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Abstract

Introduction: Ankylosing spondylitis (AS) is an inflammatory disease associated with new bone formation and an
increased risk of osteoporosis and fractures. The negative effects of AS on bone microarchitecture and strength are
unclear. Thus, we conducted an observational study to analyze the effect of AS on bone microarchitecture and strength.

Methods: Patients with AS (n = 53) and non-AS subjects (n = 85) were recruited for the study. All subjects underwent
clinical evaluation, DXA and high-resolution peripheral quantitative CT scans (HRpQCT).

Results: The AS patients were aged 44 ± 12 (mean ± standard deviation) years and had a median disease duration of
17 (interquartile range: 7–27) years. They were found to have lower cortical, trabecular and total vBMD at the distal radius
and tibia than non-AS subjects on multivariable regression analysis. Cortical parameters such as cortical thickness and
porosity, and bone strength parameters such bone stiffness and stress as estimated by finite element analysis (FEA) in AS
patients were significantly worse than that of-non-AS subjects. Among patients with AS, male sex, mSASSS greater than
zero and HLA-B27 negative status were associated with worse bone microarchitecture.

Conclusions: Patients with AS have worse bone mineral density, microarchitecture and strength when compared to
non-AS subjects. More research is needed to understand the mechanisms underlying bone pathology in AS and to assess
the effect of treatments such as TNF inhibitors on bone quality and fracture risk.
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Introduction
Ankylosing spondylitis (AS) is a spondyloarthropathic
disorder that causes pain, fatigue, disability, morbidity,
and mortality [1]. Patients with AS are at high risk of
osteoporosis and vertebral fractures (VFs) [2]. In
addition, non-VFs occur more frequently in AS patients
[2, 3]. Patients with AS were found to have a 35 % in-
creased risk of non-VFs in a large-scale study based on
Danish health registries [3]. In 2014, a Spanish study re-
ported a 19 % higher risk for non-VFs [2]. Fractures can
cause severe pain, deformity, disability, poor quality of
life, financial burden, and even mortality.
The etiology of fractures in AS is unclear. Peripheral

fractures might be mediated by the increased risk of falls
because of hyperkyphosis [4, 5]. Data regarding the asso-
ciation between low bone mineral density (BMD) and
fractures in AS patients are inconsistent [6–10]. Both
BMD and bone microarchitecture predict fracture risk
[11, 12]. However, data on bone loss in patients with AS
are based on studies using dual-energy X-ray absorpti-
ometry (DXA). DXA-based BMD is two-dimensional
and cannot distinguish between bone compartments.
This is a limitation while studying inflammatory diseases
causing differential involvement of the cortical and tra-
becular compartments. Other limitations of DXA in AS
include false elevation of spine BMD by syndesmophytes
and difficulty in patient positioning on the DXA table
due to spinal immobility and coxitis [13, 14]. Further,
some patients undergo hip replacement, making the hip
scan difficult to interpret.
Earlier reports suggest that AS patients have low tra-

becular BMD in the spine [15]. HLA-B27 transgenic rats
have abnormal trabecular structure in the spine and lower
structural strength in the femur [16, 17]. Abnormal bone
strength possibly occurs due to inflammation and high
bone turnover [17]. These findings need to be confirmed
using newer techniques such as high-resolution peripheral
quantitative computerized tomography (HRpQCT) that
provides compartment-specific (trabecular versus cortical)
information. HRpQCT-based finite element analysis
(FEA) provides knowledge about the biomechanical prop-
erties [18–20]. Our aim was to investigate the differences
in volumetric bone mineral density (vBMD), bone micro-
architecture, and strength in patients with severe AS and
in non-AS subjects using HRpQCT and FEA. We also
studied the influence of sex, modified Stoke Ankylosing
Spondylitis Spine Score (mSASSS), and HLA-B27 on bone
parameters.

Methods
Patients were recruited from the spondylitis clinic lo-
cated at Toronto Western Hospital, Canada. Our inclu-
sion criteria were age >18 years and diagnosis of AS
(modified New York criteria) [21]. All patients had been

participating in a longitudinal study designed to assess the
effect of tumor necrosis factor-alpha inhibitors (TNFi) on
bone microarchitecture and hence had active disease (Bath
Ankylosing Spondylitis Disease Activity Index (BASDAI)
≥4) [22]. Patients underwent all of the necessary laboratory
tests, BMD, and HRpQCT just before starting TNFi. Eight
patients declined participation, citing lack of time and sig-
nificant pain. We excluded patients who had received
TNFi and interleukin (IL)-12/23 inhibitors and pregnant
women. Radiological severity of AS was documented by
mSASSS (high mSASSS =mSASSS >0) [23]. The compar-
ison group consisted of non-AS subjects who had partici-
pated in the Toronto HRpQCT substudy of the Canadian
Multicenter Osteoporosis Study (CaMOS), a random
population-based sample of noninstitutionalized individ-
uals (aged ≥25 years) living within 50 km of Toronto [24].

Assessment of areal BMD
Areal BMD was measured at the femoral neck, total hip,
L1–L4 spine, and distal radius (Hologic, Bedford, MA,
USA). Osteoporosis was defined using WHO criteria
[25]. Premenopausal women and men aged <50 years
were considered to have low bone mass if the Z-scores
were ≤−2.0 [26].

HRpQCT
HRpQCT was performed at the distal radius and tibia
(XtremeCT; Scanco Medical, Bassersdorf, Switzerland).
This scanner is equipped with a two-dimensional de-
tector array and a 0.08 mm point-focus X-ray tube. The
measurement settings were: X-ray tube potential of 60
kVp, current of 900 μA, and an image matrix size of
1536 × 1536. The limb positioning was secured inside a
carbon-fiber shell. An anteroposterior scout view was ac-
quired to determine the region of interest. A reference
line was then placed at the end plate. We examined the
areas of interest in 110 parallel two-dimensional slices.
First slices were obtained at 9.5 and 22.5 mm proximal
to the reference lines at the radius and tibia respectively.
We separated the image slices into trabecular and cor-
tical regions using a Gaussian filter and a threshold-
based algorithm. We derived HRpQCT parameters using
the standard morphological analysis [27]. The cortical
bone was automatically segmented to measure geometry,
density, and microstructure using a manufacturer-
supplied algorithm [28]. The manufacturer’s phantom was
scanned daily for quality control. We used HRpQCT
images to estimate biomechanical parameters using FEA
[18, 29, 30]. We used the voxel-conversion approach to
generate linear, homogeneous finite-element meshes from
the images. The boundary conditions simulated a uniaxial
compression test. The nodes at the top and bottom sur-
faces were unconstrained and displacement was applied in
the uniaxial testing direction that corresponded to 1 %
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strain. We applied a homogeneous tissue modulus of
6829 MPa and a Poisson’s ratio of 0.3.

Statistical analysis
We summarized categorical and continuous variables as
frequencies (percentages) and means (standard deviations)
or medians (interquartile ranges) respectively. Two-sample
t tests, Mann–Whitney U tests, or chi-square tests were
used to compare intergroup differences. Multivariable lin-
ear regression analysis (adjusted for age and sex) was per-
formed to study the effect of AS on HRpQCT parameters.
We also examined the association between serum inflam-
matory markers and bone parameters using Pearson or
Spearman correlation coefficients. The institutional re-
search ethics board of the University Health Network,
Toronto, Canada approved the study. All subjects gave
written informed consent.

Results
Demographic parameters
The AS patients (n = 53) were mostly Caucasians (75 %)
(Table 1). Two patients had VFs. Eight women were post-
menopausal but none had received hormone therapy (HT).
Patients with mSASSS >0 (n = 28) were significantly

older and had longer disease duration than those with
normal mSASSS (mSASSS = 0) (Table 2). Age, disease
duration, sex distribution, mSASSS, BASDAI, and body
mass index (BMI) did not differ between AS patients
with or without HLA-B27 antigen (Table 2).
The non-AS patients (n = 85) were mostly Caucasians

(89 %), had a mean age of 61 ± 8 years, and 71 % were
women (Table 1). Five (6 %) and 13 non-AS subjects
(15 %) used steroids and bisphosphonates respectively.
Six (11 %) non-AS subjects had experienced fragility
fractures and 16 (19 %) non-AS women had used HT.
The total daily calcium intake was lower in AS patients
than in non-AS patients (745 mg vs. 1045 mg, p <0.05).
However, the use of supplemental vitamin D was similar
between the two groups (36 % vs. 38 %).

Abnormalities in vBMD, bone structure, and strength in
AS patients in comparison with non-AS subjects
Multivariable regression analysis adjusted for differences
in age and sex suggested that patients with AS (n = 53)
had lower cortical and total vBMD at the distal radius
and tibia than non-AS subjects (n = 85) (Table 3). Cor-
tical thickness was reduced and cortical porosity in-
creased in AS patients. Trabecular microarchitecture
was not different between the two groups. FEA parame-
ters at the radius (bone stiffness and stress) were nega-
tively affected in AS patients (Table 3). Similar changes
were noted at the distal tibia, and the beta coefficient
showed a trend towards being statistically significant
(Table 3).

Comparison of HRpQCT parameters in AS patients with
mSASSS >0 vs. mSASSS = 0
Intergroup comparisons performed using two-sample
t tests showed that AS patients who had mSASSS >0 had
worse bone microarchitecture than those who had nor-
mal mSASSS (mSASSS = 0) (Table 4). Specifically, the
high-mSASSS group (n = 28) had lower cortical vBMD,
greater cortical porosity, and lower cortical thickness at
both sites. Bone stiffness and stress also tended to be
lower although these results did not reach statistical sig-
nificance. Trabecular parameters did not differ between
the groups. On multivariable regression analysis, the
negative effect of high mSASSS tended to be statistically
significant for cortical vBMD (radius) and cortical po-
rosity (tibia), after adjusting for age and disease duration
(β = −27.1, 95 % confidence interval (CI): −56.0 to 1.
4, p = 0.05; and β = .21, 95 % CI: −0.01 to 0.3, p = 0.09
respectively).

Table 1 Clinical characteristics and areal BMD of AS patients
and non-AS subjects

Variable AS patients Non-AS subjects

Number 53 85

Men (%) 29 (55)* 25 (29)

Caucasians 40 (75)* 76 (89)

Age (years) 44 ± 12* 61 ± 8

Weight (kg) 75 ± 3 76 ± 2

Height (cm) 167 ± 2 164 ± 1

BMI (kg/m2) 27 (22–32) 27 (25–31)

Fragility fractures (%) 5 (9) 6 (11)

Corticosteroid use (%) 3 (6) 5 (6)

Bisphosphonate use (%) 4 (9) 13 (15)

DMARDs (%) 7 (13) 0 (0)

Total daily calcium intake (mg) 745 (456–1020)* 1045 (471–1539)

Use of supplemental vitamin D (%)a 19 (36) 32 (38)

Hormone therapy (%)b 0 (0)* 16 (19)

Areal BMDc (g/cm2)

L1–L4 0.994 ± 0.179 0.988 ± 0.156

Total hip 0.904 ± 0.149 0.930 ± 0.123

Femoral neck 0.767 ± 0.142 0.756 ± 0.116

Distal 1/3 radius 0.740 ± 0.127 0.644 ± 0.170

Ultra distal radius 0.477 ± 0.078 0.418 ± 0.120

Low BMD/osteopenia (%) 18 (34) 37 (44)

Osteoporosis (%) 6 (11) 7 (8)

Data expressed as mean ± standard deviation, median (interquartile range) or
number (% N) unless specified otherwise
aAt least 1000 IU vitamin D
bPostmenopausal women receiving hormone replacement treatment
cIntergroup comparison of BMD was not performed between AS and non-AS
subjects because of the differences in age and sex
*p <0.05
AS ankylosing spondylitis, BMD bone mineral density, BMI body mass index,
DMARD disease-modifying antirheumatic drug
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Sex differences in HRpQCT parameters in AS patients
Intergroup comparisons performed using two-sample t
tests showed that women had worse trabecular microarchi-
tecture than men but cortical bone abnormalities were
more predominant in men (Table 4). Trabecular vBMD
and bone volume/total volume (BV/TV) were lower in
women. Women had fewer, thinner, and more widely
spaced trabeculae than men. However, men had lower cor-
tical vBMD at the radius, cortical thickness at the tibia, and
greater cortical porosity at both sites. The differences in
HRpQCT parameters persisted even after excluding
postmenopausal women. No differences existed in bone
strength between men and women.

Comparison of HRpQCT characters in AS patients with or
without HLA-B27
AS patients without HLA-B27 antigen (n = 16) were found
to have lower trabecular vBMD in comparison with AS
patients with HLA-B27 (Table 4). In addition, BV/TV and

trabecular separation and FEA parameters at the tibia
were abnormal in HLA-B27(−) patients. Intergroup com-
parisons were performed using two-sample t tests.
Regression analysis in patients with AS alone did not

suggest that parameters such as the BASDAI and smoking
had an influence on bone microarchitecture and strength.

Areal BMD abnormalities in AS patients
The prevalence of osteoporosis was 10 % (3/29) and
13 % (3/24) in men and women with AS respectively.
Approximately 31 % of men and 38 % of women had
osteopenia or low bone mass and 6/8 postmenopausal
women had either osteoporosis or osteopenia. Although
men with AS had more cortical bone abnormalities,
BMD at the total hip and radius was higher in men than
in women (Table 4). Despite women having more tra-
becular abnormalities at the distal sites on HRpQCT,
lumbar spine BMD was similar between men and
women. Areal BMD at most sites did not differ based on

Table 2 Comparison of clinical parameters, HRpQCT, and BMD among AS patients based on sex, mSASSS, and HLA-B27

Variable Total Sex mSASSS HLA-B27

(N = 53) Men Women mSASSS >0 mSASSS = 0 HLA-B27(+) HLA-B27(−)

(n = 29) (n = 24) (n = 28) (n = 25) (n = 36) (n = 16)

Men (%) 29 (55) – – 20 (71) 9 (36)* 22 (61) 6 (38)

Caucasians 40 (75) 20 (69) 20 (83) 20 (71) 20 (80) 30 (83) 10 (63)

Age (years) 44 ± 12 45 ± 12 43 ± 11 48 ± 11* 39 ± 11 45 ± 12 40 ± 11

Disease duration (years) 17 (7–27) 21 (9–28)* 12 (4–20) 24 (9–32)* 12 (4–20) 20 (8–28) 11 (6–22)

BMI (kg/m2) 27 (22–32) 27 (25–32) 24 (21–32) 27 (24–30) 26 (22–32) 26 (22–29) 23 (27–36)

Current smoking (%) 20 (38) 13 (44) 7 (29) 12 (43) 8 (32) 14 (39) 5 (31)

Heavy alcohol use (%)a 2 (4) 2 (7) 0 (0) 1 (4) 1 (4) 1 (3) 1 (6)

Corticosteroid use (%) 3 (6) 1 (3) 2 (8) 0 (0) 2 (8) 0 (0) 2 (13)

Bisphosphonate use (%) 4 (9) 3 (16) 1 (5.3) 2 (7) 2 (8) 2 (5) 2 (11)

Use of DMARDs (%) 7 (13) 5 (17) 2 (8) 5 (18) 2 (8) 3 (8) 3 (19)

NSAID use (%) 47 (89) 26 (90) 21 (88) 25 (89) 22 (88) 29 (81) 10 (63)

IBD (%) 8 (18) 3 (10) 5 (13) 3 (10) 5 (20) 4 (11) 3 (19)

Psoriasis (%) 8 (18) 5 (17) 3 (13) 6 (20) 2 (8) 6 (17) 2 (13)

BASDAI 6.7 (4.8–7.9) 5.8 (4.3–7.0)* 7.5 (5.7–8.4) 6.5 (4.3–7.5) 6.8 (5.5–8.0) 6.6 (4.3–7.5) 7.5 (4.7–8.8)

mSASSS 2 (0–11) 8 (1–16)* 0 (0–2) – – 2 (0–15) 1 (0–7)

mSASSS > 0 (%) 28 (53) 20 (69)* 8 (33) – – 21 (58) 6 (38)

Fragility fractures (%) 5 (9) 4 (14) 1 (4) 4 (14) 1 (4) 4 (11) 2 (13)

Serum ESR (mm/hour) 21.9 ± 22.5 18 ± 19 25 ± 25 30.7 ± 26.9* 12.8 ± 10.9 21 ± 23 22 ± 20

Serum CRP (mg/l) 13.3 ± 16.7 13 ± 17 11 ± 15 19.6 ± 20.1* 6.1 ± 6.8 13 ± 18 12 ± 13

SAP (IU) 94 ± 41 88 ± 19 103 ± 60 106.8 ± 46.6* 80.7 ± 30.1 92 ± 41 99 ± 42

Data expressed as mean ± standard deviation, median (interquartile range) or number (% N) unless specified otherwise
aHeavy alcohol use: >14 drinks per week
*p <0.05, men vs. women
**p <0.05, high mSASSS vs. normal mSASSS
†p <0.05, HLA-B27(+) vs. HLA-B27(−)
AS ankylosing spondylitis, BASDAI Bath Ankylosing Spondylitis Disease Activity Index, BMD bone mineral density, BMI body mass index, CRP C-reactive protein,
DMARD disease-modifying antirheumatic drug, ESR erythrocyte sedimentation rate, HRpQCT high-resolution peripheral quantitative computerized tomography,
IBD Inflammatory bowel disease, mSASSS modified Stoke Ankylosing Spondylitis Spine Score, NSAID nonsteroidal antiinflammatory drug, SAP Serum
alkaline phosphatase
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HLA-B27 status or mSASSS (Table 4). On multivariable
regression analysis, when compared with non-AS sub-
jects (n = 85), patients with AS (n = 53) had lower BMD
at both the total hip and femoral neck even after adjust-
ing for age and sex (Table 5).

Correlation between erythrocyte sedimentation rate,
C-reactive protein, and HRpQCT parameters
We observed significant negative correlations between
erythrocyte sedimentation rate (ESR) and tibial vBMD. The
correlation coefficients between ESR and vBMD at the
distal tibia were −0.351(p <0. 05), −0.382 (p <0.001), and –
0.356 (p <0.05) for trabecular, cortical, and total vBMD re-
spectively. Cortical thickness (r = −0.297, p <0.05) and BV/
TV (r = −0.351, p <0.001) at the distal tibia also correlated
negatively with ESR. Statistically significant inverse cor-
relation was also noted between bone stiffness (r = −0.293,
p <0.05) and stress (r= −0.378, p <0.001) and serum ESR.
Conversely, serum C-reactive protein (CRP) was not corre-
lated with HRpQCT parameters. No correlation existed be-
tween areal BMD and ESR or CRP.

Discussion
Our results suggest that AS patients have lower cortical
vBMD, lower cortical thickness, higher cortical porosity,
and lower bone stiffness and stress when compared with
non-AS controls. These abnormalities might partly explain
the cause for fractures in AS. Areal BMD at the lumbar
spine and distal radius did not differ between AS and non-
AS subjects despite differences in bone microarchitecture.
HRpQCT-based measures of bone quality can predict

fractures independent of BMD [29–31]. We found that
bone stiffness and stress (as estimated by FEA) were sig-
nificantly lower at the distal radius in AS patients. These

abnormalities were not as pronounced at the distal tibia,
probably because of the protective effect of skeletal
loading.
Our results confirm the findings of a recent cross-

sectional study in which cortical vBMD at the distal radius
and trabecular vBMD at the distal tibia were reduced in
AS patients [32]. Similar to our study, the authors noted
that cortical porosity was higher in AS patients. It is now
thought that VFs are associated with lower vBMD and
cortical thinning [32]. However, certain methodological
differences exist between our study and the study by
Klingberg et al. The main differences are that only men
were studied by Klingberg et al., and cases and controls
were not ethnically or geographically matched introducing
bias from unmeasured confounders. In addition, the de-
scription of the abnormalities of bone microstructure in
patients who had VFs were based on a small sample
(n = 8) and only morphometric VFs belonging to Genant
grade 1 category (12/14 VFs) were studied [32]. Genant
grade 1 fractures are not always caused by osteoporosis
and may not predict future VFs. Although disease-
modifying antirheumatic drugs (DMARDs; methotrexate
and sulfasalazine) have a neutral effect on areal BMD, use
of TNFi is associated with improvement in spine and hip
BMD in AS patients [33–35]. However, Klingberg et al.
did not account for the influence of methotrexate, sulfa-
salazine, or TNFi despite the fact that a significant number
of patients had received such medications. Conversely, in
our study, the use of bisphosphonates, DMARDs, and ste-
roids was negligible and no patient had received TNFi.
HLA-B27 might have a role in mediating bone loss in

AS. HLA-B27 transgenic rats experience bone loss due
to increased osteoclastogenesis and bone resorption
[17]. However, data on the effect of HLA-B27 on bone

Table 3 Multivariable linear regression analysis assessing AS as an independent predictor of BMD, and bone microarchitecture

HRpQCT Radius Tibia

βa 95 % CI p value Adj. R2 βa 95 % CI p value Adj. R2

Trabecular vBMD −15.1 −33.3 to –3.2 0.105 0.184 −17.2 −35.3 to –1.5 0.071 0.094

Cortical vBMD −34.3 −62.8 to –7.9 0.011 0.160 −28.15 −55.1 to –5.4 0.018 0.096

Total vBMD −41.6 −71.0 to –12.1 0.006 0.087 −28.13 −51.7 to 4.5 0.020 0.256

Trabecular number –0.088 –0.244 to –0.068 0.268 0.070 –0.065 −0.343 to 0.113 0.471 0.063

Trabecular thickness –0.004 –0.008 to 0.001 0.087 0.217 –0.004 –0.010 to 0.003 0.260 0.001

Trabecular separation 0.052 0.011–0.115 0.105 0.072 0.060 –0.017 to 0.137 0.128 0.063

BV/TV (%) –0.013 –0.028 to –0.003 0.106 0.184 –0.014 –0.030 to –0.001 0.070 0.094

Cortical thickness –0.101 –0.163 to –0.039 0.002 0.202 –0.060 –0.116 to 0.004 0.035 0.381

Cortical porosity 0.006 0.001–0.010 0.016 0.326 0.013 0.002–0.023 0.016 0.323

Stiffness –0.226 –0.384 to –0.069 0.005 0.055 –0.160 –0.333 to 0.013 0.069 0.081

Stress −5.7 −9.61 to –1.7 0.005 0.055 −4.0 −8.3 to 0.24 0.064 0.082
aBeta coefficient represents the difference between patients with AS (n = 53) and subjects without AS (n = 85), and subjects without AS are the reference category.
The model was adjusted for differences in age and sex
Adj. adjusted, AS ankylosing spondylitis, BMD bone mineral density, BV/TV bone volume/trabecular volume, CI confidence interval, HRpQCT high-resolution peripheral
quantitative computerized tomography, vBMD volumetric bone mineral density
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Table 4 Comparison of HRpQCT and BMD among patients with AS based on sex, mSASSS, and HLA-B27
Variable Total Sex mSASSS HLA-B27

(N = 53) Men Women mSASSS > 0 mSASSS = 0 HLA-B27(+) HLA-B27(−)
(n = 29) (n = 24) (n = 28) (n = 25) (n = 36) (n = 16)

HRpQCT at radius

Trabecular vBMD (mg/cm3) 165.3 ± 45.7 186.1 ± 39.6* 140.0 ± 40.0 168.8 ± 54.4 161.3 ± 34.2 175.7 ± 39.9 142.8 ± 52.3†

Cortical vBMD (mg/cm3) 854.7 ± 66.2 826.8 ± 51.8* 864.0 ± 55.2 821.6 ± 57.8** 868.4 ± 43.1 845.3 ± 59.2 834.0 ± 90.9

Total vBMD (mg/cm3) 315.4 ± 64.4 322.5 ± 62.8 306.8 ± 66.7 303.42 ± 74.28 328.88 ± 49.49 324.0 ± 57.5 300.3 ± 77.4

Trabecular number (/mm3) 2.02 ± 0.34 2.13 ± 0.24* 1.86 ± 0.43 1.99 ± 0.44 2.04 ± 0.25 2.07 ± 0.29 1.89 ± 0.48

Trabecular thickness (mm) 0.068 ± 0.012 0.073 ± 0.012* 0.062 ± 0.010 0.069 ± 0.013 0.066 ± 0.011 0.071 ± 0.01 0.061 ± 0.01†

Trabecular separation (mm) 0.457 ± 0.185 0.402 ± 0.061* 0.523 ± 0.254 0.479 ± 0.246 0.432 ± 0.068 0.423 ± 0.08 0.535 ± 0.31†

BV/TV (%) 0.138 ± 0.038 0.155 ± 0.033* 0.117 ± 0.033 0.141 ± 0.045 0.134 ± 0.029 0.147 ± 0.03 0.119 ± 0.40†

Cortical thickness (mm) 0.765 ± 0.153 0.748 ± 0.148 0.786 ± 0.159 0.715 ± 0.159** 0.821 ± 0.126 0.770 ± 0.165 0.760 ± 0.160

Cortical porosity (%) 0.020 (0.010–0.025) 0.022 (0.018–0.026)* 0.010 (0.008–0.020)* 0.021 (0.019–0.027) ** 0.012 (0.009–0.018) 0.020 (0.016–0.024) 0.016 (0.009–0.023)

Stiffness (N/mm) 1.4 ± 0.4 1.4 ± 0.4 1.3 ± 0.4 1.3 ± 0.04 1.5 ± 0.4 1.4 ± 0.4 1.3 ± 0.5

Stress (MPa) 27.7 ± 9.4 28.72 ± 9.35 26.38 ± 9.57 26.0 ± 9.9 29.5 ± 8.7 28.8 ± 8.9 25.8 ± 10.7

HRpQCT at tibia

Trabecular vBMD (mg/cm3) 159.9 ± 43.7 176.6 ± 38.5* 139.8 ± 41.9 162.8 ± 44.8 157.4 ± 43.5 170.9 ± 40.7 136.9 ± 43.4†

Total vBMD (mg/cm3) 296.4 ± 55.5 302.9 ± 46.0 288.5 ± 65.1 285.1 ± 57.2 308.2 ± 52.1 309.4 ± 39.3 272.5 ± 74.8†

Cortical vBMD (mg/cm3) 843.7 ± 56.1 848.4 ± 43.4 862.2 ± 86.7 835.2 ± 79.3** 876.9 ± 39.1 865.4 ± 50.8 834.0 ± 91.0

Trabecular number (per mm3) 1.89 ± 0.45 2.05 ± 0.29* 1.70 ± 0.533 1.95 ± 0.42 1.84 ± 0.47 1.96 ± 0.42 1.71 ± 0.49

Trabecular thickness (mm) 0.07 ± 0.01 0.070 ± 0.014 0.071 ± 0.015 0.070 ± 0.013 0.073 ± 0.015 0.073 ± 0.014 0.070 ± 0.011

Trabecular separation (mm) 0.50 ± 0.23 0.43 ± 0.07* 0.60 ± 0.31 0.47 ± 0.13 0.53 ± 0.29 0.46 ± 0.13 0.60 ± 0.35†

BV/TV (%) 0.133 ± 0.036 0.147 ± 0.032* 0.117 ± 0.035 0.131 ± 0.037 0.136 ± 0.036 0.143 ± 0.034 0.114 ± 0.036†

Cortical thickness (mm) 0.744 ± 0.180 0.695 ± 0.137* 0.804 ± 0.208 0.691 ± 0.182** 0.804 ± 0.161 0.766 ± 0.185 0.705 ± 0.169

Cortical porosity (%) 0.049 (0.035–0.067) 0.061 (.044–0.075)** 0.039 (0.029–0.056)** 0.062 (0.045–0.091)** 0.040 (0.033–0.056) 0.047 (0.032–0.070) 0.056 (0.035–0.071)

Stiffness (N/mm) 1.51 ± 0.42 1. 6 ± 0.3 1.5 ± 0.4 1.6 ± 0.3 1.5 ± 0.4 1.6 ± 0.3 1.4 ± 0.4†

Stress (MPa) 31.6 ± 9.1 32.7 ± 8.0 31.1 ± 9.5 30.6 ± 8.7 33.5 ± 8.5 33.8 ± 7.2 28.8 ± 10.4†

L1–L4 BMD 0.994 ± 0.179 1.018 ± 0.163 0.964 ± 0.198 1.001 ± 0.214 0.986 ± 0.138 1.024 ± 0.182 0.944 ± 0.161

Total hip BMD 0.904 ± 0.149 0.943 ± 0.125* 0.858 ± 0.165 0.887 ± 0.158 0.921 ± 0.140 0.925 ± 0.123 0.857 ± 0.197

Femoral neck BMD 0.767 ± 0.142 0.795 ± 0.153 0.733 ± 0.124 0.735 ± 0.125 0.798 ± 0.153 0.786 ± 0.130 0.727 ± 0.169

Distal 1/3 radius BMD 0.740 ± 0.127 0.802 ± 0.067* 0.659 ± 0.142 0.771 ± 0.080 0.708 ± 0.156 0.764 ± 0.088 0.679 ± 0.185†

Ultradistal radius BMD 0.477 ± 0.078 0.505 ± 0.079* 0.441 ± 0.061 0.481 ± 0.086 0.472 ± 0.069 0.488 ± 0.084 0.453 ± 0.059

Data expressed as mean ± standard deviation, median (interquartile range) or number (% N) unless specified otherwise
*p <0.05, men vs. women
**p <0.05, high mSASSS (mSASSS >0) vs. normal mSASSS
†p <0.05, HLA-B27(+) vs. HLA-B27(−)
AS ankylosing spondylitis, BMD bone mineral density, BV/TV bone volume/trabecular volume, HRpQCT high-resolution peripheral quantitative computerized tomography, mSASSS, modified Stoke Ankylosing Spondylitis Spine Score,
vBMD volumetric bone mineral density
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loss in AS patients are inconsistent. In our study, the
HLA-B27(−) AS patients had worse trabecular parame-
ters, bone stiffness, and stress than the HLA-B27(+) pa-
tients. This supports the results of a previous study [36]
that reported a higher prevalence of clinical VFs in
HLA-B27(−) patients (9.9 vs. 4.8 %) than HLA-B27(+)
patients. In contrast, another study found that AS pa-
tients with low BMD or VFs were more likely to be
HLA-B27(+), but the difference was not statistically sig-
nificant [37].
We found important sex differences in bone microarchi-

tecture and strength in AS. Although men had higher
areal BMD at the total hip and distal radius than women,
the cortical bone vBMD and microarchitecture were
worse in men. Conversely, trabecular parameters were
worse in women. Men with AS had greater cortical poros-
ity despite the fact that cortical porosity is worse in
healthy women than men during young adulthood [38].
This is possibly due to men having more severe disease
than women. Factors such as menopause and systemic in-
flammation are probably responsible for the abnormal tra-
becular microarchitecture in AS women [38, 39], which is
worse than in men. We observed no sex differences in
bone stiffness in AS patients. However, it is established
that in young healthy adults, bone stiffness is lower in
women than in men [40]. Longstanding disease and higher
mSASSS in men may have caused a stronger insult on
FEA parameters in men masking the sex differences. Our
results thus suggest that sex differences in bone micro-
architecture and strength are attenuated by AS.
We found that patients with mSASSS >0 tended to

have poor cortical bone microarchitecture. These results
were partly influenced by differences in age and disease
duration, however, and need to be studied further.
Abnormal cortical microarchitecture in those with
mSASSS >0 may indicate that systemic bone loss occurs
in parallel with radiological progression of AS. In the
study by Klingberg et al. [32], the mSASSS correlated
with abnormal cortical porosity and cortical vBMD.
Our results showing that AS patients have abnormal

cortical microarchitecture are important given that the
microstructure of cortical bone is a key determinant of

bone fragility [31, 41–43]. Cortical microarchitecture
was negatively affected at both the distal radius and
tibia, suggesting that mechanical loading may not ameli-
orate the catabolic actions of inflammation on cortical
bone. Age-related loss of cortical bone does not begin
until middle age or late life in women [44, 45]. Patients
with AS had poor cortical bone structure despite being
young and it is likely that AS exaggerates loss of cortical
bone. Abnormal cortical bone parameters in AS are
probably due to systemic inflammation, vitamin D defi-
ciency, secondary hyperparathyroidism, abnormal skel-
etal loading due to abnormal gait and posture, low peak
bone mass, low BMI, low lean mass, hypogonadism,
malabsorption, inflammatory bowel disease (IBD), and
trabecularization of cortical bone [46–50].
Systemic inflammation plays a key role in causing bone

loss, as suggested by the negative correlation between ESR
and HRpQCT parameters. AS is characterized by ossifica-
tion of the enthuses and formation of osteophytes but
paradoxically there is loss of trabecular bone adjacent to
the sites of inflammation. Trabecular and cortical com-
partments appear to have different reactions to inflamma-
tion. Although a high BASDAI indicates severe AS, we
found that it was not associated with poor bone micro-
architecture. This is in concordance with past reports that
the BASDAI may not differentiate AS patients with low
BMD [34, 35]. Subjective measures such as the BASDAI
may not reflect longstanding inflammation. Furthermore,
all our patients had a high BASDAI and the lack of vari-
ability in our population may have influenced our results.
Our study has both limitations and strengths. The main

limitations include the cross-sectional design, small sam-
ple size, and lack of generalizability in non-Caucasian pa-
tients. Despite the small size of our study, it is the largest
study of bone microarchitecture in AS patients (including
both men and women), to our knowledge. We may have
missed some differences in bone microarchitecture in the
secondary analyses due to lack of power. All patients had
active disease and hence the results may only reflect ab-
normalities related to severe inflammation. Next, 18 % of
patients had IBD and this may have affected our results.
Also, we did not study testosterone levels and bone turn-
over. Another limitation is that we did not have data on
smoking, alcoholism, and physical activity in the non-AS
group. Finally, we could not study the discriminative abil-
ity of HRpQCT to identify patients with high fracture risk
since the number of patients with fractures was small.
Our study has several strengths including the assessment
of bone strength and stiffness in AS patients for the first
time. This is only the second study to provide detailed in-
formation of bone microarchitecture in patients with AS.
Our results may guide future research on the prediction
and management of fragility fractures in AS patients.
We were able to generate important findings that both

Table 5 Multivariable linear regression analysis assessing AS as
an independent predictor of areal BMD

βa 95 % confidence interval p value Adjusted R2

L1–L4 spine –0.02 –0.10 to 0.06 0.656 0.097

Total hip –0.11 –0.17 to –0.05 0.000 0.223

Femoral neck –0.09 –0.15 to –0.37 0.001 0.242

Distal 1/3 radius 0.01 –0.03 to 0.04 0.926 0.316

Ultradistal radius –0.02 –0.05 to 0.02 0.421 0.316
aMultivariable models adjusted for age and sex
AS ankylosing spondylitis, BMD bone mineral density
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trabecular and cortical compartments are affected in AS.
This information can be used to design future studies
aimed at assessing changes in bone strength in response
to NSAIDs or TNFi. Finally, the potential confounding ef-
fect of TNFi was eliminated by excluding subjects who
had been on treatment with TNFi, whereas previous stud-
ies were unable to do so [32, 33].

Conclusions
We conclude that vBMD, bone microstructure, and
strength are abnormal in AS patients with severe dis-
ease. Sex, mSASSS, and HLA-B27 are determinants of
bone microarchitecture in AS. Future research should
investigate whether abnormal bone microarchitecture
and strength are predictive of fractures in AS. The effect
of TNFi on bone strength also needs to be studied.
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