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Is RANKL inhibition both anti-resorptive
and anabolic in rheumatoid arthritis?
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Abstract

A small peptide, OP3-4, blocks receptor activator of
NF-κB from binding to its ligand, receptor activator of
NF-κB ligand (RANKL), and was reported recently to
inhibit bone resorption, promote bone formation and
protect cartilage in a preclinical rheumatoid arthritis
model. The latter effects may result from inhibition
of RANKL reverse signalling in osteoblasts and
chondrocytes. Whether other RANKL inhibitors, such
as denosumab, share this action is not known, but
OP3-4 at least has potential to provide anabolic
treatment for both systemic and focal bone loss in
inflammatory arthritis.
[3, 4] and in RA patients [5, 6]. These agents are not regis-
Editorial
In a recent article in Arthritis Research and Therapy,
Kato et al. [1] report anabolic action of a novel inhibitor
of receptor activator of NF-κB ligand (RANKL) in a pre-
clinical rheumatoid arthritis (RA) model.
Elevated osteoclast formation in RA occurs in two

contexts: local osteoclastogenesis causing joint erosion
and periarticular bone loss fuelled by tumour necrosis
factor alpha (TNFα) and RANKL; and systemic bone re-
sorption resulting in generalized osteoporosis [2].
To achieve low RA disease activity or remission, RA

treatment must rapidly suppress inflammatory syno-
vitis, initially with disease-modifying antirheumatic drugs
(DMARDs) such as methotrexate and, if needed, followed
by antibody-based biological agents, such as TNFα or
interleukin (IL)-6 inhibitors (e.g. tocilizumab). The ex-
tent to which joint structure is protected from bone
erosion with methotrexate correlates with synovitis
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suppression. In contrast, TNFα or IL-6 inhibitors abol-
ish osteoclast-mediated bone erosion even with residual
synovial inflammation, because IL-6 and TNFα stimulate
osteoclast differentiation [2].
Osteoporosis in RA correlates with disease severity.

Although bone loss may be prevented by treatment with
methotrexate and TNFα inhibitors, bone antiresorptive
therapy, specifically targeting osteoclasts, is often required
to prevent fragility fractures [2]. Generally, weaker antire-
sorptives such as alendronate may preserve bone mineral
density but do not prevent articular bone erosions. In
contrast, zoledronate and RANKL inhibitors, such as
denosumab, reduce osteoclast numbers, arresting both
local erosion and systemic bone loss in preclinical models

tered as DMARDs and denosumab has not generally been
combined with biological DMARDs due to infection
concerns. However, the hospitalized infection rate among
RA patients receiving denosumab concurrently with bio-
logical DMARDs is no greater than in those receiving
zoledronate [7].
Denosumab and zoledronate not only reduce bone re-

sorption, but also inhibit serum bone formation markers
in women with osteoporosis [8, 9]. This reflects a major
function of osteoclasts beyond bone resorption: the pro-
duction of ‘coupling factors’ and ‘osteotransmitters’ that
promote bone formation on trabecular [10] and periosteal
[11] surfaces, respectively. Increased bone mineral density
observed during sustained osteoclast inhibition has there-
fore been thought to result not from increased bone for-
mation, but from continued secondary mineralization in
the absence of bone resorption [12].
The novel RANKL inhibitor used by Kato et al. [1] not

only reduced bone resorption but also promoted bone
formation and suppressed cartilage loss, suggesting a posi-
tive local effect on bone formation. This questions whether
secondary mineralization is the only contributor to in-
creased bone mineral density observed with RANKL
inhibition.
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The possibility that RANKL inhibition could promote
bone formation was first identified when W9, a small
molecule inhibitor of RANK-RANKL binding, not only
impaired osteoclastogenesis but also promoted osteoblast
differentiation in vitro, and stimulated cortical bone forma-
tion in vivo [13]. Follow-up studies in RANKL-deficient
osteoblasts suggested that ‘outside-in’ or ‘reverse’ intra-
cellular RANKL signalling within osteoblast precursors
inhibits their differentiation [13]. Kato et al. [1] report
that OP3-4, which also binds RANKL, not only inhibits
bone resorption but increases bone formation in the
collagen-induced arthritis model. This was particularly
evident in the epiphysis, where local bone formation
levels were low. OP3-4 also inhibited osteoblast differ-
entiation in vitro [1]. Since hypertrophic chondrocytes
express RANKL [14], OP3-4 may protect against cartil-
age destruction by inhibiting reverse RANKL signalling;
preliminary data in a chondrocyte cell line are shown.
The precise mechanisms by which OP3-4 elicits an

osteoblastic anabolic response via reverse RANKL signal-
ling remain to be defined. It will also be important to
determine whether OP3-4 promotes bone formation
systemically, in specific locations (e.g. cortical or trabecu-
lar bone) or only in apposition to focal erosions in arth-
ritis. From a clinical perspective, interaction of RANKL
inhibition with anti-inflammatory approaches (including
both synthetic small molecule and biological DMARDs)
must be established.
Finally, a major question is whether the ability of OP3-

4 and W9 to promote bone formation is shared with
antibodies to RANKL such as denosumab. The current
evidence suggests that this property is unique to the
OP3-4 and W9 peptides. Recent histomorphometry in
denosumab-treated cynomolgus monkeys showed that
denosumab neither reduces bone modelling (bone forma-
tion on surfaces that have not been resorbed previously),
nor stimulates bone formation [15].
Targeting RANKL to treat bone loss in inflammatory

arthritis could provide more benefit than simply inhibiting
resorption. Kato et al. highlight additional effects to pro-
mote bone formation and protect cartilage that deserve
additional study.
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