate (rate of tracer
amino acid appearance) was reduced following protein in-
take (PROT) and one-legged resistance exercise (EX)
(BASAL = 64.4 (SE 3.8) and 71.5 (SE 3.2) and PROT +
EX = 58.5 (SE 2.4) and 63.6 (SE 2.1) μmol/kg LBM/hr
in CON and RA, respectively; time p < 0.001) and tended
to be higher in RA than in CON as an average over the
entire study period (TOTAL; p = 0.11). However, the
whole-body assessment of protein turnover is neither
protein nor tissue specific and we cannot say whether
the tendency to a higher protein turnover rate in RA
patients is a general phenomenon or may be related to
a specific tissue (i.e., skeletal muscle) or protein type.
We showed a comparable basal muscle protein synthe-

sis rate in RA and CON (Fig. 4a and b). Muscle protein
turnover in patients with RA has to our knowledge been
investigated in only one human study previously [55],
showing that the resting, fasted FSR in RA patients not
receiving steroid therapy was similar to osteoarthritis pa-
tients serving as controls. Further, the present study shows
for the first time an anabolic response (elevated myofibril-
lar FSR) to acute whey protein feeding alone, which was
amplified when combined with acute resistance exercise
in patients with RA. Additionally, this response was not
different from that observed in healthy control subjects
matched for age, gender, BMI and physical activity. Appar-
ently, in our RA patients the connective tissue fraction
was less responsive to nutritional intervention than the
myofibrillar fraction, which is in accordance with previous
findings [56]. For further details of the anabolic response
to acute exercise and protein feeding, protein expression
and signaling analyses of targets of the Akt-mTOR signal-
ing pathway would have been relevant, however, since we
observed similar FSR responses in RA and CON, we chose
to focus on transcriptional regulation of genes involved in
other aspects of muscle adaptation as described in the
following section.

Muscle gene expression
In the present study, expression of genes related to in-
flammatory signaling, myogenesis and muscle growth/
atrophy as well as heat shock proteins responded similarly
in RA and CON. No differences were observed in basal
gene expression level between RA and CON (Additional
file 2). Changes in mRNA expression from baseline is
shown in Figs. 6, 7, 8, 9 and 10, divided into subgroups re-
lated to satellite cell (SC) regulators and inflammation
(Fig. 6), heat shock proteins (Fig. 7), myogenic regulatory
factors (Fig. 8), atrogenes (Fig. 9), as well as cytokines and
receptors (Fig. 10). As shown in Fig. 6, HGF1 expression
was overall higher in RA vs. CON (Group, p = 0.026), spe-
cifically HGF1 expression was higher in RA patients than
CON at EX0 and PROT + EX3 (p < 0.001 and p = 0.004,
respectively). The higher expression of HGF1 in RA than
CON indicate an increased sensitivity toward signaling via
this pathway in RA patients, which could be located to the
skeletal muscle stem cells, SCs, since HGF1 signaling is
involved in activation of SC [57, 58], although our gene
expression analysis is not specific to the SCs. HGF1 acti-
vates SCs via binding to the cmet receptor [59].
However, no significant changes in gene expression of

the HGF1 receptor, cmet, were observed, indicating that
this is not the regulatory site for this pathway. Macro-
phage chemoattractant protein 1 (MCP-1, also known as



A

B

Fig. 4 Fractional synthetis rate (FSR) of muscle myofibrillar and connective tissue protein. FSR of muscle myofibrillar (a) and connective tissue
(b) protein given in %/hr in control (CON) and rheumatoid arthritis (RA) patient groups, measured in the resting, fasted (BASAL) state and after
intake of whey protein alone (PROT) and in combination with unilateral resistance exercise (EX) (PROT + EX). Black bars denote rheumatoid
arthritis patients (RA, n = 13) and grey bars healthy controls (CON, n = 12–13). Letters a, b and c denote significant differences between sampling
time points (two-way RM ANOVA)
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CCL2) was induced by exercise (but not protein feeding),
both acutely (EX 0, p = 0.02) and even more 3 hrs later
(p < 0.001) in both groups combined. This indicates
that it is involved in the adaptive response to resistance
exercise. Potentially, it plays a role in crosstalk between
inflammatory cells (macrophages) and SC, as indicated
by its colocalization with these cells [60]. Cyclooxygen-
ase 2 (COX2) expression was induced immediately after
exercise (p = 0.011), in line with previous reports [61, 62],
although at later time points. In contrast, we and others
have previously reported COX2 induction only when exer-
cise was combined with COX inhibition [47, 63]. Taken



A

B

Fig. 5 Enrichment and rate of appearance of 13C6-phenylalanine. a Plasma 13C6-phenylalanine (13C6-Phe) enrichment (tracer-to-tracee ratio (TTR))
during the entire infusion period. Mean ± SE, n = 13. b Rate of appearance (μmol/kg LBM/hr) of 13C6 Phe (Ra) during the basal period (BASAL,
3 hrs), after protein intake and exercise (PROT + EX, 3 hrs) and over the two periods combined (TOTAL, 6 hrs). Over the total period, Ra tended to
be higher in rheumatoid arthritis patients (RA) vs. healthy controls (CON) (p = 0.110). Individual data are shown with line at mean ± SE, n = 13
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together, we observed some indications on involvement
of HGF1, MCP-1 and COX2 in the adaptive response
to exercise, however, differential regulation between RA
and CON was only observed for HGF1.
In Fig. 7 mRNA expression of heat shock proteins

(HSPs) is shown. All three HSPs (HSP70, HSP27 and
αB-crystallin) were induced by exercise both immediately
after (EX 0, p < 0.001) and 3 hrs later (PROT + EX 3, p <
0.001), but not by protein intake. The induction of HSPs a
few minutes after exercise (EX0), suggests that the HSP
response to unaccustomed exercise is even more acute
than previously shown (as discussed in [64]) and that
muscle of RA patients is equally responsive as in CON.
Myogenic regulatory factors (Fig. 8) were induced by
exercise combined with protein intake but not by protein
intake alone. Myogenin expression was higher in RA than
CON (Group; p = 0.021), pointing at an increased re-
sponsiveness in RA patients, although this was not ap-
parent for the other myogenic regulatory factors Myf6
and MyoD. Myf6 expression was increased both imme-
diately after exercise (EX 0, p < 0.001) and 3 hrs later
(PROT + EX 3, p < 0.001). Expression of MyoD was in-
creased only 3 hrs after exercise (PROT + EX 3, p < 0.001).
In general, myogenic regulatory factors were induced by
exercise, and mainly after 3 hrs compared with immedi-
ately after, which is in line with previous observations



Fig. 6 Satellite cell regulators and inflammation. mRNA expression relative to 1.5 hrs (baseline). For hepatocyte growth factor 1 (HGF1), letters a-b
denote significant differences within controls (CON)
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[65, 66] and the response was not different between RA
and CON. Nor did we observe a difference in resting gene
expression between RA and CON (Additional file 2) in
the current study. In muscle from a rat model of RA
(adjuvant-induced arthritis) both protein and mRNA
expression of MyoD and myogenin were increased at
rest, however, this was not investigated in relation to
exercise [24–26].
Expression of myostatin and the atrogenes Atrogin1

and MuRF1 is shown in Fig. 9. The negative regulator of



Fig. 7 Heat shock proteins. mRNA expression relative to 1.5 hrs (baseline)
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muscle mass, myostatin, was downregulated 3 hrs after
exercise + protein (PROT + EX 3, p < 0.001) and responds
to exercise in an overall similar manner in RA patients
and CON. Atrogin1 was downregulated 3 hrs after protein
intake alone (PROT 3, p < 0.001) and in combination with
exercise (PROT + EX 3, p < 0.001), whereas MuRF1 was
downregulated 3 hrs after protein intake alone (PROT 3,
p < 0.001), but upregulated 3 hrs after exercise combined
with protein intake (PROT + EX3, p < 0.001). Also for the
atrogenes, no impact of RA could be observed. In muscle
of the rat model of RA, mRNA expression of MuRF1 and
atrogin1 was markedly increased [27, 29, 30], however, this
difference was not apparent in our human subjects. Simi-
larly, COX2 expression was markedly increased in muscle
of arthritic rats, which was not reproduced in the RA pa-
tients of the present study either (Fig. 6).
Figure 10 displays mRNA expression of selected cyto-

kines and their receptors. TNF-α expression was higher
in RA than in CON across all biopsy points (Group, p =
0.036) and was induced immediately after exercise (EX
0, p < 0.001); the former is in line with the increased
mRNA expression of TNF-α found in gastrocnemius
muscle of rats with adjuvant-induced arthritis [27, 29]
indicating a more responsive TNF-α expression in muscle
from RA patients. TNF-α is believed to be a central medi-
ator of muscle wasting in rheumatoid arthritis by alter-
ation of the balance between muscle protein synthesis and
breakdown. Via inhibition of signaling from the insulin re-
ceptor [67] and IGF-1 receptor via JNK and IRS-1 [68],
TNF-α can reduce peripheral insulin action and interfere
with IGF-1 signaling, leading to a reduction of the ana-
bolic responsiveness. Anti-TNF-α therapies have proven
effective in RA although muscle mass is not necessarily re-
versed by anti-TNF-α treatment [32]. However, the ana-
bolic response to a positive energy balance was improved
by anti-TNF-α treatment, seen by a larger gain of fat-free
mass compared with methotrexate treatment [35] and
supporting a role for TNF-α in the regulation of muscle
mass. Interestingly, the higher TNF-α expression in the
present study did not result in such differences in muscle
mass or acute anabolic response, leaving the significance
of this differential TNF-α expression an open question.



Fig. 8 Myogenic regulatory factors. mRNA expression relative to 1.5 hrs (baseline). Myogenin expression at REST was significantly different from baseline
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TNFR1 expression was slightly increased 3 hrs after
protein + exercise (PROT + EX 3, p < 0.001), whereas
no changes were observed for TNFR2 or IL-1β. Induction
of TNFR expression 3 hrs after exercise + protein has to
our knowledge not been reported before, although higher
levels of TNFR1 gene expression was recently reported in
older (61 and 76 years) compared to younger subjects
(40 years) [69], both at rest and 24 hrs after acute resist-
ance exercise. Generally, regulation of TNF receptors in
human muscle is not well understood. Both TNFR1 and 2
were expressed at high levels in the present study, while
correlations were observed between TNFR1 and 2 expres-
sion (r = 0.57, p = 0.003, data not shown). Inflammatory
signaling via IL-6, IL-6R and IL-1R was induced by ex-
ercise with an early upregulation of IL-6 immediately
after exercise (EX 0, p < 0.001) and to a lesser extent
in the resting leg (REST, p < 0.001) whereas the recep-
tors were upregulated 3 hrs after exercise + protein
(PROT + EX 3, p < 0.001). None of these responses
were different between RA and CON, indicating a
normal cytokine response to acute resistance exercise
in RA patients.
At baseline no differences in mRNA expression between
RA and CON were observed for any of the investigated
target genes (Additional file 2), although in skeletal muscle
of arthritic rats, marked changes in gene expression in-
duced by the disease have been consistently reported.
Thus, our human data from RA patients do not confirm

the upregulation of muscle regulatory, inflammatory and
catabolic markers found in animal models of RA, which is
in line with the overall healthy state and preserved ana-
bolic response of RA patients in the present study.
In contrast to the present findings in RA patients, re-

markable differences in gene expression between elderly
and young muscle previously have been reported includ-
ing an elevated expression of inflammatory genes [69, 70],
atrogenes [71] and MRFs [65] in resting skeletal muscle.
Within the same time frame as used in the present study,
Atrogin1 is induced by exercise only in old muscle [71],
and IL-6 induction and myostatin downregulation by re-
sistance exercise are more pronounced in old compared
to young muscle [70, 72]. Together these results from
elderly muscle indicate increased muscle inflammation
susceptibility [69] and an altered acute muscle adaptive



Fig. 9 Atrogenes. mRNA expression relative to 1.5 hrs (baseline)
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response to exercise in elderly muscle, which could also
contribute to the muscle deficits in RA patients. However,
apart from a more pronounced induction of TNF-α,
HGF1 and myogenin in RA vs. CON, this was not the case
in the present study. Previously, knowledge about regula-
tion of muscle gene expression in RA has relied only on
animal studies, but from the current study we can now
add human data.
Taken together, our gene expression data indicate that

specific targets involved in muscle and SC regulation
(HGF1, myogenin and TNF-α) are induced to a larger ex-
tent in RA patients than in healthy CON subjects, how-
ever, the majority of genes investigated showed similar
responses in RA vs. CON indicating that skeletal muscle
tissue of RA patients responds equally well to an acute ex-
ercise stimulus compared to healthy CON subjects.

Limitations
Keeping in mind that results may not apply for RA pa-
tients in general, the present study indicate that skeletal
muscle of RA patients does not differ markedly from
healthy control muscle and that they respond to protein
intake alone and in combination with exercise in a simi-
lar way. The patients participating in the present study
were a selected group of well-functioning RA patients,
and thus no changes in either muscle strength or muscle
mass were detected, which reduces the external validity
of the study and leaves the question open of how RA pa-
tients with highly elevated systemic inflammatory levels
and/or cachexia are characterized with respect to molecu-
lar (signaling) regulators of muscle mass and muscle pro-
tein turnover in response to the same interventions.
Conclusions
In conclusion, muscle protein synthesis and transcriptional
regulation can be stimulated with both protein intake and
physical exercise in patients with RA to a similar degree as
in healthy individuals. These findings show that charac-
teristics inherent of RA disease do not affect the muscle
protein synthesis and gene expression response to acute
exercise and protein intake, when factors like BMI, age
and activity level are controlled by carefully matching
each patient with a corresponding healthy control subject.



Fig. 10 Cytokines and receptors. mRNA expression relative to 1.5 hrs (baseline). Tumor necrosis factor receptor 1 (TNFR1) and interleukin (IL)-6
expression at REST was significantly different from baseline
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Additional files

Additional file 1: Normalization control. GAPDH gene expression data
normalized to RPLP0 and individual baseline values, log-transformed for
statistical analyses and shown on a logarithmic scale as geometric mean
± SEM. Black bars denote rheumatoid arthritis patients (RA, n = 13) and
grey bars healthy controls (CON, n = 13). (PDF 173 kb)

Additional file 2: mRNA expression at baseline. Baseline expression
of all targets is expressed relative to mean healthy CON at baseline. Gene
expression data were normalized to RPLP0, log-transformed for statistical
analyses and shown on a logarithmic scale as geometric mean ± SEM. Black
bars denote rheumatoid arthritis patients (RA, n = 13) and grey bars
healthy controls (CON, n = 13). No significant differences were observed
between groups. (PDF 177 kb)

Additional file 3: Comorbidities. Table of reported comorbidities in
rheumatoid arthritis patients (RA) and healthy controls (CON). The
number of subjects reporting each comorbidity is given. (PDF 179 kb)
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ACR: American College of Rheumatology; ALST: appendicular lean soft tissue;
B: baseline; BMI: body mass index; CON: control; COPD: chronic obstructive
pulmonary disease; COX: cyclooxygenase; CRP: C-reactive protein;
DAS28: Disease Activity Score in 28 joints; DMARD: disease-modifying
antirheumatic drug; DXA: dual-energy X-ray absorption; E: enrichment;
EDTA: ethylenediaminetetraacetic acid; ELISA: enzyme-linked immunosorbent
assay; EX: exercise; FFM: fat-free mass; FSR: fractional synthesis rate;
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; H: height; HDL: high-
density lipoprotein; HGF: hepatocyte growth factor; HSP: heat shock protein;
IGF: insulin-like growth factor; IL: interleukin; LBM: lean body mass; LDL: low-
density lipoprotein; MCP1: monocyte chemoattractant protein = CCL2;
MET: metabolic equivalent of task; MuRF1: muscle ring finger protein 1;
MVC: maximal voluntary contraction; NSAIDs: nonsteroidal anti-inflammatory
drugs; PAS: Physical Activity Scale; PROT: protein; R: receptor; Ra: rate of
appearance; RA: rheumatoid arthritis; RM: repetition maximum; RPLP0: large
ribosomal protein P0; RT-PCR: reverse transcriptase-polymerase chain
reaction; SCs: satellite cells; SMI: skeletal muscle index; TNF: tumor necrosis
factor; TTR: tracer-to-tracee ratio.
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