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Abstract

Background: Studies of Caucasian patients with rheumatoid arthritis (RA) to identify genetic biomarkers of anti-tumor
necrosis factor (TNF) response have used response at a single time point as the phenotype with which single
nucleotide polymorphism (SNP) associations have been tested. The findings have been inconsistent across studies.
Among Japanese patients, only a few SNPs have been investigated. We report here the first genome-wide association
study (GWAS) to identify genetic biomarkers of anti-TNF response among Japanese RA patients, using response at 2
time-points for a more reliable clinical phenotype over time.

Methods: Disease Activity Scores based on 28 joint counts (DAS28) were assessed at baseline (before initial therapy),
and after 3 and 6 months in 487 Japanese RA patients starting anti-TNF therapy for the first time or switching to a new
anti-TNF agent. A genome-wide panel of SNPs was genotyped and additional SNPs were imputed. Using change in
DAS28 scores from baseline at both 3 (ADAS-3) and 6 months (ADAS-6) as the response phenotype, a longitudinal
genome-wide association analysis was conducted using generalized estimating equations (GEE) models, adjusting for
baseline DAS28, treatment duration, type of anti-TNF agent and concomitant methotrexate. Cross-sectional analyses
were performed using multivariate linear regression models, with response from a single time point (ADAS-3
or ADAS-6) as phenotype; all other variables were the same as in the GEE models.

Results: In the GEE models, borderline significant association was observed at 3 chromosomal regions (6q15:
15284515, p = 6.6x1 077; 6027: 1575908454, p = 6.3x1 0~/ and 10025.3: 151679568, p = 8.1x1 077), extending to numerous
SNPs in linkage disequilibrium (LD) across each region. Potential candidate genes in these regions include MAP3K7,
BACH?2 (6q15), GFRAT (10925.3), and WDR27 (6q27). The association at GFRAT replicates a previous finding from a
Caucasian dataset. In the cross-sectional analyses, ADAS-6 was significantly associated with the 6q15 locus (rs284511,
p =25x10"%). No other significant or borderline significant associations were identified.

Conclusion: Three genomic regions demonstrated significant or borderline significant associations with anti-TNF
response in our dataset of Japanese RA patients, including a locus previously associated among Caucasians. Using
repeated measures of response as phenotype enhanced the power to detect these associations.
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Background

Anti-tumor necrosis factor (TNF) agents have been par-
ticularly effective in controlling disease activity and joint
erosions in rheumatoid arthritis (RA) [1-3]. Nonethe-
less, a considerable proportion of patients (30-40 %)
demonstrate only partial response or no response to
these therapies. This complex phenotype of anti-TNF
responsiveness has a genetic component, as demon-
strated by heritability estimates of 0.59 or more for differ-
ent clinical measures of response [4]. Several studies
conducted mainly in Caucasian populations [5-23] have
attempted to identify genetic biomarkers that can reliably
predict response to anti-TNF agents in patients with RA.
However, there have been no reports of genome-wide
association studies (GWAS) for biomarkers of anti-TNF
response among Japanese or other East Asian RA patients.
Only single nucleotide polymorphisms (SNPs) in the
TRAFI [24] and CD84 genes [18] have been examined for
association in two small samples of 101 and 151 Japanese
patients, respectively. It has been demonstrated for several
RA risk loci that there are both similarities and ethnic
differences in disease associations between Caucasian and
Japanese populations [25-29]. Similarly, although efficacy
of anti-TNF therapies appears to be similar in these popu-
lations [30, 31], there may be similarities and differences
in genetic predictors of anti-TNF response.

Previous studies investigating genetic predictors of
anti-TNF response focused on a limited number of
candidate genes [5-15, 20-22, 32], and few GWAS have
been performed [9, 16-19, 23]. The findings from these
different studies have been largely inconsistent. Only a
couple of loci (PTPRC and PDE3A-SLCO1C1) have been
associated in more than one study [5, 11, 33], but these
associations were not consistently replicated in other
studies [8, 14, 20]. Findings at other loci have not been
independently replicated [12, 22]. All of these studies used
a single assessment of anti-TNF response.

In the present study, we have performed a GWAS of
anti-TNF response in a population of Japanese RA pa-
tients. In contrast to previous studies, we have used
repeated measures of response at 3 and 6 months after
initiation of anti-TNF therapy in order to have a more
reliable assessment of clinical phenotype over time, and
have used longitudinal statistical models to accommo-
date the repeated measures of the outcome.

Methods

Patients

A total of 487 RA patients were recruited from the Jichi
Medical University and from Inoue Hospital within the
Gunma prefecture in Japan, and prospectively followed
for 6 months. All included patients: (1) were of Japanese
descent; (2) satisfied the 1987 American College of
Rheumatology (ACR) criteria for RA [34]; (3) were not in
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remission (Disease activity score in 28 joints (DAS28)
<2.6) at baseline; and (4) were starting treatment with the
anti-TNF agents etanercept (ETN), infliximab (INF) or
adalimumab (ADA) for the first time or were switching to
a new anti-TNF drug due to inefficacy or adverse events.

Data and sample collection

Study baseline

Detailed clinical and demographic data, including age,
sex, disease duration, smoking history, and concurrent
treatment with methotrexate and prednisolone, were
collected on each patient prior to initiation of anti-TNF
therapy (study baseline). A serum sample was collected,
and used to measure baseline titers of anti-citrullinated
protein antibodies (ACPA), rheumatoid factor (RF) using
the RA particle agglutination test (RAPA), and C-reactive
protein (CRP) levels. Patients were considered to be sero-
positive for ACPA and/or RF auto-antibodies if ACPA and
RAPA titers were >4.5 U/ml and >40 units, respectively.
Whole blood samples (8.5 ml) were collected from each
patient and stored at -80 °C for subsequent DNA
extraction.

Follow up

All patients were evaluated at 3 and 6 months after initi-
ation of anti-TNF therapy. Tender joint counts (TJC28)
and swollen joint counts (SJC28) for 28 joints, patient
global scores and CRP levels were assessed at each of
these time points. The study protocol was approved by
the ethics committee of the Jichi Medical University and
by the Institutional Review Board of the Children’s
Hospital Oakland Research Institute. Signed informed
consent was obtained from each study participant.

Assessment of response to anti-TNF therapy

RA disease activity was assessed at baseline, 3 months
and 6 months by the DAS28 calculated on three variables,
including 28-joint counts and CRP, ie., DAS28CRP3
[35, 36], as follows:

DAS28CRP3 = (0.56 + \/TJC28) + (0.28 * \/SJC28)
+ (0.36 + In(CRP + 1) 1.10)
+ 115

We will refer to the DAS28CRP3 as DAS28. The change
in DAS28 scores from baseline at 3 months and 6 months
were calculated as ADAS-3 and ADAS-6, respectively.

Genotyping and data cleaning

DNA was extracted from frozen whole blood samples
using a standard protocol and a Gentra Autopure system
(Gentra Systems, Minneapolis, MN, USA). All samples
were genotyped for a total of 1,133,484 SNPs on an Illu-
mina BeadLabl000 platform using the HumanOmnil-
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Quad BeadChip and the Infinium HD assay (Illumina, San
Diego, CA, USA). Genotypes were called using a score
threshold of 0.15 in the Illumina BeadStudio software.
Data cleaning was performed using the PLINK soft-
ware [37] (http://pngu.mgh.harvard.edu/~purcell/plink/)
SNPs with genotyping rates <98 %, minor allele frequencies
(MAF) <1 %, or not in Hardy Weinberg equilibrium
(HWE) (p <0.0001) were excluded from further analyses
due to possible genotyping error. To test for population
stratification, principal component analysis (PCA) was per-
formed using the EIGENSTRAT software [38, 39].

Imputation of genotypes

The cleaned genotypes were phased using the ShapelT
(v2) software [40] and imputation of genotypes was per-
formed using the Impute2 software [41]. All available
multi-population haplotypes from the 1000 Genomes
haplotypes Phase I integrated variant set (June 2014
release) were used as reference panels both for phasing
and imputation, as recommended [42]. The probability
distribution of three possible genotypes generated by
Impute2 at each imputed SNP was converted to geno-
types using the GTOOL software (v 0.7.5) (http://www.
well.ox.ac.uk/~cfreeman/software/gwas/gtool.html) and a
stringent probability threshold of 0.9 was applied. Imputed
SNPs with genotyping rates <98 % or MAF <5 % were
excluded from subsequent analyses.

Statistical analyses

Variables influencing response to anti-TNF therapy

To identify potential confounder variables that influence pa-
tient response to anti-TNF therapy over time, a longitudinal
analysis was performed using GEE models to accommodate
response at two time-points for each patient and to adjust
for within-patient correlation [43]. Repeated measures of
the change in DAS28 at 3 and 6 months (i.e, ADAS-3 and
ADAS-6) were used as the outcome variable in the models,
and the explanatory variables included baseline DAS28,
duration of anti-TNF therapy, age at baseline, RA duration,
sex, concurrent methotrexate use (yes/no), concurrent
prednisolone use (yes/no), type of anti-TNF agent (ETN,
INF or ADA), RAPA (yes/no), smoking status (never/ever)
and ACPA seropositivity (yes/no). Each variable was tested
for association with repeated measures of the change in
DAS28 in univariate and multivariate models.

Longitudinal genome-wide association analyses

Longitudinal GEE models were used to investigate asso-
ciations between each SNP on a genome-wide scale and
patient response to anti-TNF therapy over time (re-
sponse at two time points for each patient). For each
SNP, repeated measures of the change in DAS28 at 3
and 6 months (i.e., ADAS-3 and ADAS-6) were used as
the outcome variable in the model, with the SNP being
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the explanatory variable. Covariates included in the model
were baseline DAS28, concurrent methotrexate use (yes/
no), type of anti-TNF agent (ETN, INF or ADA) and dur-
ation of anti-TNF therapy. These covariates were selected
on the basis of their association with change in DAS28
from the GEE models described earlier. Principal compo-
nents were not adjusted for in the main model because
the genomic control inflation factor (A\gc) was estimated
at 1.001. These analyses were repeated after excluding pa-
tients who had mild disease activity at baseline.

All analyses were performed using the STATA package
(version 13). P values below a non-stringent threshold of
1x107° were taken as evidence of borderline significant
association.

Cross-sectional genome-wide association analyses at each
time point

Cross-sectional genome-wide association (GWA) analyses
were performed using response data from a single time
point, at 3 months or at 6 months, as the phenotype in
two separate multivariate linear regression models. These
models (model 1 and model 2) differed from the GEE
models only in terms of the response phenotype: ADAS-3
was the outcome variable in model 1, and ADAS-6 in
model 2. All other explanatory variables and covariates
were the same as those in the GEE models. The GWA
analyses for models 1 and 2 were performed using the
PLINK software.

Identifying regions of association

Independent chromosomal regions of association were
identified using the LD clumping option within PLINK,
based on p values and patterns of LD in the data.

Results

Patient characteristics

A total of 444 patients had genotype data and data on
ADAS-3, ADAS-6, and covariates available for analysis.
Among these, ADAS-3 was missing for 3 patients and
ADAS-6 was missing for 22 patients. The clinical, demo-
graphic and treatment characteristics of the patients at
baseline are summarized in Table 1. The majority of
patients were female (84 %), with RA duration of 8.1+
8.5 years, had moderate to severe disease activity at
baseline (93 %), were naive to anti-TNF drugs (94 %),
were concurrently being treated with methotrexate
(80 %) and were positive for ACPA antibodies (89 %).
Overall, response to anti-TNF therapy was significantly
better at 6 months than at 3 months (ADAS-3 (mean +
SD): 1.50+1.01, ADAS-6: 1.72+1.12; p = 0.002).

Variables influencing response to anti-TNF therapy
In univariate and multivariate GEE models, only base-
line DAS28 (p <0.0005), concurrent methotrexate use
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Table 1 Patient characteristics at baseline

Characteristic

All patients (n = 444)

Age, years

Sex, female

RA duration (years)

Serum CRP (mg/l)

Tender joint count

Swollen joint count

DAS28CRP3 score

Disease activity
Mild (2.6 < DAS28<3.2)
Moderate (3.2 < DAS28 < 5.1)
Severe (DAS28 > 5.1)

Anti-TNF therapy
Etarnercept
Infliximab
Adalimumab

Other medications
Methotrexate
Prednisolone

Anti-TNF naive at baseline

564+12.7
373 (84.0 %)
8.1£85
276+279
6 (3-11)

6 (3-10)
46+10

31 (7.0 %)
282 (63.5 %)
131 (295 %)

172 (38.7 %)
242 (54.5 %)
30 (6.8 %)

354 (79.7 %)
283 (65.1 %)**
419 (944 %)

Switching to a new anti-TNF agent at baseline 18 (4.1 %)

94 (234 %)*°

330 (88.7 %)*°
337 (80.1 9%)*°

Results are shown as mean + SD, median (IQR) or number (%). *Data for these
variables were not available for all patients. Sample sizes were as follows #435,
402, ©372, 9421. RA rheumatoid arthritis, CRP C-reactive protein, Disease Activ-
ity Score in 28 joints DAS28, ACPA anti-citrullinated protein antibodies,

RF rheumatoid factor

Ever smoker
ACPA positive
RF positive

(p <0.0005) and duration of anti-TNF therapy (p <0.0005)
were associated with change in DAS28 (Table 2).

Data quality and population stratification

A total of 4,253,138 autosomal SNPs were available for
statistical analyses after imputation and after quality con-
trol thresholds were applied. Of these, 738,576 had been
genotyped, and the rest had been imputed with high
accuracy (imputation accuracy score >0.96).

SNP associations

GEE models using repeated measures of change in DAS28
as the phenotype

Three independent genomic regions showed borderline
significant (p <1x107°) association with repeated mea-
sures of change in DAS28 (i.e., both ADAS-3 and
ADAS-6) (Fig. 1); the results for the index SNPs within
each region are shown in Table 3. Two of these regions
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Table 2 Results from multivariate GEE model to identify
predictors of response

Variable B (95 % Cl) P value
—0.003 (-0.01,0.004) 035
0.001 (=0.01,0008) 0.84
—0.13 (-041,0.16) 039
0.39 (0.30, 049) <0.0005
0.02 (0.01, 0.03) <0.0005
-0.07 (039,025 066
0.10 (-0.28, 0.48) 0.61
—0.10 (-0.24,005 018
043 (0.19, 0.68) <0.0005
Concurrent prednisolone use, yes/no? —0.08 (-0.28, 0.11) 0.40
Type of anti-TNF therapy, ETN?, ADA or INF —0.08 (—0.18, 0.02) 0.12

Age at baseline, years

RA duration, years

Sex, male®/female

DAS28 at baseline

Duration of anti-TNF therapy, weeks
RAPA seropositivity, yes/no®

ACPA seropositivity, yes/no®
Smoking status, never®/past/current

Concurrent methotrexate use, yes/no®

B regression coefficient. *Reference category for these variables in the
generalized estimating equations (GEE) model, RA rheumatoid arthritis,
DAS28 Disease Activity Score in 28 joints, RAPA rheumatoid arthritis particle
agglutination, ACPA anti-citrullinated protein antibodies

mapped to chromosome 6: one at 6ql5 (rs284515: p =
6.6x1077) approximately 15 Kb downstream from the
Mitogen-activated protein kinase kinase kinase 7 (MAP3K7)
gene and 572 Kb upstream from the Basic leucine zipper
transcription factor 2 (BACH2) gene, and the other at 6q27
(rs75908454: p =6.3x10"7) within a locus containing
the WD repeat-containing protein 27 (WDR27) gene.
The third locus (rs1679568: p =8.1x1077) mapped to
the 3’ untranslated region (UTR) of the Glial cell
line-derived neurotrophic factor family receptor alpha
1 (GFRAI) gene at 10q25.3. As shown in Fig. 1, at
each locus, numerous SNPs within the region of LD
containing the index SNP also showed evidence of as-
sociation with change in DAS28. Similar results were
obtained when the analysis was restricted to patients with
moderate or severe disease activity at baseline (n=413)
(see Additional file 1). In addition, the results were again
similar when the analysis was restricted only to the subset
of patients who were anti-TNF naive at baseline (n = 419).
In both cases though, the significance levels were lower
than in the full dataset of 444 patients. Chromo-
somal regions showing moderate evidence of association
(p <1><10’5) are shown in Additional file 2, and the index
SNPs within those regions are listed in Additional file 3.

The CD84, PTPRC, PDE3A-SLCOIC1 and MEDIS5 loci
reported to be significantly associated with anti-TNF
response in RA in previous GWAS showed no evidence
of association in our dataset.

Cross-sectional analyses at 3 months and at 6 months

When response at only the 3-month or 6-month follow
up (ADAS-3 or ADAS-6) was used as the phenotype
instead of ADAS at both time points, SNP rs284511
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Fig. 1 Regions demonstrating significant or borderline significant association with anti-TNF response. The regional plots show three regions with
borderline significant association (p <1x107°) at 6q15 (top row), 627 (middle row) and 10g25.3 (bottom row), based on results from all patients
(n=444) and generalized estimating equations (GEE) models using anti-TNF response at two time points, i.e, 3 and 6 months (left panels). Association
results at the same genomic regions are shown for models using anti-TNF response at a single time point only: 6 months (middle panels) and 3 months
(right panels). Note: at 6 months, another single nucleotide polymorphism (SNP) in linkage disequilibrium with rs284515 the 6q15 locus (i.e, rs284511)
was significantly associated with response at 6 months (change in Disease Activity Score at 6 months, ADAS-6); this SNP was not associated at
3 months, and was borderline significant in the GEE model. Chr chromosome

mapping close to and in LD with rs284515 near the
MAP3K?7 locus was significantly associated with ADAS-6
at the genome-wide significance level (p = 2.5x10°%). No
other SNPs showed significant or borderline significant
associations with either ADAS-6 or ADAS-3.

Of interest, as shown in Fig. 1 and Table 4, com-
pared to the cross-sectional analyses which used re-
sponse phenotype from a single time point, the GEE
models provided increased power to detect associations at
loci that demonstrated modest association at both time
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Table 3 Index SNPs from independent chromosomal regions showing borderline significant association with repeated measures of

response at 3 and 6 months

SNP Chr Position (bp) Minor allele MAF Genotype N (95 % Cl) P value Gene(s) in region of association
rs284515 6 91,208,828 G 0.17 AG/GG 134 035(021,049) 66x1077  MAP3K7, BACH2
AG 121 0.33 (0.16, 0.51) 21x107*
GG 13 080(043,1.18)  26x107°
rs75908454 6 169,970,623 C 0.10 Cr/CC 88 042 (0.26, 0.59) 6.3x1077 WDR27
cT 87 041 (0.24, 0.59) 23x10°°
cC 1 - -
151679568 10 117,817,551 A 0.15 AG/AA 124 0.35 (0.21, 0.49) 81x1077 GFRA1
AG 114 0.37 (0.20, 0.54) 16x107°
AA 10 063(024,102)  16x107°

The single nucleotide polymorphisms (SNP) with the smallest p value (index SNP) in each of the associated regions are shown. 3 (regression coefficient) represents
the increase in change in DAS28 associated with the genotype(s) shown compared to the reference genotype (with no minor alleles). Chr chromosome, MAF minor

allele frequency, N number of patients with genotype(s) shown

points, ie., rs284515, rs75908454 and rs1679568, but not
rs284511.

Discussion
This is the first GWAS investigating genetic biomarkers
of response to anti-TNF therapy in Japanese patients
with RA, utilizing a longitudinal approach to examine
associations between genome-wide SNPs and repeated
measures of anti-TNF response at 3 and 6 months. We
found borderline significant association (p <1x107°) at
three non-correlated regions within our study popula-
tion, with the associated SNPs mapping to or close to
the following genes: MAP3K7, BACH2 (6ql5), WDR27
(6q27) and GFRAI (10q25.3). Each of these regions har-
bored numerous SNPs demonstrating evidence of associ-
ation with change in DAS28. Furthermore, the 6q15 locus
was significantly associated with response at 6 months
(p=25%x10"%), and the association at the GFRAI locus
represents a replication of a previously reported associ-
ation among Caucasian patients. We therefore considered
these regions worthy of being reported so that they may
be investigated further in larger datasets.

The MAP3K7 gene encodes transforming growth fac-
tor beta-activated kinase 1 (TAK1) which is a key regula-
tor in multiple inflammatory signaling pathways [44, 45],

including the p38 MAPK and nuclear factor kappa B
signaling pathways. TAK1 deficiency leads to reduced
pro-inflammatory cytokine production in cultured RA
synoviocytes [46]. It is thus an excellent candidate that
may influence the effect of anti-TNF agents, as proposed
[47], and is already a candidate therapeutic target to
block pro-inflammatory pathways in RA [48, 49]. Tran-
scription factor BACH2, on the other hand, appears to
be a key negative regulator of effector T cell differenti-
ation, promoting immune homeostasis [50]. In the mouse,
it appears to be a super-enhancer repressing a network of
genes critical for T cell function [51]. Of interest, variants
at the BACH2 locus have been associated with multiple
autoimmune diseases, including RA [52-57]. The GFRA1
protein is a member of the Glial cell line-derived neuro-
trophic factor (GDNF) receptor family and mediates
activation of the RET tyrosine kinase receptor. GDNF is
produced by astrocytes in response to pro-inflammatory
cytokines including TNFa [58] and appears to suppress
interleukin-17 (IL-17)-mediated inflammation via the
NF-kappa B pathway [59]. The function of the WDR27
protein has not been established.

The association with the GFRAI gene was previously
identified by Plant et al. [16]. SNP rs7070180 mapping
to an intron of the GFRAI gene, was associated with

Table 4 SNPs showing significant or borderline significant association in the cross-sectional analyses or in the GEE model

Model 1 Model 2 GEE model
SNP Chr  Position (bop) ~ Minor ~ MAF  Phenotype: ADAS-3 Phenotype: ADAS-6 Phenotype: ADAS-3 and ADAS-6
allele N B P N B P N B P
rs284511 6 91,208,542 C 033 440 036 001 421 041 25x107° 443 028 15%10°°
rs284515 6 91,208,828 G 0.17 438 035 56x107° 419 036 11x107* 443 0.35 6.6x1077
rs75908454 6 169,970,623 C 010 440 036 00007 421 049 55x107° 443 042 6.3x1077
rs1679568 10 117,817,551 A 0.15 434 027 0002 415 044 53x10° 437 035 81x1077

Association results from cross-sectional (models 1 and 2) and longitudinal (generalized estimating equations (GEE) model) analyses - for single nucleotide
polymorphisms (SNPs) within regions showing borderline significant association with the GEE model. MAF minor allele frequency ADAS-3 and ADAS-6, change in
Disease Activity Scores based on 28 joint counts (from baseline) at 3 months and 6 months, Chr chromosome
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anti-TNF response in a cohort of 566 Caucasian RA pa-
tients in the UK (p=224x10"* and in a meta-analysis
including a cohort of 379 additional patients (p = 6.42x
107°). However, this locus was not reported among the
major findings of that study as SNP rs7070180 failed to
genotype in one of the cohorts. While this SNP was not
genotyped or imputed in our data, several other SNPs
within the 3" untranslated region (UTR) of the GFRAI
gene were associated with anti-TNF response among our
patients. There are no reports of MAP3K7 being associ-
ated with anti-TNF response in RA, although it has been
proposed as a good candidate for pathway pharmacogen-
etics relating to TNF inhibitors [47]. Among the genes
of the p38 MAPK network that have been investigated
[7, 9, 13], suggestive evidence of an association with
MAP2K6 was reported [9], though not replicated [13].
Other associations for p38 MAPK candidate genes were
reported in a sample of 1,102 patients using a generously
non-stringent significance threshold of p <0.1 [7].

A major strength of the present study is the use of
repeated measures of anti-TNF response at 3 months
and 6 months after treatment was started. Previous
studies included clinical response from a single time
point in standard linear or logistic regression models
[5-9, 11, 12, 16—19]. However, assessment of response
at a single point in time may not adequately reflect a
patient’s response to therapy, as response may fluctuate
over time. Hence, using response data from at least two
time points is more reliable and clinically relevant. The
longitudinal approach enables the use of repeated mea-
sures of response from different time-points for each
patient, thus increasing the power to detect an association
as we have demonstrated, while taking into account
within-patient correlation. Patients with missing data at
one time point were still included in the analyses, as the
GEE uses all available data. However, while the association
with the MAP3K7 locus achieved genome-wide signifi-
cance for SNP rs284511 when using anti-TNF response at
only 6 months, the lack of association with this SNP at
3 months led to the GEE model only detecting a border-
line significant association.

We did not identify any other overlap between our
results and previous findings, possibly due to differences
in ethnicity, response variable, i.e., two time points vs a
single time point, or duration of anti-TNF treatment
(3-12 months in previous studies). Further, the lack
of consistent findings between previous studies may
also have been the result of differences in a number
of factors including study design, clinical outcomes
examined (DAS28ESR vs DAS28CRP), specific anti-
TNF medications used, concomitant disease modifying
anti-rheumatic drugs (DMARDs), sex ratios, and small
sample sizes in some cases [9, 12, 19]. Another im-
portant difference between studies is the heterogeneity in
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phenotypes introduced by differences in time from base-
line to assessment of response ranging from 3 to
12 months in different studies. As seen in our data, treat-
ment duration is significantly associated with response,
and should be given due consideration when using mul-
tiple datasets for combined analyses to minimize pheno-
typic heterogeneity or when comparing results between
studies. Further, the low significance thresholds used to
identify previously reported associations may have led to
false positive associations being included. We also cannot
exclude the possibility that our findings may include false
positives until they can be replicated in independent data-
sets or that our sample size was not adequately powered
to detect some of the previously reported findings.

The present study has a number of limitations. First,
the sample size of 444 patients is modest compared to
previous GWAS, which combined data from different
populations of European ancestry to achieve large sam-
ple sizes [16, 18]. Nonetheless, it represents the largest
reported sample size for studies of anti-TNF response
among Japanese or any East Asian RA population [18, 24].
Given the lack of pharmacogenomics studies examining
associations with anti-TNF response among Japanese RA
patients, these results represent an important contribution
to the field. Although power may be limited due to the
modest sample size, this may in part be compensated for
by the ethnic homogeneity of the patient population
and the use of response data from two time points as
described earlier. Second, the response phenotype in
our study included response to three different anti-
TNF agents, which may have introduced some bias in
responder status because a patient who was a non-
responder to one drug, might have responded well to
another drug. For example, of the 18 patients who had
switched to a new anti-TNF drug at baseline due to ineffi-
cacy of the previous drug, 11 had a good response to the
second line of anti-TNF agent. However, all patients start-
ing a new anti-TNF agent at study baseline - ie., those
who switched and those who were anti-TNF naive - were
followed for 6 months to assess response as is routinely
done in clinical practice. Hence, none of them were
switched to a new agent for the duration of the study. To
mitigate misclassification bias in the response phenotype
that might have arisen from inclusion of three different
anti-TNF agents in the analysis, we adjusted for the type
of anti-TNF agent used. Third, as there is no gold stand-
ard measure to evaluate treatment response in RA, we
used the DAS28CRP3 as a surrogate to assess disease ac-
tivity although it may not be a perfect measure of re-
sponse. The possibility that such a complex phenotype
may be associated only with modest genetic effects has
been raised [4, 16]. A comparison of the component
variables, i.e., tender and swollen joint counts and
CRP levels, showed similar trajectories from baseline
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to 6 months to the composite DAS28 score. This sug-
gests that no major differences in associations would be
expected by focusing on components of the DAS28 as the
outcome in our dataset. In order to more closely capture
variations in patient response over time, we chose to use
repeated measures of the change in DAS28 from baseline.
We did not categorize the outcome into European League
Against Rheumatism (EULAR) responses as this would
have led to a reduction in power. Last, the association be-
tween a genetic predictor and clinical response could be
confounded by factors that influence response. As far as
possible, we adjusted for likely confounders associated
with change in DAS28 in our dataset. We did not, how-
ever, adjust for variations in drug dosage. We had previ-
ously reported that response to anti-TNF therapy is
influenced by sex in the long term [60], but that these sex
differences were not observed during the first 6 months of
treatment. Thus, the lack of an association with sex in the
present dataset, which was followed for only 6 months, is
in agreement with our previous findings.

Conclusions

In summary, we have identified three chromosomal re-
gions demonstrating significant or borderline significant
association with response to anti-TNF therapy among
Japanese RA patients. The replication in our Japanese
dataset of a previous association with the GFRAI locus
among Caucasians provides evidence for a trans-ethnic
association of this locus with anti-TNF response. We
have also demonstrated the importance of including re-
sponse at more than one time point in order to enhance
power to detect associations in such pharmacogenomics
studies of RA.
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