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Abstract

trigger an inflammatory process.

Background: Gout is the most common inflammatory arthropathy of metabolic origin and it is characterized by
intense inflammation, the underlying mechanisms of which are unknown. The aim of this study was to evaluate the
oxidative stress in human fibroblast-like synoviocytes (FLS) exposed to monosodium urate (MSU) crystals, which

Methods: Human FLS isolated from synovial tissue explants were stimulated with MSU crystals (75 pug/mL) for 24 h.
Cellular viability was evaluated by crystal violet staining, apoptosis was assessed using Annexin V, and the cellular
content of reactive oxygen species (ROS) and nitrogen species (RNS) (O5, H,0O,, NO) was assessed with image-based
cytometry and fluorometric methods. In order to determine protein oxidation levels, protein carbonyls were detected
through oxyblot analysis, and cell ultrastructural changes were assessed by transmission electron microscopy.

Results: The viability of FLS exposed to MSU crystals decreased by 30 % (P < 0.05), while apoptosis increased by 42 %
(P=0.01). FLS stimulated with MSU crystals exhibited a 2.1-fold increase in H,O, content and a 1.5-fold increase in O;
and NO levels. Oxyblots revealed that the spots obtained from FLS protein lysates exposed to MSU crystals exhibited
protein carbonyl immunoreactivity, which reflects the presence of oxidatively modified proteins. Concomitantly, MSU
crystals triggered the induction of changes in the morphostructure of FLS, such as the thickening and discontinuity of
the endoplasmic reticulum, and the formation of vacuoles and misfolded glycoproteins.

Conclusions: Our results prove that MSU crystals induce the release of ROS and RNS in FLS, subsequently oxidizing
proteins and altering the cellular oxidative state of the endoplasmic reticulum, which results in FLS apoptosis.
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Background

Gout is a uric acid (UA) metabolic disorder that promotes
the formation and deposition of monosodium urate
(MSU) crystals inside joints and periarticular soft tissues
as a result of hyperuricemia. It is the most common in-
flammatory arthropathy in young men, and its prevalence
is underestimated due to the long asymptomatic phase of
the disease [1]. The global burden of gout is substantial
and has increased in many parts of the world over the past
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50 years [2]. Gout causes monocytic inflammatory cells to
phagocytose MSU crystals. This induces the release of
pro-inflammatory cytokines such as IL-8, IL-6, CCL2,
interferon (IFN)-y, and IL-1p by assembling and acti-
vating the NOD-like receptor pyrin containing 3 (NLRP3)
inflammasome [3, 4].

The deleterious effects of urate are primarily attributed
to its ability to trigger the formation of reactive oxygen
species (ROS) and activate NLRP3. However, these mech-
anisms have not yet been elucidated [5, 6]. The activation
of NADPH oxidase, xanthine oxidase, and nitric oxide
synthase enzymes generates hydrogen peroxide (H,O,),
superoxide anion (O3) and nitric oxide (NO), respectively.
The interaction of these last two molecules promotes the
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generation of peroxynitrite (ONOO"), which in turn in-
creases apoptosis, the degradation of connective tissues,
and joint damage [7, 8]. However, due to the complex in-
teractions that take place within joints among various cell
types, including neutrophils, macrophages, mast cells,
endothelial cells and synovial fibroblasts, it is possible for
synovial fibroblasts to play a role in modulating the
inflammatory response to MSU crystals in patients with
gout [9, 10].

Previous studies have reported that endogenous ROS
are overproduced during acute gout attacks, suggesting
that oxidative stress (OS) contributes to acute gout at-
tacks and to the painful and inflammatory responses that
MSU crystals induce by currently unknown mechanisms
[11]. The aim of this study was to evaluate the pro-
oxidizing effect of MSU crystals in an in vitro model of
crystal-induced inflammation. We focused on ROS and
RNS associated with the generation of OS induced by
MSU crystals in human-derived synovial membrane
(SM) cells. We found that MSU crystals trigger an
oxidative response and oxidize proteins, highlighting a
possible mechanism underlying gout pathogenesis. The
results shown here help explain how MSU crystals com-
bined with ROS react with proteins of synoviocytes,
increasing our understanding of the role of OS in the
development of gout.

Methods

This study was approved by the Research Committee of
the Instituto Nacional de Rehabilitacion (Ref.02/13) of
Mexico and was carried out according to the principles
of the Helsinki declaration. Written informed consent
was obtained from all patients.

MSU preparation

MSU crystals were synthesized by uric acid (UA)
crystallization according to the method described by
Denko and Whitehouse [12] and modified by Scanu et al.
[10]. MSU crystals were characterized by polarized light
microscopy and scanning electron microscopy (SEM)
based on the crystallographic characteristics birefringence,
size, and morphology [13], and were sterilized at 180 ° C
for 2 h. The absence of microbial contaminants was con-
firmed by culturing for microorganisms, and the crystals
were determined to be bacterial endotoxin-free by
Limulus amebocyte cell-lysate assay (Sigma-Aldrich).

Isolation and cell culture of fibro-synoviocytes

A primary culture of synoviocytes was obtained via
mechanic-enzymatic breakdown of SM collected from
patients with osteoarthritis (OA) (n=5) during knee
joint replacement. Synoviocytes were isolated from tissue
explants following digestion with collagenase type IA
(I mg/mL) (Gibco, Life Technologies) for 2 h with
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mixing at 37 °C. Cells were seeded in T25 flasks at a
density of 250,000/flask until confluence. The cells were
cultured in DMEM-F12 supplemented with 10 % fetal
bovine serum and 1 % penicillin-streptomycin (Gibco,
Life Technologies), and they were incubated in a
controlled CO, atmosphere at a regulated temperature.
At confluence, cells were harvested (TrypLE Express,
Gibco, Life Technologies) and seeded into new flasks
that kept synoviocytes from different patients separated.
For the experiments, cells were used at the third or
fourth passage.

Phenotyping of fibroblast-like synoviocytes analysis
Characterization by qRT-PCR

Upon the third passage, fibroblast-like synoviocytes
(FLS) phenotype was determined by assessing the expres-
sion of the uridine diphosphate glucose dehydrogenase
gene (UGDH), and CD14 gene was used for macrophage-
like synoviocytes by qRT-PCR. Total RNA from each
patient was extracted by the Trizol method [14]. The qRT-
PCR technique was performed by amplifying primers
(Additional file 1) in a Rotor-Gene Q thermocycler
(Qiagen), according to the commercial kit RT® First
Strand Kit from Qiagen. The results were normalized to
the housekeeping GAPDH gene and relative quantification
was performed through REST-09 software (Relative
Expression Tool software 2009). After amplification, a
melting assay was performed to confirm the specific size
of the products of each gene.

Characterization by immunofluorescence and western blot
Expression of prolyl-4-hydroxylase (PDH4) was evalu-
ated by immunofluorescence assay (IFA) and Western
blot (WB). For IFA, cells were seeded into fixed and per-
meated chamber-slides. Subsequently, primary antibody
PDH4 (ab108980, Abcam) was incubated. Afterwards,
secondary antibody (ab175471 Alexa Fluor® 568, Abcam)
was incubated. Finally, images were captured with an
Ism 5 beta Carl Zeiss microscope.

Total protein was obtained from the culture of sino-
viocytes. Analysis of the protein content was performed
by WB according to Serratos et al. [15] Normalization
was performed with Beta-actin antibody from Sigma
(A3854). Blots were revealed using Immobilon Western
Chemiluminescent HRP Substrate (Millipore Corporation,
USA). The blots were scanned with an Amersham Imager
600 RGB (GE) and densitometry was analyzed using
ImageQuant TL 8.1 software.

Characterization by flow cytometry

To evaluate surface markers associated with fibroblasts
and macrophage, a flow cytometry (FC) assay was
performed according to Landa-Solis C et al. [16] Cells
were marked with monoclonal antibodies PE-conjugated
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CD166 and PE-conjugated CD14 from BD PharMigenTM
(San Diego, CA, USA). Data were collected through a BD
FACSCalibur flow cytometer and analyzed with Cell-
QuestTM PRO software (Becton-Dickinson).

Cell stimulation, viability, and apoptosis

FLS were treated for 24 h with MSU crystals at 0, 60, 75,
80, and 100 pg/mL. Cell viability was assessed by the
crystal violet method [17] after MSU crystal cell stimula-
tion. Based on these results, only one concentration was
used for all subsequent tests. FLS apoptosis was assessed
by FC detection of annexin V using a commercial kit
(Annexin V Alexa Fluor 488 from Molecular Probes).
Treatment with 100 uM H,O, for 30 minutes was used
as positive control for oxidation because an increase in
H,O, formation is associated with inflammation and fast
OS induction in cells [18]. Unstimulated cells were used
as negative control.

Assessment of oxidative stress

Oxidative stress was evaluated by determining intra-
cellular O3 through oxidation of dihydroethidium
(DHE, hydroethidine) at a 606 nm emission wavelength,
according to the manufacturer’s instructions, using a Tali
Image-based Cytometer (Life Technologies). H,O, was
detected by oxidation of 5-, 6- carboxy-2’, 2', 7'-
diclorofluorescein diacetate (carboxy-H2DCFDA) (Image-
iT LIVE Green Reactive Oxygen Species Detection) using
a fluorescence reader (BD, Beckman Coulter, AXT-800) at
530 nm. NO was quantified by benzotriazole formation
with a commercial kit, DAF-FM (4-amino-5-methylamino-
2,7-difluorofluorescein diacetate, Molecular Probes) at
515 nm in Tali Image-based Cytometer. Data analysis was
performed based on fluorescence intensities.

Protein oxidation

After derivatization using 2, 4-dinitrophenylhydrazine
(DNPH), the protein oxidation products were identified
by scanning carbonyl groups with the OxyblotTM
Protein Oxidation Detection Kit (Millipore Inc.) accord-
ing to the manufacturer’s instructions. Image detection
was performed with two methods: a conventional chemi-
luminescent detection and a fluorescence method using
ECL Plex goat-alfa-rabbit IgG-Cy5 (GE, Healthcare), a
630 nm excitation filter and a 670 nm emission filter.
The images were scanned with Amersham Imager 600
RGB (GE, Healthcare), and analyzed using ImageQuant
TL 8.1 software.

Morphostructural characterization by transmission
electron microscopy

The FLS were fixed with 2.5 % glutaraldehyde, treated
with 1 % osmium tetroxide, and dehydrated with alcohol
and propylene oxide. The samples were embedded in an

Page 3 of 9

epoxy resin and polymerized at 60 °C for 24 h. Sections
were cut 80-90 nm thick, and stained with 4 % uranyl
acetate and lead citrate. The cells were then analyzed
under a transmission electron microscope (TEM; Philips,
model Tecnai 10) equipped with a Mega View II digital
camera. A voltage of 80 kV was employed.

Statistical analysis

Each experiment was performed at least three times with
the sample from each patient in independent experi-
ments. Mean values were statistically analyzed with
GraphPad Prism v. 6.0 using variance analysis, followed
by the one-way post hoc Dunnett test. P<0.05 was
considered statistically significant.

Results

MSU crystallization

As evidenced by polarized light microscopy and SEM,
chemically synthesized MSU crystals exhibited a charac-
teristic needle-shaped negative birefringence, a 5-40 um
range size, and triclinic structure [19]. In addition, two
blinded experts reported similar morphological character-
istics in synthetic MSU crystals and those obtained from
the synovial fluid of patients during an acute gouty attack,
and they were unable to differentiate between the two
types of crystals (data not shown) (see Additional file 2).

FLS characterization

FLS isolated during SM biopsies expressed the PDH4
protein, UDGH gene and CD166 membrane receptor, as
assessed by WB, IFA, qRT-PCR and FC, respectively
(data not shown) (see Additional files 3, 4, and 5).

Assessment of cell viability and apoptosis

Cell cultures exposed to MSU crystals at a concentration
of 75 pg/mL maintained a viability of 77 % + 0.50, while
a concentration of 100 pg/mL resulted in a viability of
54.82 % + 0.46 compared to unstimulated FLS (P < 0.05)
(Fig. 1a). FLS exposed to 75 pg/mL MSU had invagin-
ation of crystals in the cytoplasm and cellular stress
(Fig. 1b).

Adding MSU crystals at 75 pg/mL or H,O, at 100 uM
induced apoptosis in 42 and 45 % of cells, respectively,
compared to 21 % cell apoptosis observed in unstimu-
lated cultures. This increment was significant (P < 0.05)
(Fig. 1c). Based on these results, we used a concentration
of 75 pug/mL MSU for all subsequent experiments.

Evaluation of oxidative stress

MSU crystals induced a 2.5-fold increase in intracellular
production of H,O, in comparison to untreated FLS
(P<0.05), and a 2.1-fold increase compared to a positive
control (Fig. 2a-c and g). Similarly, stimulating FLS with
crystals for 24 h or with H,O, for 30 minutes yielded
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Fig. 1 Cellular response to the presence of monosodium urate (MSU) crystals. a Cell viability after a 24 h treatment. b Cell morphological changes
after MSU crystal exposure. The arrows indicate the intracellular vacuoles of MSU crystals. € Apoptosis is revealed by Annexin V detection (yellow
arrows) in synoviocytes exposed to MSU crystals and H,O, (100 uM). Additionally, columns show quantification of the apoptotic cells by flow
cytometry. Values are expressed as the mean + standard deviation *P < 0.05 vs control

1.5-fold and 1.8-fold increases in O3, respectively,
compared to untreated FLS (Fig. 2d-f and g). Finally,
only a 1.5-fold increase in NO was observed in FLS
upon exposure to MSU crystals (Fig. 3).

Analysis of oxidized proteins

FLS exposed to MSU crystals had a protein oxidation
pattern similar to the one observed in H,O,-treated
cells, in comparison to unstimulated FLS (Fig. 4a, b).

Ultrastructural analysis
Untreated FLS were analyzed under transmission electron
microscopy (TEM). The cells exhibited irregular nuclei
containing loose chromatin; the mitochondria, rough
endoplasmic reticulum (ER) and vacuoles were distributed
homogeneously throughout the cytoplasm; and cytoplas-
mic prolongations were observed (Fig. 5a, b).

In addition to the presence of intracellular crystals,
MSU crystal-stimulated FLS had an increased number of

vacuoles and a reduction of ER (Fig. 5c). Furthermore,
aggregates of misfolded glycoproteins (MP) were evident
in the lumen (Fig. 5d). These aggregates were also
observed to a lesser extent in the FLS incubated with
H,0,, although few cytoplasmic prolongations were
present (Fig. 5e, f).

Discussion

The current study revealed that MSU crystals are able to
decrease cell viability through apoptosis induction in
FLS. Although the definitive mechanism for MSU-
induced apoptosis has not been established, it has been
demonstrated that MSU crystals exert different apop-
totic effects depending on the cell type interacting with
the crystals. While some studies have reported that
MSU crystals inhibit neutrophil apoptosis [20], others
have shown that they do not induce any change in the
percentage of apoptosis for osteoblast-like cells [21]. Re-
cently, MSU crystals have been shown to promote renal
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Fig. 2 Monosodium urate (MSU) crystals increase reactive oxygen species (ROS) in synoviocytes. Arrows indicate intracellular H,O, formation,
which is revealed by DCFH oxidation (green fluorescence) in untreated fibroblast-like synoviocytes (FLS) (a); FLS treated with MSU crystals at 24 h
(b), and FLS treated with H,0, at 30 minutes (c). Arrows indicate O; intracellular production by oxidation of dihydroethidium (DHE) (red fluorescence) in
untreated FLS (d); FLS treated with MSU crystals (e), and FLS treated with H,O, (f). Bars show quantification of DCFH and DHE fluorescence: data are
reported as units of arbitrary fluorescence (UAF) (g). Values are expressed as the mean =+ standard deviation; *P < 0.05 vs control
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cell apoptosis through a mechanism involving ROS
generation [22]. However, no data were available on their
influence on FLS. According to one report, apoptosis is
induced in chondrocytes isolated from patients with RA
following stimulation with MSU crystals [23]. The asso-
ciation of this apoptotic state with the loss of cartilage
repair and regeneration capacity could highlight a link
between FLS apoptosis and the tissue damage observed
in gouty patients. Moreover, the relationship between
the increment of ROS and NO and the loss of FLS
viability caused by MSU crystals is consistent with
published findings [24—26].

In addition, we established that crystal-exposed FLS
produced H,O,, O3 and, to a lesser extent, NO, promot-
ing a state of cellular oxidation. One mechanism in-
volved in ROS production is the NADPH oxidase system
in THP-1 cells stimulated with MSU crystals [27]. This
mechanism of ROS generation has also been shown in
FLS from patients with OA and RA that were exposed
to TNF-a and IL-1B, exhibiting a heightened state of

cellular oxidation [28]. Our experiments proved, via an
increase in ROS/RNS, that MSU crystals activated an
oxidative state in FLS. The increase in H,O, observed in
FLS exposed to MSU crystals for 24 h is similar to that
reported for FLS stimulated with advanced oxidation
proteins products; a threefold to eightfold increase in
H,0O, was observed compared to unstimulated control
cells [29]. This suggests that MSU crystal-mediated ROS
overproduction in FLS is involved in the disturbance of
homeostasis within the joint microenvironment, which
can damage all cellular components, including DNA,
lipids and proteins [30]. However, proteins are possibly
the most immediate vehicle for inflicting oxidative dam-
age on cells because they are often catalysts. Therefore,
we assessed the influence of ROS in oxidized protein
content of FLS affected by MSU crystals.

The impact of ROS on the proteins of FLS with MSU
crystals was clearly seen on images because there were
more spots and with higher intensities than in control
cells, indicating increased carbonyl content. While there
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Fig. 3 Nitric oxide (NO) production in synoviocytes. a Detection of NO in untreated fibroblast-like synoviocytes (FLS). b FLS treated with monosodium
urate (MSU) crystals. ¢ FLS treated with H,0,. Arrows indicate fluorescence produced by intracellular NO. d Bars show NO quantification by Tali
image-based cytometer. Values are expressed as the mean =+ standard deviation; *P < 0.05 vs control
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are no reports that can be directly compared to our data,
accumulation of protein carbonyls [31] has been ob-
served in some rheumatic diseases (including RA and
psoriasis), but it is known that exposure of proteins to
ROS leads to denaturalization, loss of function, cross-
linking, aggregation, and fragmentation. Under these
conditions, it is suggested that accumulation of some
compounds in the joint, like glycosaminoglycans and
hyaluronic acid, cause damage by reducing joint viscosity
[32]. However, there are no studies of the underlying
mechanism. We suspected that the increase in OS
might be contributing to synovial cell damage altering
the functional and structural integrity. Therefore, we

visualized OS-induced ultrastructural changes trig-
gered by MSU-crystals in gout. In our model, we ob-
served an increase in rough ER and in the presence of
MP aggregates due to cellular stress in the FLS. These
findings are similar to those described for synoviocytes
exposed to an adjuvant used for treating arthritis (i.e., a
reduction of the Golgi apparatus, mitochondria and ER
[33]), and to the ones describing the appearance of vac-
uoles in FLS cytoplasm due to the internalization of
particles. In addition, intracellular lysosomes and other
cytoplasmatic formations were found [34], and these
morphological changes suggest the induction of au-
tophagy in the cells [35].

MSU H,0,

A) c

Fig. 4 Oxidized proteins assay. a Representative oxyblot of fibroblast-like synoviocytes (FLS) proteins from control group (line 1); FLS proteins exposed
to monosodium urate (MSU) crystals (line 2); and FLS proteins from the positive control sample (line 3). b Oxidation scan with fluorescence detector.
Results are representative of independent experiments with cells from different patients

MSU H,O,

B) IS
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Fig. 5 (See legend on next page.)
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from different patients

Fig. 5 Ultrastructural changes in synoviocytes. A Ultrastructure of an untreated fibroblast-like synoviocytes (FLS). a Magnified view of the section
is indicated by a black box showing the nucleus (N), endoplasmic reticulum (ER) and vacuoles (V) highlighted with arrows. B FLS treated with
monosodium urate (MSU) crystals at 75 pg/mL exhibiting N, swollen vesicular structures of different sizes, and MSU crystal cavity. b A high-magnification
image showing misfolded proteins (MP) aggregates and ER indicated with arrows. C FLS treated with H,O, at 100 M showing N. ¢ A magnified view
of the section is indicated by a black box showing MP aggregates, ER and N. Results are representative of one of five separate experiments with FLS

An important unanswered question is the mechanism
responsible for activating OS in response to MSU crys-
tals in FLS. We can speculate that this effect might be
related to the mechanism involved in the overproduction
of ROS and the decrease of anti-oxidative enzymes
caused by lead-induced OS [36]. However, the molecular
pathways involved in MSU-induced OS in FLS are not
yet completely understood. Inhibition studies of these
pathways may be helpful to understand the signaling
network behind MSU crystals.

Conclusions

In conclusion, this study reveals that the exposure of
FLS to MSU crystals promotes an oxidizing state, which
may induce an apoptotic state and decrease cell viability
and synovial integrity. Nevertheless, further studies are
needed to achieve a better understanding of the signal
transduction pathways by which MSU crystals enhance
the damage generated in FLS, and to elucidate the mo-
lecular mechanism of OS in gout. This study confirms
the oxidative role of MSU crystals in FLS, which could
contribute to the inflammation and pain experienced
during an acute gout attack. This model of OS in FLS is
important for determining the role of antioxidants in-
volved in local and systemic damage to the joint in the
development of novel therapeutic targets to block OS.
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Additional file 4: UGDH gene expression and CD14 in synoviocytes.
Synoviocytes characterized by gRT-PCR. Each bar shows the average +
standard deviation of three independent experiments from different
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culture marked with anti-CD166 and anti-CD14. Each bar shows the
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