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Abstract

Background: Activation of the type I interferon (IFN) response program is described for several autoimmune
diseases, including systemic lupus erythematosus (SLE), multiple sclerosis (MS), myositis (IIM) and rheumatoid
arthritis (RA). While IFNα contributes to SLE pathology, IFNβ therapy is often beneficial in MS, implying different
immunoregulatory roles for these IFNs. This study was aimed to investigate potential diversification of IFNα-and
IFNβ-mediated response programs in autoimmune diseases.

Methods: Peripheral blood gene expression of 23 prototypical type I IFN response genes (IRGs) was determined in
54 healthy controls (HCs), 69 SLE (47 test, 22 validation), 149 IFNβ-treated MS (71 test, 78 validation), 160 untreated
MS, 78 IIM and 76 RA patients. Patients with a type I IFN signature were selected for analysis.

Results: We identified IFNα- and IFNβ-specific response programs (GC-A and GC-B, respectively) in SLE and IFNβ-
treated MS patients. Concordantly, the GC-A/GC-B log-ratio was positive for all SLE patients and negative for
virtually all IFNβ-treated MS patients, which was confirmed in additional cohorts. Applying this information to other
autoimmune diseases, IIM patients displayed positive GC-A/GC-B log-ratios, indicating predominant IFNα activity.
The GC-A/GC-B log-ratio in RA was lower and approached zero in part of the patients, implying relative importance
of both clusters. Remarkably, GC-A/GC-B log-ratios appeared most heterogeneous in untreated MS; half of the
patients displayed GC-A dominance, whereas others showed GC-B dominance or log-ratios near zero.

Conclusions: Our findings show diversification of the type I IFN response in autoimmune diseases, suggesting
different pathogenic roles of the type I IFNs.
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sclerosis
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Background
Type I interferons (IFNs) comprise a large family of
cytokines with antiviral, immunomodulatory and anti-
proliferative activities. The type I IFN family consists of
17 closely related members, including 13 IFNα subtypes
and 4 unique members, i.e., IFNβ, IFNε, IFNκ and IFNω,
of which IFNα and IFNβ are most commonly expressed
and well-characterized.
Type I IFNs achieve their biological effects by binding

to multi-subunit receptors, IFNAR1 and IFNAR2, on the
cell surface. This leads to receptor dimerization and acti-
vation of the JAK-STAT pathway, a complex cascade of
intracellular secondary messengers that emerge in tran-
scriptional activation of genes containing IFN-stimulated
response elements (ISRE) and/or IFN gamma-activated
sequences (GAS) [1–4]. Upregulation of type I IFN re-
sponse genes (IRGs) is referred to as a type I IFN signa-
ture and is a reflection of type I IFN bioactivity.
Initially, type I IFNs were defined by their antiviral ef-

fects and as a consequence, they were used for the treat-
ment of chronic viral infections such as hepatitis B and
hepatitis C [5]. The antiviral activity involves suppres-
sion of viral replication, induction of apoptosis in virally
infected cells, stimulation of T cell and B cell responses,
natural killer cell-mediated and CD8+ T cell-mediated
cytotoxicity and activation of dendritic cells [6].
Increasing insight in the activities of type I IFNs has

revealed their role as pleiotropic cytokines with a critical
role in modulating immune responses. Several observa-
tions indicate involvement of type I IFNs and the pres-
ence of a type I IFN signature in autoimmune diseases,
including systemic lupus erythematosus (SLE), Sjögren’s
syndrome, systemic sclerosis, multiple sclerosis (MS),
idiopathic inflammatory myopathies (IIM) and rheuma-
toid arthritis (RA) [7–9]. Compelling evidence from
studies in SLE demonstrates that IFNα in particular is
directly implicated in the pathogenesis of SLE [10, 11].
SLE is characterized by the presence of autoantibodies
to nucleic acid and associated proteins, which are able
to induce IFNα protein [12]. Serum levels of IFNα are
increased in SLE and associated with disease severity
and organ involvement [13, 14]. In support of a patho-
genic role of IFNα in SLE was the observation that vir-
ally infected people and cancer patients treated with
IFNα sometimes produce anti-nuclear antibodies and
occasionally develop SLE-like symptoms [15, 16]. The
mechanisms by which IFNα may contribute to auto-
immunity are the induction of autoreactive lymphocytes,
enhancement of long-term antibody responses and
priming of myeloid cells.
In contrast to the pathogenic effects of prolonged

IFNα signaling in SLE, IFNβ administration has notable
therapeutic effects in MS, an autoimmune disease of the
central nervous system characterized by progressive

neurological dysfunction due to demyelination and
axonal damage [17]. In patients with MS, treatment with
IFNβ reduces clinical relapses and brain disease activity,
and slows down progression of disability [18]. The anti-
inflammatory and tissue-protective mechanism of IFNβ
likely involves anti-proliferative and pro-apoptotic effects,
as well as induction of anti-inflammatory mediators such
as IL-10, IL-1R antagonist and soluble TNF receptors and
reduction of pro-inflammatory mediators such as IL-1, IL-
6 and TNFα [19].
From the above, the question emerges why type I IFNs

can be pathogenic in SLE but therapeutic in MS. It is
tempting to speculate that despite mechanistic similar-
ities, IFNα and IFNβ have distinct roles in immune regu-
lation that confer these opposing effects. Comparison of
the primary amino acid sequences reveals that IFNα
differs from IFNβ by approximately 70 % [20]. Receptor
binding studies demonstrate that IFNα and IFNβ inter-
act with their receptors in a different manner, suggesting
that IFNα and IFNβ activate the IFNAR1/IFNAR2-medi-
ated signal transduction pathway in a slightly different
way [21–23]. Accordingly, in vitro studies reveal that
IFNβ appeared to be more potent at inhibiting cell pro-
liferation and inducing apoptosis than IFNα [24]. How-
ever, it is as yet unknown whether there are differences
in the downstream gene activation program of IFNα-
and IFNβ-induced IFN signatures in vivo.
In the present study, we used transcript profiling to

compare the IFN signature gene components regulated
by IFNα in SLE patients to those of MS patients who
were treated with IFNβ. Moreover, we exploited our
findings to delineate the nature of the type I IFN signa-
ture in IIM, RA and patients with MS who were IFNβ-
naïve.

Methods
Patient recruitment
SLE patients (n = 47) and RA patients (n = 76) were
recruited at the Amsterdam Rheumatology and immun-
ology Center, Amsterdam, The Netherlands. Patients
with MS were recruited from the NABINMS study, a
prospective European multicenter study that was
previously described [25]. For the untreated MS cohort,
blood samples collected before start of IFNβ therapy
were used (n = 160); for the IFNβ-treated MS cohort, we
used blood samples drawn after 3 months of IFNβ ther-
apy (n = 71). IIM patients (n = 78) were recruited at the
Rheumatology Unit at Karolinska University Hospital,
Stockholm, Sweden or at the Institute of Rheumatology,
Prague, Czech Republic, and fulfilled the diagnostic
criteria for definite or probable polymyositis (n = 32),
dermatomyositis (n = 40) or sporadic inclusion body
myositis (n = 5). Healthy controls (HC, n = 54) were re-
cruited at the VU University medical center, Amsterdam.
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This study was approved by the medical ethical commit-
tees of the VU medical center, the Slotervaartziekenhuis
and Reade in Amsterdam, The Netherlands, Karolinska
Hospital in Stockholm, Sweden, the Institute of Rheuma-
tology in Prague, Czech Republic and the centers partici-
pating in the NABINMS study [25], and informed consent
was obtained from all donors. Demographic data, clinical
information and medication use of the patients at the time
of blood sampling are shown in Table 1.

Blood sampling and RNA isolation
From the donors in the SLE, IIM, RA and HC cohorts,
2.5 ml blood was drawn in PAXgene tubes (PreAnalytix,
GmbH, Hombrechtikon, Switzerland) and stored at
−20 °C. After overnight thawing at room temperature
total RNA was isolated according to the manufacturer’s
instructions (PAXgene Blood RNA kit). Total RNA con-
centration was measured using the Nanodrop spectro-
photometer (Nanodrop Technologies, Wilmington, DE,
USA). From the donors in the untreated MS cohort and
the IFNβ-treated MS cohorts, blood was collected in a
Tempus tube (Applied Biosystems, Waltham, MA,
USA), and processed as described before [25].

Reverse transcription and pre-amplification of cDNA
RNA (0.5 μg) was reverse-transcribed into cDNA using
a Revertaid H-minus cDNA synthesis kit (MBI Fermen-
tas, Waltham, MA, USA). A single aliquot of each
cDNA sample, equivalent to 12.5 ng RNA, was first sub-
jected to 14 cycles of specific target amplification using
a 0.2X mixture of all Taqman Gene Expression assays in
combination with the Taqman PreAmp Master Mix (Ap-
plied Biosystems, Foster City, CA, USA). Following pre-

amplification, the samples were diluted 1:5 (v/v) in Tris-
EDTA buffer, pH 8.0.

Multiplex Real-Time PCR
Custom-designed TaqMan®assays for each gene were
supplied by Applied Biosystems. Quantitative PCR
(qPCR) analysis was performed at ServiceXS (ServiceXS
B.V., Leiden, The Netherlands) using the 96.96 BioMark™
Dynamic Array for Real-Time PCR (Fluidigm Corpor-
ation, San Francisco, CA, USA), according to the manu-
facturer’s instructions. Thermal cycling and real-time
imaging of the BioMark array was done on the BioMark
instrument, and cycle threshold (CT) values were ex-
tracted using the BioMark Real-Time PCR analysis soft-
ware. Relative quantities were calculated using the
standard curve method, using glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as a housekeeping
gene. Expression levels were log2-transformed.

Calculation of the type I IFN score and selection for initial
analyses
Based on whole genome expression data available in
the literature, 23 interferon response genes (IRGs)
(see Additional file 1: Table S1) were selected that are
reflective of a communal type I IFN signature
between autoimmune diseases. All 23 genes are de-
scribed to be upregulated compared to healthy con-
trols in one or more of the autoimmune diseases
SLE, MS, IIM and/or RA [9, 13, 26–30]. To control
for inter-experimental variation, expression levels of
each gene were calculated relative to the median ex-
pression of the gene in healthy controls. Because all
IRGs were strongly correlated (Pearson r >0.7 for
90 % of the combinations, p <0.0005), we calculated

Table 1 Patient characteristics for the complete cohorts or the IFNhigh selection

SLE IFNβ-treated MSb Untreated MS IIM RA Healthy controls

Total amount All 47 71 160 78 76 54

IFNhigh 30 63 12 26 10

Age in years, mean (SD) All 44 (14) 34 (8) 36 (10) 56 (14) 54 (13) 35 (10)

IFNhigh 42 (13) 35 (8) 34 (9) 55 (17) 52 (16)

Female, % All 85 73 67 62 79 53

IFNhigh 93 72 83 69 89

Disease activity, mean (SD)a All 4 (5) n.a n.a. n.a. 4.8 (1.4)c n.a.

IFNhigh 5 (5) 5.3 (1.6)d

Current prednisolone use, % All 50 n.a. n.a. 70 17 n.a.

IFNhigh 57 n.a. n.a. 60 22

Current use of other immunomodulatory drugs, % All 63 n.a. n.a. 60 24 n.a.

IFNhigh 67 n.a. n.a. 56 33
aDisease activity scores: for systemic lupus erythematosus (SLE), the Systemic Lupus Erythematosus Disease Activity Index; for rheumatoid arthritis, the Disease
Activity Score in 28 joints. bPatients with a type I interferon (IFN) signature (IFNhigh) (see Fig. 1) before start of therapy were not included in the IFNhigh selection of
this cohort. cdata missing from 5 patients. ddata missing from 1 patient All refers to the complete cohort. MS multiple sclerosis, IIM idiopathic inflammatory
myopathies, SD standard deviation, n.a. not applicable
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an IFN score by averaging the expression levels of all
IRGs per sample.
Presence of a type I IFN signature (referred to as IFN-

high) was defined as an IFN score above mean + 2*SD in
HCs (1.3). To exclude the possibility that observed quali-
tative differences are actually due to quantitative differ-
ences, we selected IFNhigh patients within a comparable
range of IFN score, between 2.5 and 4.0, for initial ana-
lysis (Fig. 1). The remaining IFNhigh patients were used
as an additional cohort to verify our initial findings.

Statistical analysis
Cluster analysis was used for categorization of IRGs with
respect to their relative expression between diseases
[31]. TreeView was used to visualize the clustering of
genes (Eisen Lab, Berkeley, CA, USA). Comparison of
IRG expression between SLE and IFNβ-treated MS pa-
tients was performed using the unpaired t test, with
multiple testing correction using the Benjamini-
Hochberg method. Comparison of IFN scores between
SLE and MS-IFNβ was performed using the unpaired t
test and comparison of cluster-specific IFN scores within
patients was performed using the paired t test. P values
<0.05 were considered significant.

Results
Differential expression of IRGs in SLE versus IFNβ-treated
MS patients
In order to explore in vivo differences in the compos-
ition of type I IFN signatures in autoimmune diseases,
we studied IRG expression profiles of a prototype IFNα-
driven disease, i.e., SLE, and those of MS patients who
were treated with IFNβ for 3 months. As described

above, only patients with an IFN signature (referred to
as IFNhigh) were included for further analysis. To ensure
that the observed IFN signature was specifically induced
by the IFNβ treatment, MS patients with an IFN signa-
ture before start of IFNβ treatment were excluded from
analysis. For initial analysis, we used data from patients
with comparable levels of IFN score, between 2.5 and
4.0, as described above.
To compare the IFN signature gene components

regulated by IFNα in SLE to those of IFNβ-treated
MS patients, unsupervised cluster analysis was per-
formed (Fig. 2a). Strikingly, the analysis revealed
perfect separation of SLE patients and IFNβ-treated
MS patients based on two IRG clusters. From the
upper cluster, 5 out of 7 IRGs (GC-A) were
significantly upregulated in SLE patients compared to
MS-IFNβ, whereas 13 out of 16 genes (GC-B) from
the lower cluster were significantly upregulated in the
IFNβ-treated MS patients compared to SLE (Fig. 2a
and Additional file 1: Table S2). GC-A and a GC-B
scores were calculated by averaging expression values
of these 5 and 13 genes, respectively. As shown in
Fig. 2b, the GC-A score was significantly higher than
GC-B in SLE (p <0.001) whereas the GC-B score was
significantly higher than GC-A in IFNβ-treated MS (p
<0.001). Analysis of IFNhigh patients with IFN scores
lower than 2.5 or higher than 4.0 confirmed these
findings (additional cohort, Fig. 2c). To gain insight
into the relative importance of each gene cluster per
patient, the GC-A/GC-B ratio was calculated. As this
ratio is based on log2-values, a ratio above zero
means a higher GC-A score compared to GC-B,
whereas a ratio below zero means that the GC-B

Fig. 1 Interferon (IFN) score in systemic lupus erythematosus (SLE) patients and multiple sclerosis (MS) patients who received 3 months of
IFNβ treatment. Average expression levels of 23 interferon response genes (IRGs) show a comparable range for the majority of SLE
patients and IFNβ-treated MS patients. SLE and IFNβ-treated MS patients with an IFN score between 2.5 and 4.0 (gray area) were selected
for the initial comparison of the composition of the IFN signature. Patients with a type I interferon signature and an IFN score above 4.0
or below 2.5 were used as an additional cohort. HC healthy controls
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score is higher than the GC-A score. Comparison of
these GC-A/GC-B log-ratios revealed that SLE and
patients with MS from both cohorts could be com-
pletely separated based on these ratios (Fig. 2c).

Validation in public microarray datasets
In order to validate our observations, publicly available
microarray data were downloaded from the Gene Ex-
pression Omnibus database of the National Center for

Fig. 2 Comparison of gene clusters in systemic lupus erythematosus (SLE) and interferon (IFN)β-treated multiple sclerosis (MS) patients. a
Unsupervised cluster analysis of SLE patients with a type I interferon signature and IFNβ-treated MS patients. Patient groups were fully separated
based on their expression profiles of 23 interferon response genes. Separation is based on differential expression of two major gene clusters.
Significantly different genes comprising GC-A (blue) and GC-B (orange) are underlined. b GC-A and GC-B scores were compared in SLE and IFNβ-
treated MS patients in the initial and additional cohort. In both cohorts, the GC-A score is higher than the GC-B score in SLE patients, whereas the
opposite is true for IFNβ-treated MS patients. c The log-ratio of GC-A and GC-B scores was compared in SLE and IFNβ-treated MS patients from
the initial and additional cohort. In all SLE patients, the ratio is above zero, indicating GC-A > GC-B. In virtually all IFNβ-treated MS patients, GC-A/
GC-B ratio is below zero, indicating GC-B > GC-A. HC healthy controls
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Biotechnology Information [32]. Dataset GSE17755 con-
tains gene expression data from peripheral blood cells
from 25 healthy individuals and 22 SLE patients [33].
Datasets GSE41846 and GSE41848 consist of combined
gene expression data from peripheral blood cells from
38 healthy controls and 78 IFNβ-treated MS patients
[34]. Expression data for the 23 IRGs were extracted
from these datasets, except for SAMD9L as it was not
available in all sets. Patients with an IFN signature were
selected based on the HC cutoff, as described above, and
GC-A/GC-B log-ratios were determined. As shown in
Fig. 3, these data confirmed our findings: SLE patients
displayed a dominant GC-A score, whereas GC-B dom-
inance was apparent for the majority (78 %) of IFNβ-
treated MS patients. A small proportion of IFNβ-treated
MS patients had some GC-A dominance, which might
be explained by the fact that we could not exclude pa-
tients with an IFN signature before start of therapy, as
the dataset did not contain paired data before and dur-
ing IFNβ treatment for all patients. Altogether, these
data confirm the presence of IFNα- and IFNβ-specific
signatures and the utility of the GC-A/GC-B log-ratio to
distinguish between those signatures.

Expression of gene clusters in other autoimmune diseases
The above results indicate that IFNα and IFNβ-driven
type I IFN signatures can be distinguished based on the
GC-A/GC-B log-ratio. Thereto, we determined the GC-
A/GC-B log-ratio in patients with idiopathic inflamma-
tory myopathies (IIM), RA patients and IFNβ-naïve MS
patients, which are autoimmune diseases with type I IFN
signatures of yet unknown origin. Again, only IFNhigh

patients were selected.

As shown in Fig. 4a, in patients with IIM there was
GC-A dominance, as reflected by the positive GC-A/
GC-B log-ratios, indicating predominant IFNα activity
similar to that in SLE. The GC-A/GC-B log-ratio in RA
patients was lower and approached zero in some of the
patients, indicating the contribution of the GC-B cluster
as well. Remarkably, untreated MS patients appeared
most heterogeneous; approximately half of the patients
were characterized by GC-A dominance, whereas the
other patients displayed GC-B dominance or a log-ratio
close to zero.
These findings were validated for RA patients and un-

treated patients with MS who were IFNhigh, as the micro-
array datasets used for validation of our findings in SLE
and IFNβ-treated MS patients also contained gene expres-
sion data for RA patients (GSE17755, n = 112) and un-
treated patients with MS (GSE41846 and GSE41848, n =
62) (Fig. 4b) [33, 34].

Transcriptional regulation of IRG gene clusters
To explore functional differences between GC-A and
GC-B genes, a transcription factor binding site
(TFBS) analysis was performed on these gene clusters
using the interferome database and rVISTA [35, 36].
Interestingly, output from the Interferome database
showed that prototypical IFN-response elements IFN-
stimulated response element (ISRE), interferon con-
sensus sequence-binding protein (ICSBP)/interferon
regulatory factor (IRF)8 and IRF7 are mainly present
in the GC-B genes and not in the genes of GC-A
(Fig. 5). This was supported by statistical analysis of
TFBS enrichment, using rVista, which showed signifi-
cant enrichment in GC-B of both IRF8-binding sites
and ISRE (within a 100 bp upstream regulatory re-
gion, p <0.0001 and p = 0.02, respectively). No enrich-
ment of IFN-related TFBS was found in the GC-A
gene set (data not shown). This indicates differential
transcriptional regulation of the GC-A and GC-B
genes, further supporting different upstream activity.

Discussion
Presence of a type I IFN signature is often discussed as a
similarity among autoimmune diseases. In the present
study we provide evidence that type I IFN signatures in
autoimmune diseases appear less uniform than generally
assumed.
IRG expression patterns were different between SLE

and IFNβ-treated MS, two autoimmune diseases in
which IFN activity has opposing effects on immune
pathology and regulation, believed to be a consequence
of differential effects of IFNα and IFNβ. Log-ratios of
the differentially expressed type I IFN gene clusters, des-
ignated GC-A (SLE-IFNα-related) and GC-B (MS-IFNβ-
related), revealed excellent separation of patients with

Fig. 3 Validation of our findings in publicly available microarray data.
The ratio between GC-A and GC-B was calculated for independent
validation cohorts of 20 systemic lupus erythematosus (SLE) patients
with a type I interferon signature (IFNhigh) and 70 IFNhigh IFNβ-treated
multiple sclerosis (MS) patients. This confirms our earlier findings of
GC-A > GC-B in SLE and GC-B > GC-A in IFNβ-treated MS
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SLE and IFNβ-treated MS patients. Moreover, use of the
GC-A/GC-B log-ratios in RA, IIM and IFNβ-naïve MS
patients provided insight into the origin of the type I
IFN signatures in these diseases.
The GC-A/GC-B log-ratios revealed that IIM is pre-

dominantly characterized by a GC-A, hence an SLE-like,
IFN signature. This fits with the many similarities be-
tween SLE and IIM that have been reported previously,
including those related to the IFN pathway [37]. With
regard to RA, the GC-A/GC-B log-ratio was close to
zero for some patients, indicating that both IFNα and
IFNβ contribute to the IFN signature, as has been sug-
gested before [38]. Interestingly, GC-A/GC-B log-ratios

differed among IFNβ-naïve MS patients, as half of the
patients had GC-A dominance, and others had GC-B
dominance or ratios close to zero. This could implicate
different mechanisms underlying the type I IFN pathway
activation in these patients. We previously showed that
presence of a baseline IFN signature in patients with MS
is related to non-responsiveness to IFNβ treatment [27]
and it is highly relevant to further investigate the role of
GC-A and GC-B in this perspective, which is the object-
ive of future studies. Altogether, these results suggest a
differential role of type I IFNs in autoimmune diseases.
The considerable variance of type I IFNs in humans

suggests that, although they bind to the same receptor,

Fig. 4 Comparison of gene clusters in autoimmune diseases. a Log2(GC-A/GC-B) was compared between patients with systemic lupus
erythematosus (SLE), untreated multiple sclerosis (MS) patients and patients with idiopathic inflammatory myopathies (IIM) or rheumatoid arthritis
(RA). The GC-A/GC-B log-ratios are comparable in SLE and IIM. RA patients display less distinctive log-ratios for GC-A and GC-B. Untreated patients
with MS are characterized by either GC-A or GC-B dominance. b Confirmation of these findings using publicly available microarray data.
IFN interferon
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the effects they exert might be different. For example, it
has been shown that IFNβ is more potent than IFNα in
inhibiting proliferation, inducing apoptosis and cell dif-
ferentiation [39, 40]. Differences were partly explained
by the different affinities of type I IFNs for their recep-
tors, resulting in different receptor trafficking, phosphor-
ylation and signaling kinetics [21, 41]. More recently, it
has been described that IFNβ can uniquely ligate to
IFNAR1, independently of IFNAR2 [42]. Overall, IFNβ
appears more potent in activating signal transduction
than IFNα, as demonstrated by a more stable receptor
complex formation [43], a lower concentration of drug
giving the half-maximal response (EC50) for ISGF3 phos-
phorylation [44] and induction of a larger amount of
genes than IFNα, especially at long incubation times of
16–36 h [45]. Notably, these long incubation times con-
form to the chronic IFNα exposure in SLE and 3 months
of IFNβ therapy in MS. Interestingly, Moraga et al. hy-
pothesized that the short-term complex formation of
IFNα with its receptors might cause a constant low level
of apoptosis, whereas the long-term complex formation
of IFNβ with its receptors could more potently induce
high levels of apoptosis. As SLE pathology is character-
ized by impaired clearance of apoptotic cells, resulting in
immune complex formation and consequent IFNα
induction, the low levels of apoptosis as mediated by
IFNα could be key to persistence of a vicious pro-
inflammatory circle [46]. In MS, however, apoptosis of
autoreactive T cells is considered to be one of the anti-
inflammatory actions of IFNβ therapy [47].
The implication of IFNα-and IFNβ-specific signatures

is supported by the experiments of Der et al., who per-
formed an in vitro experiment in which the fibrosarcoma
cell line HT1080 was stimulated with either IFNα or
IFNβ, followed by gene expression measurements using
oligonucleotide arrays for ±6,800 genes [48]. From these
experiments, seven genes overlap with our gene clusters,

one from the GC-A cluster and six from the GC-B clus-
ter. IFITM1, a GC-A gene, had slightly higher expression
in IFNα-stimulated cells compared to IFNβ, whereas the
GC-B genes EIF2AK2, IFIT1, IFIT2, MX1, OAS2 and
PLSCR1 were all induced more by IFNβ than by IFNα
(1.2-fold to 7-fold higher induction) [48]. Despite the
small overlap of genes, the consistency of these results is
striking.
It has been suggested that the type I IFN response dif-

fers among immune cell types [49], implying that the ob-
served differences between SLE and MS could be partly
due to differences in immune cell composition. How-
ever, the agreement between our data and those of Der
et al. suggests that the observed differences are due to
consistent differential signaling in all cells rather than
large differences in immune cell compositions or IFNAR
expression. However, for replication and complete defin-
ition of IFN subtype-specific response programs, whole
genome expression studies are required.
Analysis of transcriptional regulation of GC-A or GC-

B genes showed enrichment of IRF8/ICSBP binding sites
and ISRE in the GC-B cluster. Remarkably, none of the
IRGs from the GC-A cluster contained an ISRE, the re-
sponse element that binds the ISGF3 complex down-
stream of canonical type I IFN signaling. As they did
contain binding sites for STAT1 and/or STAT2, they are
probably induced via STAT1-STAT1 monomers or
STAT1-STAT2 heterodimers, which both IFNα and
IFNβ are able to activate [50, 51]. The observation that
these genes are increased in SLE compared to IFNβ-
treated MS might be explained by the indication that
IFNβ, in contrast to IFNα, might more potently activate
a broader range of signaling proteins, including ISGF3
and IRF8, resulting in relatively less activation of the
GC-A genes by IFNβ.
Expression of IRF8 is restricted to immune cells and it

has the ability to act as a repressor or activator of the

Fig. 5 Transcription factor binding site (TFBS) analysis using the Interferome database. Represents the presence of transcription factor binding
elements 1500 bp upstream from the transcription start site. Interferon regulatory factor (IRF)7, IRF8 and interferon-stimulated response element
(ISRE) are mainly present in genes from GC-B and not in genes from GC-A
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IFN response, depending on its interaction partner. A
study by Meraro et al. reported that the IRF1-mediated
induction of the IFN response gene ISG15 was inhibited
in the presence of IRF8, whereas interaction of IRF8 and
PU.1 synergistically enhanced ISG15 induction [52]. This
suggests an immunomodulatory role for IRF8, which
might be key to the different effects of IFNα and IFNβ
on the immune system.

Conclusions
Conclusively, this study demonstrated that the IFN sig-
natures display distinct differences between autoimmune
diseases. Considering the pro-inflammatory nature of
IFNα in SLE and the anti-inflammatory role of IFNβ in
MS, specification of the type I IFN response in auto-
immune diseases might give new insights into its role in
disease pathology and/or its therapeutic potential.

Additional file

Additional file 1: Table S1. List of 23 type I interferon (IFN) response
genes that were measured. Table S2. List of genes that are
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