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Abstract

Background: Anti-SSA/Ro60 and anti-SSB/La are essential serological biomarkers for rheumatic diseases, specifically
Sjogren’s syndrome (SS) and systemic lupus erythematosus (SLE). Currently, laboratory detection technology and
platforms are designed with an emphasis on high-throughput methodology; therefore, the relationship of
sensitivity with specificity remains a significant area for improvement. In this study, we used single-cell antibody
nanowells (SCAN) technology to directly profile individual B cells producing antibodies against specific autoantigens
such as SSA/Ro60 and SSB/La.

Methods: Peripheral blood mononuclear cells were isolated using Ficoll gradient. Fluorescently labeled cells were
added to fabricated nanowells and imaged using a high-speed epifluorescence microscope. The microengraving
process was conducted using printed slides coated with immunoglobulins. Printed slides were hybridized with
fluorescence-conjugated immunoglobulin G (IgG), SSA/Ro60, and SSB/La antigens. Microarray spots were analyzed
for nanowells with single live B cells that produced antigen-specific autoantibodies.

Results: Our results indicate that SCAN can simultaneously detect high frequencies of anti-SSA/Ro60 and
anti-SSB/La with a specific IgG isotype in peripheral blood mononuclear cells of patients, as well as measure their
individual secretion levels. The data showed that patients with SS and SLE exhibited higher frequency and greater
concentration of anti-SSA/Ro60- and anti-SSB/La-producing B cells in the IgG isotype. Furthermore, individual B cells
of patients produced higher levels of IgG-specific anti-SSA/Ro60 autoantibody, but not IgG-specific anti-SSB/La
autoantibody, compared with healthy control subjects.

Conclusions: These results support the application of SCAN as a robust multiparametric analytical bioassay that can
directly measure secretion of autoantibody and accurately report antigen-specific, autoantibody-producing cells.
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Background
Sjogren’s syndrome (SS) and systemic lupus erythemato-
sus (SLE) patients develop specific autoantibodies against
nuclear antigens, intracellular components, membrane
proteins, and secreted products of exocrine tissues [1-5].
Between 40 % and 70 % of SS patients’ sera contains auto-
antibodies that are reactive to SSA/Ro60 and/or SSB/La
antigens [6]. Patients with SLE develop similar autoanti-
bodies with lower frequencies (anti-SSA/Ro60 30-40 %,
anti-SSB/La 10-15 %) [5]. Timely and accurate measure-
ment of these signature biomarkers is essential for disease
diagnosis, prognosis, extraglandular disease classification,
and the assessment of treatment outcomes [7]. A seminal
study by Jonsson et al. [8] clearly demonstrated that
among 625,000 patients studied, those who were presymp-
tomatic developed autoantibodies many years before the
clinical onset of the disease. A recent study by Theander
et al. [9] indicated a timeline of 18-20 years before diag-
nosis of primary SS (pSS) in which autoantibodies are
present. In a recent study of the National Health and
Nutrition Examination Survey cohort, anti-SS-B/La or
anti-SSA/Ro60 was confirmed to be uncommon in this
representative U.S. population [10]. While there is still
speculation whether these autoantibodies always develop
before disease, new, innovative techniques with high sensi-
tivity and specificity will allow researchers to study this
process in more detail at an individual cell level.

Autoantibody screening by routine laboratory techniques
uses mainly serum as the source. Immunostaining of the
salivary glands in patients with pSS could identify the
presence of anti-SSA/Ro60 and anti-SSB/La autoantibody-
producing cells [11]. Recent advances in recombinant
monoclonal antibody technology have significantly ex-
panded understanding of the broad autoantibody profile
detected in the glands [12]. A number of methods are used
for the detection of anti-SSA/Ro60 and anti-SSB/La anti-
bodies, such as double-immunodiffusion, counterimmu-
noelectrophoresis, Western blotting, immunoprecipitation,
and enzyme-linked immunosorbent assay (ELISA) [13].
Recent advances in addressable laser bead immunoassays
that use color-coded microspheres conjugated with an
antigen of interest have increased the feasibility of the
high-throughput analyses for multiple antigens simultan-
eously [14]. These assays have provided valuable patient
data that are beneficial in diagnosis and treatment. How-
ever, the major drawback for some of these techniques,
such as the laser bead assay, is the high sensitivity, which
could result in false-positive results [15, 16]. Commonly
used autoantibody assays use sera to examine the antibody
profile instead of directly examining the B-cell source of
these secreted antibodies.

In this study, we used single-cell antibody nanowells
technology to evaluate the specific autoantibodies pro-
duced by individual live B cells in a high-throughput,
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highly specific process. SCAN technology involves a soft
microengraving technique that uses a dense array of
nanowells (50 x 50-um wells holding a volume of 0.1-
1 nl each) fabricated of polydimethylsiloxane (PDMS) to
isolate individual cells for printing of corresponding
molecules secreted by each cell [17]. The results of this
study indicate that SCAN technology is able to detect
single live B cells that produce higher levels of anti-SSA/
Ro60 and anti-SSB/La in pSS and SLE patients. In
addition, the results demonstrate that SCAN technology
is able to enumerate the frequency and quantify the con-
centration of anti-SSA/Ro60 and anti-SSB/La from indi-
vidual B cells isolated from subjects’ peripheral blood
mononuclear cells (PBMCs). As a research tool, SCAN
technology is capable of interrogating individual, unique,
antibody-secreting B cells. Further studies are needed to
validate it as a diagnostic tool for patient classification.

Methods

Human subjects

Participants underwent extensive serologic evaluations as
standard of care. The serological tests were analyzed using
ELISA for anti-SSA/Ro (QUANTA Lite* SS-A, catalog
number 708570; Inova Diagnostics, San Diego, CA, USA);
anti-SSB/La QUANTA Lite® SS-B, catalog number 708575;
Inova Diagnostics); rheumatoid factor (Inova Diagnostics);
and anti-Smad, anti-ribonucleoprotein, anticentromere,
anti-Scl-70, and double-stranded DNA (Bio-Rad Labora-
tories, Hercules, CA, USA). Indirect immunofluorescence
was used for Hep2 cells (antinuclear antibodies [ANAs];
Bio-Rad Laboratories), chemiluminescence immunoassay
for anticardiolipin (Inova Diagnostics), and immunoturbi-
dimetry for complement components C3 and C4. PBMCs
and blood (7=9 healthy control subjects aged 17-65
years, with 8 females and 1 male; n = 13 pSS/SLE patients
with clinical profiles presented in Table 1) were either gen-
erously given by the Sjogren’s International Collaborative
Clinical Alliance (SICCA) or obtained at the University of
Florida Department of Pediatric Rheumatology. PBMCs
from the SICCA registry were frozen samples and stored
in cryoprotective media containing 90 % fetal calf serum
and 10 % dimethyl sulfoxide. To maintain consistency,
blood samples obtained at the University of Florida were
first processed by Ficoll-Paque PLUS as instructed by the
manufacturer (GE Healthcare Life Sciences, Piscataway,
NJ, USA). Isolated PBMCs were frozen in cryoprotective
media. Before being screened for autoantibody production,
PBMCs were thawed and rested for 1 h in complete media
(RPMI 1640 medium, 10 % FBS, 2 mM L-glutamine,
0.05 mM B-mercaptoethanol, 37 °C, 5 % CO,). Cell viabil-
ity was determined to be 70—-85 % using 0.4 % Trypan Blue
dye (Bio-Rad Laboratories) and read with an automated
cell counter (TC20; Bio-Rad Laboratories). All procedures
were reviewed and approved by the University of Florida
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Table 1 Patients’ clinical profiles

Patient Age (years) Sex RF (1U/ml) Disease Focus score ANA Anti-Ro Anti-La
24 16 M N/A SLE N/A + - -

2.24 15 F <10 SLE N/A - - -

39 8 F 165 SLE N/A 1/80 + -

3 16 F N/A SLE N/A + + +

4.1 " F N/A SLE N/A + + +

14 16 F 12 SLE N/A + - +

15 17 F <10 SLE N/A + - -

24 15 F <10 SLE N/A - - -

25 16 F <10 SLE N/A + - -

26 16 F 86 SLE N/A + + +

27 15 F <10 SLE, sSS N/A + + +

1 48 F + pSS 2.7 1/320 + +

2 56 F - pSS 23 1/320 + +

ANA antinuclear autoantibodies, pSS primary Sjégren’s syndrome, RF rheumatoid factor, SLE systemic lupus erythematosus, RF rheumatoid factor, sSS secondary

Sjogren’s syndrome, N/A not applicable, IU/ml international units per milliliter

Health Institutional Review Board (IRB201400079). Writ-
ten informed consent was obtained from study partici-
pants before enrollment in the study.

Preparation and imaging of loaded cells in arrays of
nanowells

Nanowells were fabricated using SYLGARD 184 silicone
elastomer base (PDMS; Dow Corning, Midland, MI,
USA) and a curing agent as described previously [17]. A
suspension of 2 x 10° cells in 100 pl of complete culture
media was stained with CellTrace Calcein Violet, AM,
for live cells and anti-CD19-Alexa Fluor (AF) 488 for
30 minutes on ice (Life Technologies, Carlsbad, CA,
USA). Stained cells were washed in PBS and resus-
pended in 300 pl of culture media. The suspension of
cells was loaded into an array of 50-pum nanowells. The
cells were allowed to settle via gravity for 5 minutes. Ex-
cessive cells were rinsed off with media, and a LifterSlip
coverslip (Fisher Scientific, Pittsburgh, PA, USA) was
placed on top to prevent evaporation from the nanowells.
The arrays were imaged using an automated epifluores-
cence microscope (Nikon Eclipse Ti; Nikon Instruments,
Melville, NY, USA) equipped with a motorized stage,
phase contrast, and 405-nm and 488-nm wavelength filter
sets using Nikon NIS Elements Advanced Research image
capture software.

Microengraving

The array of nanowells was submerged in media to be
rewetted after imaging. The array was then gently placed
in the chamber base of a hybridization chamber (Agilent
Technologies, Santa Clara, CA, USA), and excess liquid
was aspirated off using a glass pipette. The face of each
dry glass slide treated with poly-L-lysine as described

previously [17] was coated with polyclonal donkey anti-
human immunoglobulin G (IgG) (25 pg/ml; Jackson
ImmunoResearch, West Grove, PA, USA) was placed on
top of the array, which was placed inside the chamber
base. The assembly was secured by a finger-tightened
screw and incubated at 37 °C for 1 h. After incubation,
the glass slides were carefully removed from the array
and immediately placed in 1x PBS. The glass slides were
processed using the HS 400 Pro Hybridization system
(Tecan, Ménnedorf, Switzerland) with the following
protocol: 15-minute hybridization with 3 % nonfat milk
in PBS with 0.5 % Tween 20, washed twice for 1 minute
each time, and incubation for 45 minutes with a 1:1000
dilution of goat antihuman IgG-AF647 (Jackson Immu-
noResearch), AF488-labeled SSA/Ro60, and AF550-
labeled SSB/La using DyLight antibody labeling kits per
the manufacturer’s instructions (Thermo Scientific,
Rockford, IL, USA). Ro60/SS-A and La/SS-B were pur-
chased from a commercial source (DIARECT, Freiburg,
Germany). The slides were vacuum-dried and scanned
using a GenePix 4400 microarray scanner (Molecular
Devices, Sunnyvale, CA, USA) with specific gain and
power to maintain consistency between fluorescence
channels as well as among subsequent slides.

Data analysis

Microarray micrographs and microscopic images were
processed to identify nanowells containing single cells
with corresponding secretion of IgG antibody against
Ro60/SS-A and La/SS-B proteins. In brief, GenePix Pro-
7.0 software (Molecular Devices) was used to locate
positive features on the scanned images of printed mi-
croarrays using a custom GenePix Array List designated
with feature indicators. Once all the features were found,
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each position in the array was analyzed to extract the
mean fluorescence intensity (MFI) for each channel cor-
responding to immunoglobulin. The data were extracted
on the basis of specific criteria for each channel. This in-
cluded setting the percentage of saturation to any value
less than 2, the coefficient of variation to a maximum of
100 to indicate signal uniformity, the signal-to-noise ra-
tio to greater than or equal to 1, and the SD above the
background (% >B +2 SD) at a minimum of 50. These
criteria ensured that affirmative and uniform signals
above the background noise were selected and reduced
the chances for false-positive results. Analysis of the im-
ages of the cells recorded by automated epifluoresence
microscopy were inspected by using a custom software
program to determine the number of cells present in
each well and the MFI in each of the fluorescent chan-
nels. These data were matched with the corresponding
antibodies detected by microengraving according to the
unique location identification of each nanowell. This
combined dataset was then filtered for analysis to in-
clude only wells occupied with single live cells.

Determine the concentration of anti-SSA/Ro60 and anti-
SSB/La

A standard curve for the antibodies produced by each
cell was constructed by applying a series of concentra-
tions (e.g, 1 nM to 10 pM) of the corresponding
fluorochrome-conjugated antihuman IgG (antihuman
IgG-AF488 for SSA/Ro60 and antihuman IgG-AF550 for
SSB/La) to the set of replicate microarrays and then
measuring the fluorescence intensities of captured anti-
SSA/Ro60 and anti-SSB/La as a function of concen-
tration [18, 19]. Based on the standard curve, the
concentrations of anti-SSA/Ro60 and anti-SSB/La were
calculated using MFI of individual signals on the micro-
array from each CD19" B cell in nanowells. Based on
the unknown concentrations and the MFI values, the
linear regression analysis generated for anti-SSA/Ro60
was y = 0.0008x + 0.0122, R* = 0.97609, and for anti-SSB/
La it was y = 205,706 + 124.22, R* = 0.99995.

Statistical analysis

Statistical evaluations were performed by using the
Mann-Whitney U test generated using InStat software
(GraphPad Software, La Jolla, CA, USA). A one-tailed
p value less than 0.05 was considered significant.

Results

Determining anti-SSA/Ro60- and anti-SSB/La-producing B
cells using SCAN technology

To demonstrate the feasibility of SCAN methodology,
PBMCs from pSS/SLE patients and healthy control sub-
jects were isolated. As presented in Fig. 1, the fluores-
cently labeled cells were dispersed into the nanowells
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Fig. 1 Single-cell antibody nanowell process. Arrays of nanowells
with dimensions of 50 um x 50 um x 50 um were used for
microengraving. Peripheral blood mononuclear cells were loaded
into the nanowells. Cells in the nanowells were imaged using an
automated epifluorescence microscope. Micrograving was
performed by hybridizing nanowells with capture slides containing
antihuman immunoglobulins for 1 h at 37 °C with 5 % CO,. After
incubation, nanowells containing intact live cells and capture slides
were separated. A mixture of goat antihuman immunoglobulin G
(IgG)-Alexa Fluor 647 (AF647) and fluorochrome-conjugated SSA/
Ro60-AF488 and SSB/La-AF550 were added to the capture slides.
Micrographs of microarrays were generating by scanning using a
GenePix Autoloader 4200AL microarray scanner. The schematic has

been modified from a previous study [17]

and imaged to precisely locate specific nanowells that
contained individual live B cells. Capture slides contain-
ing human anti-IgG were used to hybridize the arrays
containing cells. To identify specific captured Ig, detec-
tion reagents, including antihuman IgG-AF647, SSA/
Ro60-AF488, and SSB/La-AF550, were used to deter-
mine the antigen specificity of B cells isolated from pa-
tients and healthy control subjects. As demonstrated in
Fig. 2a, with SCAN technology we were able to identify
an individual live CD19" B cell in each nanowell, but,
more importantly, we were able to analyze the IgG-
specific autoantibodies produced by these individual
CD19" B cells, as represented by IgG, anti-SSA/Ro60,
and anti-SSB/La. On the basis of the microarrays of the
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Fig. 2 Profiling anti-SSA/Ro60- and anti-SSB/La-producing B cells using single-cell antibody nanowell technology. a Representative micrographs
of cells (bright field [BF]) in nanowells labeled with calcein (live cells) and CD19-Alexa Fluor 488 (AF488). Micrographs of matching microarray by
microengraving showing detection signals for immunoglobulin G (IgG)-AF647, anti-SSA/Ro60-AF488, and anti-SSB/La-AF550. b Profiling of
autoantibody-producing B cells in nanowells (n =9 healthy control subjects, n= 13 pSS/SLE patients). Data extracted by image processing with
GenePix software were used to identify the appropriate signals. The data were correlated with the nanowell image data in which nanowells
contained a single cell positive for both calcein and CD19. The percentage of CD19" B cells producing IgG, anti-SSA/Ro60, anti-SSB/La, anti-SSA/
Ro60 in IgG isotype, and anti-SSB/La in IgG isotype was determined by using the count of positive signals from wells with single cells and the
total number of wells with single cells. *p < 0.05, **p < 0.01 by unpaired t test

secreted autoantibodies, nanowells containing a single producing IgG in comparison to healthy control sub-
CD19" B cell were identified to be either negative for anti-  jects. In addition, CD19" B cells of patients produced a
SSA/Ro60 and anti-SSB/La or positive for anti-SSA/Ro60  higher frequency of anti-SSA/Ro60 and anti-SSB/La
or anti-SSB/La, but not both. This observation points to  autoantibodies than those of healthy control subjects.
the astute specificity of SCAN technology in detecting Combining the two datasets indicated that patients’
anti-SSA/Ro60 and anti-SSB/La autoantibodies. CD19" B cells secreted significantly elevated levels of

The application of SCAN technology to PBMCs of anti-SSA/Ro60 and anti-SSB/La autoantibodies with IgG
pSS/SLE patients or healthy control subjects shows a  isotype in comparison to control subjects. The striking
quantitative difference between binding of SSA/Ro60  aspect of these results is the detection of anti-SSA/Ro60
and SSB/La antigens. As presented in Fig. 2b, when nor-  and anti-SSB/La autoantibodies in healthy control sub-
malized against nanowells that contained single live jects, which were determined to be negative for auto-
cells, patients showed a higher number of CD19" B cells  antibodies by ELISA. These results demonstrate that
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SCAN is a sensitive and multiparametric technology
with high specificity that can be used to profile the iso-
type and autoantibody specificity of individual B cells in
patients with pSS and patients with SLE.

Quantifying the concentration of anti-SSA/Ro60 and anti-
SSB/La produced by individual B cells

The standard curves were generated to calculate the
concentration of each anti-SSA/Ro60 and anti-SSB/La
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signal. As presented in Fig. 3a, individual CD19" B cells
of all patients produced various concentrations of anti-
SSA/Ro60 based on individual microarray spots. Inter-
estingly, three of nine (patient number 2, 1626, and OF)
of the healthy subjects were shown to produce anti-SSA/
Ro60 autoantibody, but at significantly lower concentra-
tions (calculated by spot signal intensity) than the pa-
tients (Fig. 3b). Six of thirteen of the patients (patient
numbers 2.4, 2.24, 14, 15, 24, and 25 in Table 1) were
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Fig. 3 Quantifying the concentration of anti-SSA/Ro60 and anti-SSB/La produced by individual B cells. A standard curve for the antibodies produced
by each cell was constructed by applying a series of concentrations of corresponding fluorochrome-conjugated antihuman immunoglobulin G (IgG)
(e.g, 1 nM to 10 pM) to the set of replicate microarrays and then measuring the mean fluorescence intensity of captured anti-SSA/Ro60 and anti-SSB/
La as a function of concentration using data processing of micrographs of microarrays. a Concentration of each signal spot from nanowells with single
live CD19" B cell producing IgG-specific anti-SSA/Ro60. “Seronegative patients for anti-5SA/Ro60 autoantibody. b Combined concentrations of individual
positive signal spots (live CD19" B cells secreting IgG-specific anti-SSA/Ro60 autoantibody) from patients and healthy control subjects. € Concentration
of each signal spot from nanowells with single live CD19" B cell producing IgG-specific anti-SSB/La. "Seronegative patients for anti-SSB/La autoantibody.
d Combined concentrations of individual positive signal spots (live CD19" B cells secreting IgG-specific anti-SSB/La autoantibody) from patients and
healthy control subjects. X-axis in (a) and (c) denotes healthy and patient coded personal identification. *p < 0.05. NS not significant by unpaired t test
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positive for anti-SSA/Ro60 by SCAN technology, even
though they tested negative for anti-SSA/Ro60 by ELISA.
Similarly, individual B cells of pSS/SLE patients secreted
different amounts of anti-SSB/La autoantibody (Fig. 3c).
Some of the anti-SSB/La-negative patients (6 [46 %] of
13) (Table 1) produced large amounts of anti-SSB/La
autoantibody determined by using SCAN technology.
Analysis of the healthy control subjects revealed that six
of nine healthy subjects secreted significant levels of
anti-SSB/La autoantibody with overall concentration
equivalent to that of the patients (Fig. 3d). The results
indicate that SCAN is capable of precisely quantifying
the amount of anti-SSA/Ro60 and anti-SSB/La autoanti-
bodies produced by individual B cells. In addition, the
data indicate that patients produced higher concentra-
tions of anti-SSA/Ro60 autoantibodies in comparison to
healthy control subjects. Last, the secreted levels of anti-
SSA/Ro60 autoantibodies by individual B cells appeared
to be highly elevated in pSS/SLE patients; however, there
was no change in the amount of anti-SSB/La autoanti-
body secreted by individual B cells in both cohorts.

Discussion

In the present study, we applied SCAN as a single-cell
technology to identify and enumerate the frequency of
individual B cells secreting anti-SSA/Ro60 and anti-SSB/
La autoantibodies in pSS/SLE patients. The results indi-
cated that SCAN technology was capable of detecting
isotype-specific anti-SSA/Ro60 and anti-SSB/La auto-
antibodies from single B cells. In addition, SCAN tech-
nology was able to quantify both the frequency and
levels of secreting anti-SSA/Ro60 and anti-SSB/La from
B cells. Our data indicate that patients exhibited higher
frequencies of IgG-specific anti-SSA/Ro60- and anti-SSB/
La-producing B cells in comparison to healthy subjects. In
addition, patients secreted higher concentrations of anti-
SSA/Ro60 autoantibody and similar levels of anti-SSB/La
autoantibody compared with the control subjects. These
results demonstrate that SCAN technology is highly spe-
cific in discriminating different autoantibodies; moreover,
it quantitatively determines the level or concentration
from a single B cell, which, to our knowledge, was exam-
ined for the first time in this study.

Anti-SSA/Ro60 and anti-SSB/La are shown to correl-
ate with a number of clinical symptoms in pSS and SLE
[20-24]. Although the data are not definite, patients with
pSS with anti-SSA/Ro60 and anti-SSB/La tend to have
longer disease duration, parotid gland enlargement, de-
creased salivary flow, and more severe minor salivary
gland infiltration [21]. Additionally, seropositive patients
have been reported to manifest a higher prevalence of
extraglandular manifestations. Halse et al. [11] found that
labial salivary glands (LSG) B cells of patients with pSS
produced antibodies against SSA/Ro60 predominantly in
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the IgG isotype and that these patients also showed high
focus scores =7 in LSG biopsies. In a subsequent study
[25], that research group examined larger cohorts using
peripheral blood in which the results indicated that
PBMC:s of both healthy control subjects and patients with
pSS contained significant number of Ig-secreting cells,
with similar frequencies of IgG, IgA, and IgM isotypes.
However, only 3 of 18 patients were positive for IgG-
specific anti-SSA/Ro52, and 1 of 18 patients and 1 of 16
were positive for IgG-anti-SSA/Ro60 and IgG-anti-SSB/
La, respectively. Only 1 of 12 patients examined was posi-
tive for [gM-anti-SSB/La. Interestingly, the three patients
who were positive for IgG-specific anti-SSA/Ro52 showed
a correlation with severe disease by having a focus score
>8 in LSG biopsies. These two studies suggested that IgG-
specific anti-SSA/Ro60 or anti-SSA/Ro52 in LSG or
PBMC s correlate with the severity of sialadenitis. Recent
studies have supported that these autoantibodies can be
used to predict SS up to 20 years before diagnosis [8, 9].
SCAN analysis indicated that individual B cells of patients
secreted higher frequencies of anti-SSA/Ro60 and anti-
SSA/Ro52, as well as a higher concentration of anti-SSA/
Ro60; however, the expression of these autoantibodies did
not correlate with disease activity. Additional studies with
larger cohorts might be able to resolve this association.

Traditional methods used to measure antibodies in
serum have provided critical data for patient diagnosis and
prognosis. Other emerging methods, such as proteomic
microarray and solution phase luciferase immunoprecipi-
tation systems (LIPS) technology, are used to detect anti-
body responses to both linear and conformational
epitopes, a capability surpassing traditional techniques
[26, 27]. The developers of SCAN technology took a dif-
ferent approach by examining the production of autoanti-
bodies by B cells at the single-cell level. SCAN technology
is an autoantibody multiplex platform that can massively
and simultaneously analyze multiple antibodies from the
viable single-cell source. Our data demonstrate that SCAN
technology exhibits high sensitivity and specificity by dis-
criminating the presence of anti-SSA/Ro60 and anti-SSB/
La autoantibodies. One advantage over ELISA of the tech-
nique developed here for estimating the frequency and
concentration of an antibody is that the relative occupancy
of the antibody is measured using antigen in solution. This
approach minimizes confounding multivalent interactions
of antibodies with plate-bound antigen. Furthermore,
SCAN technology is used to examine the secreted prod-
ucts at the B-cell source, while ELISA measures antibodies
present in sera. These fundamental differences potentially
limit a direct comparison between ELISA and SCAN tech-
nology. The refinement of SCAN technology in terms of
practicality and feasibility with comparison with more sen-
sitive assays, such as LIPS or enzyme-linked immunospot,
could provide meaningful clinical patient data.



Esfandiary et al. Arthritis Research & Therapy (2016) 18:107

The results of this study provide a proof of concept in
that measuring secreting function of individual B cells can
provide a more extensive analysis, specifically the fre-
quency, concentration, and isotype of antibody-producing
B cells concomitantly, which traditional methods are not
capable of. Our results demonstrate that SCAN tech-
nology was able to detect anti-SSA/Ro60- and anti-SSB/
La-producing B cells in some patients and healthy subjects
who were seronegative for anti-SSA/Ro60 and anti-SSB/
La. The high frequency and concentration of anti-SSB/La
detected by SCAN technology in healthy subjects are in-
teresting and need further investigation. Satoh et al. [10]
showed that ANA prevalence in the U.S. population ages
12 years and older was 13.8 % with anti-Ro at 3.9 % and
anti-La at a lower percentage. Moreover, healthy control
subjects in this study were screened for SLE or pSS, but
other potential causes of autoantibody production could
be certain infections, cancers, and drugs [28]. Although
somewhat unlikely, we cannot rule out the possible cross-
reaction between SS-B/La and any unknown environmen-
tal antigen. Therefore, it is essential that additional studies
with larger cohorts of healthy subjects and pSS/SLE pa-
tients are needed to reexamine and validate this finding.
More importantly, a larger cohort study will establish a
threshold frequency of individual autoantibody-producing
B cells to differentiate healthy individuals from those with
disease.

Conclusions

In the present study, we demonstrated that SCAN tech-
nology was capable of detecting individual anti-SSA/
Ro60- and anti-SSB/La-producing B cells with high spe-
cificity. At a single-cell level, the results indicated that
patients produced higher levels of autoantibodies at in-
creased frequencies than healthy subjects. SCAN tech-
nology has a unique advantage in that it can be used to
profile a number of parameters simultaneously which
traditional techniques cannot. Currently, SCAN technol-
ogy has not yet been validated for the classification of
patients. Future studies with larger cohort populations
will support the findings of the present study and, more
importantly, will provide a better understanding on the
association between clinical disease and immunological
function of autoantibody-producing B cells at the single-
cell level.
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